Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2999-2020
https://doi.org/10.5194/tc-14-2999-2020
Research article
 | 
15 Sep 2020
Research article |  | 15 Sep 2020

Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays

Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings

Related authors

A Comparison of CFAR Object Detection Algorithms for Iceberg Identification in L- and C-band SAR Imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-17,https://doi.org/10.5194/tc-2023-17, 2023
Revised manuscript accepted for TC
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study
Wolfgang Dierking, Oliver Lang, and Thomas Busche
The Cryosphere, 11, 1967–1985, https://doi.org/10.5194/tc-11-1967-2017,https://doi.org/10.5194/tc-11-1967-2017, 2017
Short summary
Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images
Xi Zhang, Wolfgang Dierking, Jie Zhang, Junmin Meng, and Haitao Lang
The Cryosphere, 10, 1529–1545, https://doi.org/10.5194/tc-10-1529-2016,https://doi.org/10.5194/tc-10-1529-2016, 2016
Short summary
Sea ice draft in the Weddell Sea, measured by upward looking sonars
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013,https://doi.org/10.5194/essd-5-209-2013, 2013

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023,https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023,https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023,https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023,https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary

Cited articles

Atkinson, K. E.: An Introduction to Numerical Analysis, 2nd Edn., New York, John Wiley & Sons, ISBN 978-0-471-50023-0, 1989. 
Berg, A. and Eriksson, L. E. B.: Investigations of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images, IEEE T. Geosci. Remote S., 52, 5023–5033, https://doi.org/10.1109/TGRS.2013.2286500, 2014. 
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for the physical sciences, 3rd Edn., Mc Graw Hill, ISBN 0-07-247227-8, 2003. 
Bouchat, A. and Tremblay, B.: Reassessing the quality of sea-ice deformation estimates derived from the RADARSAT Geophysical Processor System and its impact on the spatio-temporal scaling statistics, J. Geophys. Res.-Oceans, online first, https://doi.org/10.1029/2019JC015944, 2020. 
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. 
Download
Short summary
Monitoring deformation of sea ice is useful for studying effects of ice compression and divergent motion on the ice mass balance and ocean–ice–atmosphere interactions. In calculations of deformation parameters not only the measurement uncertainty of drift vectors has to be considered. The size of the area and the time interval used in the calculations have to be chosen within certain limits to make sure that the uncertainties of deformation parameters are smaller than their real magnitudes.