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Abstract. The objective of this note is to provide the back-
ground and basic tools to estimate the statistical error of
deformation parameters that are calculated from displace-
ment fields retrieved from synthetic aperture radar (SAR)
imagery or from location changes of position sensors in an
array. We focus here specifically on sea ice drift and defor-
mation. In the most general case, the uncertainties of diver-
gence/convergence, shear, vorticity, and total deformation are
dependent on errors in coordinate measurements, the size of
the area and the time interval over which these parameters
are determined, as well as the velocity gradients within the
boundary of the area. If displacements are calculated from
sequences of SAR images, a tracking error also has to be con-
sidered. Timing errors in position readings are usually very
small and can be neglected. We give examples for magni-
tudes of position and timing errors typical for buoys and SAR
sensors, in the latter case supplemented by magnitudes of the
tracking error, and apply the derived equations on geometric
shapes frequently used for deriving deformation from SAR
images and buoy arrays. Our case studies show that the size
of the area and the time interval for calculating deformation
parameters have to be chosen within certain limits to make
sure that the uncertainties are smaller than the magnitude of
deformation parameters.

1 Introduction

Sea ice drifts under the influence of wind and ocean currents.
Spatial gradients in the sea ice motion lead to distortion of
the sea ice cover, termed deformation. The retrieval of sea
ice drift vectors and deformation parameters from pairs or
sequences of satellite synthetic aperture radar (SAR) images
has gained increased attention during recent years because
of the growing availability of suitable data (e.g., Stern and
Moritz, 2002; Karvonen, 2012; Berg and Eriksson, 2014; Ko-
marov and Barber, 2014; Lehtiranta, 2015; Muckenhuber et
al., 2016; Demchev et al., 2017; Korosov and Rampal, 2017).
Sea ice kinematics is also studied based on data from arrays
of buoys or GPS receivers (e.g., Lindsay, 2002; Hutchings et
al., 2008; Hutchings et al., 2012; Itkin et al., 2017), which
in addition can serve as reference in comparisons to motion
vectors obtained from SAR images. The knowledge of spa-
tially detailed motion and deformation fields is potentially
useful in ice navigation to locate divergent or compressive
ice areas, as complementary information for operational sea
ice mapping, for validation of models for forecasting of ice
conditions, and for assimilation into ice models (Karvonen,
2012). Such practical applications require that the errors of
the retrieved drift and deformation parameters are known.
For buoys, errors in drift measurements depend on the ac-
curacy of position and time readings. The accuracy of defor-
mation parameters is not only affected by errors in drift mag-
nitude and direction but also by the size and shape of buoy
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arrays (e.g., Hutchings et al., 2012; Griebel and Dierking,
2018). Drift vectors derived from pairs of satellite images
are the result of correlation techniques or object detections,
while deformation parameters are calculated from spatial ar-
rangements of adjacent drift vectors surrounding the area of
interest, in a manner that is independent of the coordinate
system. This means that drift and deformation errors do not
only depend on the geolocation accuracy and spatial resolu-
tion of satellite images but also on the reliability and robust-
ness of the drift retrieval algorithm. In this technical note we
focus on the estimation of statistical errors for ice velocity
and deformation. The issue of error estimation was repeat-
edly addressed in the past, scattered in a number of publi-
cations and restricted to single aspects related to the respec-
tive analysis (e.g., Lindsay and Stern, 2003; Hollands and
Dierking, 2011; Bouillon and Rampal, 2015; Hollands et al.,
2015; Linow et al., 2015; Griebel and Dierking, 2018), and
is also addressed in a more recent analysis by Bouchat and
Tremblay (2020). Our motivation is to provide the mathemat-
ical background, together with examples of applications and
discussions of validity, in a broader context. We emphasize
that here we deal with statistical errors but not with bound-
ary definition errors as described, e.g., in Lindsay and Stern
(2003), Bouillon and Rampal (2015), and Griebel and Dierk-
ing (2018). Although this note is specifically focused on re-
trievals of parameters characterizing sea ice kinematics, the
mathematical framework is also applicable to movement and
deformation of ice shelves and glaciers, or for model simula-
tions of sea ice, glacier, and ice sheet dynamics.

In Sect. 2 we summarize the basics and provide equations
for calculating errors of drift and deformation parameters:
divergence, vorticity, shear, and total deformation. The equa-
tions are used in Sect. 3 to quantify the influence of different
parameters such as geolocation and tracking errors, or shape
and size of buoy arrays and grid cells. Conclusions are pre-
sented in Sect. 4.

