Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2999-2020
https://doi.org/10.5194/tc-14-2999-2020
Research article
 | 
15 Sep 2020
Research article |  | 15 Sep 2020

Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays

Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings

Related authors

A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023,https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study
Wolfgang Dierking, Oliver Lang, and Thomas Busche
The Cryosphere, 11, 1967–1985, https://doi.org/10.5194/tc-11-1967-2017,https://doi.org/10.5194/tc-11-1967-2017, 2017
Short summary
Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images
Xi Zhang, Wolfgang Dierking, Jie Zhang, Junmin Meng, and Haitao Lang
The Cryosphere, 10, 1529–1545, https://doi.org/10.5194/tc-10-1529-2016,https://doi.org/10.5194/tc-10-1529-2016, 2016
Short summary
Sea ice draft in the Weddell Sea, measured by upward looking sonars
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013,https://doi.org/10.5194/essd-5-209-2013, 2013

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary

Cited articles

Atkinson, K. E.: An Introduction to Numerical Analysis, 2nd Edn., New York, John Wiley & Sons, ISBN 978-0-471-50023-0, 1989. 
Berg, A. and Eriksson, L. E. B.: Investigations of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images, IEEE T. Geosci. Remote S., 52, 5023–5033, https://doi.org/10.1109/TGRS.2013.2286500, 2014. 
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for the physical sciences, 3rd Edn., Mc Graw Hill, ISBN 0-07-247227-8, 2003. 
Bouchat, A. and Tremblay, B.: Reassessing the quality of sea-ice deformation estimates derived from the RADARSAT Geophysical Processor System and its impact on the spatio-temporal scaling statistics, J. Geophys. Res.-Oceans, online first, https://doi.org/10.1029/2019JC015944, 2020. 
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. 
Download
Short summary
Monitoring deformation of sea ice is useful for studying effects of ice compression and divergent motion on the ice mass balance and ocean–ice–atmosphere interactions. In calculations of deformation parameters not only the measurement uncertainty of drift vectors has to be considered. The size of the area and the time interval used in the calculations have to be chosen within certain limits to make sure that the uncertainties of deformation parameters are smaller than their real magnitudes.