Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2999-2020
https://doi.org/10.5194/tc-14-2999-2020
Research article
 | 
15 Sep 2020
Research article |  | 15 Sep 2020

Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays

Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings

Related authors

A Comparison of CFAR Object Detection Algorithms for Iceberg Identification in L- and C-band SAR Imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-17,https://doi.org/10.5194/tc-2023-17, 2023
Preprint under review for TC
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study
Wolfgang Dierking, Oliver Lang, and Thomas Busche
The Cryosphere, 11, 1967–1985, https://doi.org/10.5194/tc-11-1967-2017,https://doi.org/10.5194/tc-11-1967-2017, 2017
Short summary
Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images
Xi Zhang, Wolfgang Dierking, Jie Zhang, Junmin Meng, and Haitao Lang
The Cryosphere, 10, 1529–1545, https://doi.org/10.5194/tc-10-1529-2016,https://doi.org/10.5194/tc-10-1529-2016, 2016
Short summary
Sea ice draft in the Weddell Sea, measured by upward looking sonars
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013,https://doi.org/10.5194/essd-5-209-2013, 2013

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023,https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Aerial observations of sea ice breakup by ship waves
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023,https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023,https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023,https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Inter-comparison and evaluation of Arctic sea ice type products
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023,https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary

Cited articles

Atkinson, K. E.: An Introduction to Numerical Analysis, 2nd Edn., New York, John Wiley & Sons, ISBN 978-0-471-50023-0, 1989. 
Berg, A. and Eriksson, L. E. B.: Investigations of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images, IEEE T. Geosci. Remote S., 52, 5023–5033, https://doi.org/10.1109/TGRS.2013.2286500, 2014. 
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for the physical sciences, 3rd Edn., Mc Graw Hill, ISBN 0-07-247227-8, 2003. 
Bouchat, A. and Tremblay, B.: Reassessing the quality of sea-ice deformation estimates derived from the RADARSAT Geophysical Processor System and its impact on the spatio-temporal scaling statistics, J. Geophys. Res.-Oceans, online first, https://doi.org/10.1029/2019JC015944, 2020. 
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. 
Download
Short summary
Monitoring deformation of sea ice is useful for studying effects of ice compression and divergent motion on the ice mass balance and ocean–ice–atmosphere interactions. In calculations of deformation parameters not only the measurement uncertainty of drift vectors has to be considered. The size of the area and the time interval used in the calculations have to be chosen within certain limits to make sure that the uncertainties of deformation parameters are smaller than their real magnitudes.