2 Errors of drift and deformation parameters

In this section, we provide a short description of the estima-
tion of errors and the computation of strain rates and then
derive the statistical errors for drift velocity, polygon areas,
divergence, shear, vorticity, and total deformation. The sta-
tistical errors quantify uncertainties that are introduced by
random fluctuations in the measurements. If the random fluc-
tuations are small, data are measured with a high degree of
precision but not necessarily with high accuracy. The latter
requires that the measured value is close to the true value,
whereas precision refers to the reproducibility of a measure-
ment (Bevington and Robinson, 2003, chap. 1).

2.1 Error propagation and calculation of deformation

The formula for error propagation is based on the splitting
method, i.e., the decomposition of a measured variable x into
its true value and the measurement error: x = xtrue+ xerror,
where xtrue is considered to be a constant and xerror is a ran-
dom variable with expected value E(xerror)= 0 and variance
E(x2

error)= σ
2. If a quantity Q is calculated from measured

variables xk , i.e., Q= f (x1,x2, . . .,xn), a Taylor series ex-
pansion can be applied to estimate the error of Q. Usually
only the linear term is retained:

Q=f
(
x1,true, x2,true, . . ., xn,true

)
+

n∑
i=1

[
∂f

∂xi

(
x1,true, x2,true, . . ., xn,true

)][
xi,error

]
. (1)

The variance is obtained by moving the first term to the left-
hand side, squaring both sides, and applying the expected
value operator E() (Bevington and Robinson, 2003). This
operation results in

σ 2
Q =

∑
i

(
∂f

∂xi

)2

σ 2
i +

∑
i 6=j

∑(
∂f

∂xi

)(
∂f

∂xj

)
σij

i = 1,n,j = 1,n, (2)

where σ 2
i is the variance of xi and σij the covariance of xi

and xj . If we can assume that the errors are uncorrelated,
the second term on the right side of Eq. (2) is zero. We will
use the notation “uncertainty” synonymously with “standard
deviation of the absolute error”.

Deformation parameters are calculated from different
combinations of the components of the velocity gradient ten-
sor (∂u/∂x,∂v/∂x,∂u/∂y,∂v/∂y)= (ux,vx,uy,vy) (Lep-
päranta, 2011), here given in a Cartesian coordinate system,
where u(x,y) and v(x,y) are the velocity components in the
x and y direction at position (x,y). We have

divergence ε̇div = ux + vy, (3a)
vorticity ε̇vrt = vx − uy, (3b)

shear ε̇shr =
2
√(
uy + vx

)2
+
(
ux − vy

)2
, (3c)

and total deformation ε̇tot =
2
√
ε̇2

div+ ε̇
2
shr. (3d)

Divergence and shear are the two invariants of the sym-
metric deformation tensor. The dimension of ε̇ is velocity
change per length unit, hence [time]−1. For ease of refer-
ence, we briefly repeat the physical meaning of different
velocity gradient combinations (after Cuffey and Paterson,
2010; Leppäranta, 2011): imagine a rectangle with its sides
Lx and Ly parallel to the x and y axes of a 2D Carte-
sian coordinate system. In this case the gradients ux and vy
are normal strain rates, leading to an extension or contrac-
tion of the rectangle in the respective direction. The nor-
mal strain along the x axis, e.g., is 1Lx(t)/Lx = ux1T .

The Cryosphere, 14, 2999–3016, 2020 https://doi.org/10.5194/tc-14-2999-2020



W. Dierking et al.: Sea ice deformation retrieval errors 3001

Here 1T is the time interval 1T = t − t0 during which
the effect of deformation is analyzed, and Lx +1Lx is the
side length at time t0+1T . The sum ux + vy is the diver-
gence or convergence, dependent on the sign. The expres-
sion uy + vx is linked to the change in shape of the rectan-
gle (pure shear). The normal shear, ux − vy , quantifies the
change in length difference between the sides of the rect-
angle. The vorticity (vx − uy), which is twice the rotation
rate, describes the rotation about an axis vertical to the x–y
plane (positive counterclockwise) without change in shape.
Let the rectangle be located in a temporally constant ve-
locity field with, e.g., ux = 0.1 d−1, vy = 0.05 d−1, uy = 0,
vx = 0; then the divergence is ε̇div = 0.15 d−1

= 15 % d−1.
Assuming that the sides of the rectangle are Lx and Ly at
time t0, its area A0 = LxLy increases to (Lx + uxLx1T )
(Ly+vyLy1T )= A0(1+ux1T )(1+vy1T )= 1.155A0 for
1T = 1 d. Since only the difference ux–vy contributes to the
square root (Eq. 3c), ε̇shr = 0.05 d−1

= 5 % d−1 is the normal
shear (Hutchings et al., 2012).

The deformation of a region R (covered by the buoy array
or grid cell) with area A is calculated from the spatial aver-
ages of the velocity gradient components over the region R,
in Eq. (4) indicated by an overbar. For the ux component, for
example, the expression is (Thorndike, 1986)

ūx =
1
A

∫ ∫
R

∂u

∂x
da =

1
A

∮
C

unexdl. (4)

Here da and dl are the differentials for area and length, n is
the outward normal vector to the perimeter C of R, and ex
is the unit vector in the x direction. This is Green’s theorem,
which relates a line integral along a closed curveC to the area
integral over a plane regionR bounded byC. The application
of the theorem requires that the velocity components u and
v have continuous first-order partial derivatives on R. In a
Cartesian coordinate system, the calculation of the velocity
gradient in the x direction is carried out using

ux =
1
A

∮
C

udy ∼=
1

2A

n∑
i=1

(ui+1+ ui)(yi+1− yi) (5)

and the other components of the velocity gradient tensor ac-
cordingly. In Eq. (5) we have omitted the overbar above ux .
The sum comes from the trapezoid rule for integration, tak-
ing n points around the perimeter of R, where (ui+1+ ui)/2
is the estimate of u on the ith segment, (yi+1− yi) is dy, i is
the summation index which traces the boundary in a counter-
clockwise sense, n is the number of vertices for the grid cell
(or number of buoys), and A is the area of the grid cell (or
of the polygon spanned by the buoy array). Here, un+1 ≡ u1
and yn+1 ≡ y1 (closed polygon). The velocity gradients are
implicitly averages over R. This will also be the case for our
estimates of the deformation parameters, Eqs. (3a)–(3d).

The velocity vectors may be obtained from an array of
buoys, where the buoys’ positions are regarded as the ver-
tices of a polygon. The displacement of a buoy is usually

Figure 1. Eulerian grids (a, b) are reinitialized at every time step
to a regular configuration. Lagrangian grids (c) evolve over time
without being reinitialized.

calculated from the distance between distinct positions, and
the velocity is determined as the displacement divided by
the time period between position fixes. When using pairs of
satellite images, sea ice deformation is obtained from the dis-
placements of recognizable structures or patterns in these im-
ages. These are referred to as ice structures from here on. In
the reference image, a grid can be constructed by connect-
ing the center positions of adjacent ice structures by lines.
If movements of single ice structures differ between acqui-
sitions of image 1 and image 2, the shapes and sizes of grid
cells have changed in the second image. It is the presence of
velocity gradients due to locally varying physical forces that
causes the deformation. In practice the movement of sea ice
is obtained using different methods (e.g., Holt et al., 1992;
Stern and Moritz, 2002; Karvonen, 2012; Muckenhuber et
al., 2016; Korosov and Rampal, 2017), which determine the
spatial distribution and density of the displacement vectors.
The vectors can be regularly spaced on the crossing points of
horizontal and vertical grid lines as a result of pattern match-
ing algorithms in an Eulerian approach, or they can be ir-
regularly distributed, which is typical for the Lagrangian ap-
proach applied in feature or buoy tracking (see Fig. 1).

The errors discussed in the following subsections can be
traced back to errors in the position of reference points (i.e.,
vertices of a grid, or buoys). Lindsay and Stern (2003) de-
note this error type as geolocation error. On a horizontal
plane two coordinates (e.g., x, y or latitude, longitude) deter-
mine the positions of the start and end points of the displace-

ment, respectively. The distance d = 2
√
(x′− x)2+ (y′− y)2

is prone to the errors of the coordinate readings. Its uncer-
tainty is σ 2

d = 2σ 2
coord, assuming σcoord = σx = σy = σx′ =

σy′ and no correlation between coordinate measurements at
the end points (see Eq. 2). When displacements are retrieved
from a pair of SAR images, one needs to consider position
and tracking uncertainties, i.e., σ 2

coord and σ 2
tr , respectively.

The latter arises from the fact that in a satellite image de-
tails of structures on a pixel scale may be difficult to match
between images 1 and 2. In this case the uncertainty in dis-
placement (which here is the distance between positions of
a fixed point on an ice structure in images 1 and 2) is σ 2

d =

2σ 2
coord+ σ

2
tr . For buoy arrays, σ 2

tr is zero, since a buoy re-
mains fixed relative to the ice floe on which it was deployed.
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In a SAR image, the geolocation (position) error is caused
by the inaccuracies of the parameters describing the satel-
lite orbit as a function of space and time. In general, the er-
ror caused by these inaccuracies is uniform across the image
with only small local variations. Hence the assumption of in-
dependent geolocation errors is not valid if distances between
moving objects are small. Holt et al. (1992) give a correlation
length of 10 km for the uncertainty of the geolocation error,
σcoord, but correlation lengths of up to 100 km may be possi-
ble (Ronald Kwok, personal communication, 2020). Defor-
mation parameters from SAR image pairs are usually cal-
culated over regions that are on the order of 10 km or less
across. With correlation lengths of ≥ 10 km, geolocation er-
rors at all pixels in the region are almost equal, which means
that geolocation error variances σcoord are small (as is dis-
cussed in Sect. 3.4.1). It is hence reasonable in many cases
to regard the geolocation errors in image 1 and image 2 as
constant biases and to assume that σcoord = 0 (Sect. 3.4.2).
When calculating the distance between two points with iden-
tical geolocation errors, we obtain hence σ 2

d = σ
2
tr . Differ-

ences between the biases in image 1 and 2 affect the retrieval
of ice drift. Deformation, on the other hand, is related to the
relative change in size and shape of a given area between ac-
quisitions of image 1 and image 2. The relative area change
is independent of the regionally constant difference between
the biases and depends only on the error variances. There-
fore, deformation can be estimated with sufficient accuracy
even if geolocation errors are large.

2.2 Uncertainty of drift velocity

The deformation is calculated from components of the veloc-
ity gradients according to Eq. (5). Hence, we have to consider
the uncertainty in the measurements of velocity components
ui and vi . The components are calculated from u= dx/1T

and v = dy/1T , where dx = (x′− x) and dy = (y′− y) are
the displacements in the x and y direction, respectively, and
1T is the time interval needed for the position change from
(x, y) to (x′, y′). Considering that errors in measuring time
and positions are not correlated, we obtain from Eq. (2), tak-
ing into account a possible tracking error:

σ 2
u =

1
1T 2 σ

2
dx +

(
−dx

1T 2

)2

σ 2
1T

=
1

1T 2

(
2σ 2
x + σ

2
trx + u

2σ 2
1T

)
, (6a)

σ 2
v =

1
1T 2 σ

2
dy +

(
−dy

1T 2

)2

σ 2
1T

=
1

1T 2

(
2σ 2
y + σ

2
try + v

2σ 2
1T

)
, (6b)

where σdx and σdy are the uncertainties of the displacements
(distances) in the x and y direction and σtrx and σtry are the
corresponding components of the tracking error. If the un-
certainty in timing, σ 2

1T , is not zero, the assumption that

σ 2
u = σ

2
v is only valid if u2

= v2. The uncertainty in speed U
(i.e., the magnitude of velocity vector U ) can be computed
using Eq. (6), replacing σ 2

u with σ 2
U , σ 2

dx with σ 2
d ,σ 2

trx with

σ 2
tr , and u with U , considering that U = d/1T = 2√

u2+ v2

and d = 2
√
(x′− x)2+ (y′− y)2. When calculating the rela-

tive error variance σU/U , one obtains Eq. (A1) in Hutchings
et al. (2012).

If, on the other hand, both components of the vector U

are determined separately (hence considering magnitude and
direction), the result is different:

σ 2
U =

(
∂U

∂u

)2

σ 2
u +

(
∂U

∂v

)2

σ 2
v =

( u
U

)2
σ 2
u +

( v
U

)2
σ 2
v . (7)

If one substitutes Eq. (6a) and (6b) into Eq. (7) and sets σ 2
dx =

σ 2
dy = 2σ 2

coord+ σ
2
tr , one obtains

σ 2
U =

2σ 2
coord+ σ

2
tr

1T 2 +
σ 2
1T

1T 2

(
u4
+ v4

u2+ v2

)
. (8)

If σ1T cannot be neglected, and if u=0 and v = U or v =0
and u= U , the second term of Eq. (8) yields U2(σ 2

1T /1T 2),
which is the uncertainty in speed given above. If, on the
other hand, u= v and hence U2

=2u2, the second term is
0.5U2(σ 2

1T /1T
2). This result may be viewed as if indepen-

dent measurements of the two components u and v reduce
the uncertainty contribution of σ 2

1T
.

2.3 Uncertainty of polygon area

The uncertainty of an area measurement is needed for appli-
cation of Eq. (5) and equations presented in the following
sections. The starting point for calculating the variance of
error for the measurement of an area is the surveyor’s area
formula valid for a polygon with an outline consisting of n
segments in a plane spanned by the x and y axis:

A=
1
2

n∑
i=1
(xiyi+1− xi+1yi). (9)

Here xn+1 ≡ x1 and yn+1 ≡ y1 (closed polygon), i is the
summation index, and the boundary is traced in a counter-
clockwise sense. We have to consider that each coordinate
appears twice in the sum of Eq. (9). When i = k we have,
e.g., for x: xkyk+1, and when i = k− 1 we have −xkyk−1.
For the law of error propagation, we need the derivatives:

∂A

∂xk
=

1
2
(yk+1− yk−1) and

∂A

∂yk
=−

1
2
(xk+1− xk−1), (10)

where k is the index of the derivative. Hence, we obtain

σ 2
A =

1
4

n∑
i=1

[
σ 2
i_x(yi+1− yi−1)

2
+ σ 2

i_y(xi+1− xi−1)
2
]
.
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(11)

We can assume that coordinate uncertainties σ 2
i_x = σ

2
i_y =

σ 2
coord are equal and the same for all measured positions. The

uncertainty of the area is then

σ 2
A =

σ 2
coord
4

n∑
i=1

[
(yi+1− yi−1)

2
+ (xi+1− xi−1)

2
]
. (12)

Examples of applying Eq. (12) on basic polygons are shown
in Fig. 2. Arbitrarily shaped triangles and quadrangles, which
are basic patterns for arrays of three or four buoys and for
grid cells in satellite images when applying the Lagrangian
approach, are shown at the bottom. The x–y coordinate sys-
tem is here oriented such that the calculation of the uncer-
tainty is easy. For any orientation of the triangle or quadran-
gle, side lengths and distances can be derived from the coor-
dinates (x,y) of the edge points. For squares and equal-sided
right-angled triangles, which are typical grid cells when re-
trieving ice drift from satellite images in a Eulerian approach,
the uncertainty is directly proportional to the area. If a square
grid cell is split into two triangles (as in Fig. 1), the uncer-
tainty in area of each triangle is half that of the square.

For an assessment on how the polygon shape affects the
magnitude of uncertainty we require that the enclosed area
remains constant. The areas of a square with side length L
and a right-angled triangle with two sides of length LT are
equal if LT =

√
2L. In this case we get σ 2

A = 2σ 2
coordL

2 for
both square and triangle, which means that in this particular
case the increase in number of vertices does not result in a de-
crease in σA. For a hexagon with A= L2, on the other hand,
one obtains s2

= 2L2/3
√

3 and σ 2
A = 1.44σ 2

coordL
2 (where

s is the length of a line segment on the boundary of the
hexagon; see Fig. 2). The issue of adding more vertices while
keeping the shape of the polygon is addressed in Sect. 3.6.

The question arises of how large the smallest detectable
area change is in a SAR image. To address this question, we
assume a square grid cell with its vertices on the positions of
adjacent displacement vectors and its sides parallel to the x
and y axes of a Cartesian coordinate system. The cell covers
m×m square-shaped pixels of side length1x. The minimum
possible change is to move one edge point by the side length
of 1 pixel, either in the x or y direction. This adds the area of
a right triangle with legs 1x and m1x(1y =1x), and the
change in the area is 1A= (m1x2)/2, i.e., 100/(2m) per-
cent of the original area (m1x)2. Hence the larger the num-
ber of pixels in the area, the smaller the detectable relative
area change. However, until now we assumed that the posi-
tion error is zero, but we have to consider the uncertainty of
the area estimate, which is σ 2

A = 2σ 2
coordm

21x2 for a square
withL=m1x. To be sure that a detected area change is real,
1A needs to be larger than σA or σcoord <

1
2
√

2
1x.

2.4 Uncertainties for divergence, shear, vorticity, and
total deformation in fixed grids

We consider a grid with displacement or drift velocity vectors
on the vertices. For calculating the deformation parameters,
we need the velocity gradients ux,uy,vx,vy , obtained from
Eq. (5). Formally, the gradients depend on the area A, posi-
tions (xi , yi), and velocities (ui , vi); see Sect. 2.5. Here we
assume that the georeferencing of the satellite images is ac-
curate. In this case, the positions (xi , yi) of vertices and the
area of each grid cell are known precisely, which means that
σcoord = 0 and σA = 0. The displacement or velocity vec-
tors, however, have an uncertainty related to the tracking er-
ror. With ∂ux/∂uk = (yk+1− yk−1)/2A and again consider-
ing that two terms in the sum Eq. (5) include ui , the uncer-
tainty of the velocity gradient in the x direction is (Griebel
and Dierking, 2018)

σ 2
ux =

σ 2
u

4A2

n∑
i=1

(yi+1− yi−1)
2, (13)

with analogous equations for the other gradient components.
The divergence is ε̇div = ux + vy , Eq. (3a), and the corre-

sponding uncertainty is σdiv =
2
√
σ 2
ux + σ

2
vy , if ux and vy are

independent. Throughout this section we assume that σU =
σu = σv and σ1T = 0; hence the error variance for the diver-
gence is

σ 2
div =

σ 2
U

4A2

n∑
i=1

[
(yi+1− yi−1)

2
+ (xi+1− xi−1)

2
]

=
σ 2

tr

4A21T 2

n∑
i=1

[
(yi+1− yi−1)

2
+ (xi+1− xi−1)

2
]
. (14)

Equation (14) resembles the uncertainty for a polygon,
Eq. (11). Since the position uncertainty σcoord is set to zero,
the uncertainty of velocity U is only a function of the track-
ing uncertainty σtr; see Eq. (8) (assuming σ1T = 0). For the
vorticity Eq. (3b) one obtains σvrt =

2
√
σ 2
vx + σ

2
uy and thus the

same expression as for the divergence. The shear rate is given
by Eq. (3c). Calculating the derivatives with respect to the
velocity gradient components and applying the law of error
propagation yields

σ 2
shr =

(
ux − vy

)2
ε̇2

shr

(
σ 2
ux + σ

2
vy

)
+

(
uy + vx

)2
ε̇2

shr

(
σ 2
uy + σ

2
vx

)
. (15a)

With ϕ = 1/2arctan((uy + vx)/(ux − vy)), which gives the
principal direction of shear, and using Eq. (3c) and rela-
tions cos2 (arctan(x))= 1/

(
1+ x2) and sin2 (arctan(x))=

x2/
(
1+ x2), Eq. (15a) can be expressed as

σ 2
shr = cos2(2φ)σ 2

div+ sin2(2φ)σ 2
vrt. (15b)
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Figure 2. Application of Eq. (12) to different geometrical figures: rectangle, equal-sided right triangle, rhombus, regular hexagon, triangle,
and quadrangle.

Since σ 2
div = σ

2
vrt and cos2(2ϕ)+ sin2(2ϕ)= 1, the error vari-

ances are equal for divergence, vorticity, and shear. For
the total deformation, Eq. (3d), we need the derivatives
∂(ε̇tot)/∂(ε̇shr) and ∂(ε̇tot)/∂(ε̇div), with which we obtain

σ 2
tot =

ε̇2
shr

ε̇2
tot
σ 2

shr+
ε̇2

div

ε̇2
tot
σ 2

div. (16a)

If we define θ = arctan (εshr/εdiv) (Stern et al., 1995),
Eq. (16a) can be rewritten as

σ 2
tot = sin2 (θ) σ 2

shr+ cos2 (θ) σ 2
div. (16b)

The angle θ gives the relative contributions of divergence and
shear: pure divergence is θ = 0◦, uniaxial extension is θ =
45◦, pure shear is θ = 90◦, uniaxial compression is θ = 135◦,
and pure convergence is θ = 180◦. Since the uncertainties for
shear and divergence are of equal magnitude, it follows that

σ 2
tot = σ

2
shr = σ

2
div = σ

2
vrt. (16c)

In the following, we assume that σ1T can be neglected and
that the standard deviations for the velocity components u
and v are equal. Using Eq. (14) for a square cell, we obtain
the following for the uncertainty of the divergence:

σ 2
div =

σ 2
U

4A2

(
4L2
+ 4L2

)
=

2σ 2
d

L21T 2 =
2σ 2

tr

L21T 2 , (17)

with A= L2, σ 2
U = σ

2
d /1T

2, and 1T = t − t0 as above.
Since the position uncertainty is zero in the case investigated
here, σ 2

d (which equals 2σ 2
coord+ σ

2
tr ; see Sect. 2.1) depends

only on the tracking error (compare to Eq. 17 in Lindsay and
Stern, 2003).

2.5 Uncertainties of deformation parameters, general
case

For an array of buoys, we have to consider errors of the area,
the buoy velocity components u and v, and the coordinates
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(x, y) of each buoy position. The general case does also ap-
ply to SAR images if geolocation error variances cannot be
neglected. A buoy array consists of single buoys arbitrar-
ily positioned over a plane. When connecting all buoy po-
sitions with lines, a polygon of area A is formed in which
distances between adjacent buoys are usually different. The
starting point is Eq. (5). In the following equations summa-
tion bounds from i = 1 to n are omitted. We note that the
equations in this section have been independently derived by
Bouchat and Tremblay (2020) as well.

For the uncertainty in ux we obtain

σ 2
ux =σ

2
A

(
∂ux

∂A

)2

+ σ 2
u

∑(
∂ux

∂ui

)2

+ σ 2
y

∑(
∂ux

∂yi

)2

. (18)

With

∂ux

∂A
=−

1
2A2

∑
(ui+1+ ui)(yi+1− yi) ,

∂ux

∂uk
=

1
2A

(yk+1− yk−1) , and
∂ux

∂yk
=−

1
2A

(uk+1− uk−1) ,

Eq. (19) reads

σ 2
ux =

σ 2
A

4A4

[∑
(ui+1+ ui)(yi+1− yi)

]2

+
σ 2
u

4A2

∑
(yi+1− yi−1)

2

+
σ 2
y

4A2

∑
(ui+1− ui−1)

2. (19)

The first term on the right side is calculated from line seg-
ments connecting adjacent vertices (i+ 1,j + 1) and (i,j ),
and the second and third terms are calculated from chords be-
tween (i+1, j+1) and (i−1, j−1). Assuming σ 2

coord = σ
2
x =

σ 2
y ; σ 2

U = σ
2
u = σ

2
v (the latter follows from σ 2

T /1T
2
≈ 0) one

obtains for the divergence:

σ 2
div = σ

2
ux + σ

2
vy =

σ 2
A

4A4

{[∑
(ui+1+ ui)(yi+1− yi)

]2

+

[∑
(vi+1+ vi)(xi+1− xi)

]2
}

+
σ 2
U

4A2

[∑
(xi+1− xi−1)

2
+

∑
(yi+1− yi−1)

2
]

+
σ 2

coord
4A2

[∑
(ui+1− ui−1)

2
+

∑
(vi+1− vi−1)

2
]
, (20)

where the first term can be written as
σ 2
A

(
u2
x+v

2
y

)
A2 , considering

Eq. (5). For the vorticity, only the first term is different:

σ 2
vrt = σ

2
uy + σ

2
vx =

σ 2
A

4A4

{[∑
(ui+1+ ui)(xi+1− xi)

]2

+

[∑
(vi+1+ vi)(yi+1− yi)

]2
}

+
σ 2
U

4A2

[∑
(xi+1− xi−1)

2
+

∑
(yi+1− yi−1)

2
]

+
σ 2

coord
4A2

[∑
(ui+1− ui−1)

2
+

∑
(vi+1− vi−1)

2
]
. (21)

Here, the first term can be written as
σ 2
A

(
u2
y+v2

x

)
A2 . The first

terms in Eqs. (20) and (21), right side, consider that the rel-
ative error variance of the area affects the magnitude of the
average velocity gradients. The second term is the variance of
divergence/vorticity of the velocity field in a fixed grid where
positions of vertices are known precisely, Eq. (14). The last
term takes into account the effect of uncertainties in the po-
sitions of buoys in the field of velocity vectors. The veloc-
ity is usually determined from buoy positions separated by
a time interval 1T = Ti+1− Ti . However, within 1T also
the buoy array changes its area and shape. Hence an alter-
native approach would be to determine the average velocity
from positions at Ti−1, Ti , and Ti+1 and link it with the geo-
metric properties of the buoy array at time Ti . For the shear
and total deformation, the results are formally equal to Eqs.
(15a) and (15b) as well as (16a) and (16b), where now σux ,
σuy , σvx , and σvy are calculated using Eq. (20) and analo-
gous expressions. Note that in this case the uncertainties of
divergence, vorticity, shear, and total deformation differ from
one another, unless σ 2

ux = σ
2
uy = σ

2
vx = σ

2
vy . In practical ap-

plications, they can be evaluated numerically. This requires
the knowledge of uncertainties σcoord for buoys and σcoord,
σtr for satellite images.

3 Discussion

Equations (20) and (21) together with Eqs. (15) and (16) pro-
vided above indicate that statistical uncertainties are not only
influenced by geolocation and tracking errors but also de-
pend on the shape and size of grid cells and buoy arrays. In
the following discussion we consider magnitudes of geoloca-
tion and tracking errors reported in the literature and selected
squares and triangles as examples for grid cells in SAR im-
ages (Lindsay, 2002; Bouillon and Rampal, 2015) and for
splitting large buoy arrays into smaller units (Hutchings et
al., 2012; Itkin et al., 2017). The effect of combining several
cells is investigated. Finally, we focus on the range of validity
of the equations derived in Sect. 2 and alternative methods of
analysis.
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3.1 Typical magnitudes of deformation parameters

The statistical uncertainties have to be related to the typ-
ical magnitudes of the deformation parameters. According
to Leppäranta (2011, p. 70) the total deformation of drift-
ing ice typically varies between around 90 % d−1 in the
marginal ice zone to 0.9 % d−1 in the central Arctic. For
the vorticity, magnitudes up to 9 % d−1

= 1/2 (0.09) revolu-
tions d−1

= 16.2◦ d−1 were observed. Hutchings et al. (2012,
Figs. 4 and 7) analyzed displacements of an array of 24 buoys
deployed in the Weddell Sea on first- and second-year ice
with concentrations above 90 %. For divergence, they found
most values between −90 % d−1 and 90 % d−1 at a spatial
scale of 10 km, as well as at a 60 km scale mainly between
±25 % d−1 and up to 35 % d−1 for the shear. Note that spatial
scales are mentioned here since they affect the observed mag-
nitudes of deformation (e.g., Marsan et al., 2004). Itkin et
al. (2017) observed exceptional events of strong divergence
and shear of up to 200 % d−1 from buoys in an area north
of Svalbard (their Fig. 4), but over most of the measurement
period, magnitudes were lower. At scales of 15 km or less,
values for divergence covered the range±20 % d−1 over sev-
eral days to weeks, but also variations of about ±100 % d−1

occurred for 3 weeks. Shear was close to zero for a few days
but varied mainly from 20 % d−1 to 70 % d−1 for 3 weeks.
At measurement scales larger than 60 km, the magnitudes of
divergence and shear were lower than at ≤ 15 km scale, with
the exception of very short periods during which the oppo-
site was the case. Magnitudes for divergence were roughly at
±10 % d−1 with occasional minima and maxima in the range
of ±100 % d−1, and for shear most values were ≤ 10 % d−1

with a few peaks at about 100 % d−1. Based on merged veloc-
ity measurements from buoys and different satellite sensors,
Lindsay (2002) provided a table for monthly averaged values
of divergence (−0.6 % d−1 to 0.5 % d−1), shear (0.9 % d−1

to 4 % d−1), and vorticity (−2.3 % d−1 to 3.2 % d−1) from
the Beaufort Sea at a scale of 100 km. Stern and Moritz
(2002, Fig. 4) used SAR images and found decreasing mag-
nitudes for the divergence for increasing spatial scales from
50km×50km to 200km×200km in the Beaufort Sea. Mag-
nitudes were largest between August and February with min-
ima/maxima between −5 % d−1 and 5 % d−1 at a scale of
50 km, decreasing at larger scales. Note that the uncertainties
resulting from the equations given in the subsections below
have to be multiplied by 100 to obtain a value in percent per
time unit.

3.2 Uncertainties for areas of simple geometric shape

In general, the uncertainty of the deformation parameters de-
pends on the ratio σ 2

coord/A
2 (since σA and σU are functions

of σcoord); hence for given geolocation and tracking errors it
decreases with increasing area. The first term in Eqs. (20)
and (21) is smallest if, for given area and velocity gradi-
ents, σA is at a minimum. For an arbitrary triangle with

sides a, b, c, the uncertainty σ 2
A is 0.25σ 2

coord(a
2
+ b2
+ c2)

(see Fig. 2). Of all triangles with the same base and the
same area A, the equal-sided triangle with a = b = c has the
smallest perimeter and hence the lowest uncertainty, which
is σ 2

A =
√

3σ 2
coord = 1.73σ 2

coord for a unit area. (This follows
from the equations for the area of the equal-sided triangle
which is A=

√
3

4 a
2 and for the uncertainty σ 2

A =
3a2

4 σ
2
coord

if A= 1). In case of rectangles and rhombi, squares have
the smallest perimeter (see Fig. 2). In both cases the un-
certainty is σ 2

A = 2σ 2
coord for a unit area, and hence larger

than for the equal-sided triangle. For the regular hexagon,
which is composed of six equal-sided triangles, one obtains
σ 2
A =

5
2
√

3
σ 2

coord = 1.44σ 2
coord (Fig. 2). So the progression of

σ 2
A/σ

2
coord from triangles to squares to hexagons goes from

1.73A to 2.00A to 1.44A.

3.3 Uncertainties in time

The accuracy of time readings for the acquisitions of satel-
lite images is on the order of subseconds. The product of sea
ice drift velocity and uncertainty of time reading appears on
the right-hand side of Eq. (6): 2σ 2

coord+ σ
2
tr + u

2σ 2
1T . Aver-

age sea ice drift velocities range mostly from 0 to 0.35 m s−1

(Rampal et al., 2009). Kræmer et al. (2015) determined in-
stantaneous line-of-sight ice drift velocities, using Doppler
frequency measurements from SAR, and found values as
large as 0.4–0.6 m s−1. If we assume a maximum value of
u= 1 m s−1 and a maximum uncertainty of time readings of
1 ms, the term u2σ 2

1T on the right side of Eq. (6) is 10−6 m2

at the most. It can be neglected compared to the typical val-
ues of terms σ 2

x , σ 2
y and σ 2

trx , σ 2
try in Eq. (6) (see Sect. 3.4

for a discussion of the effect of position and tracking errors).
The uncertainty σ1T of the GPS time (used both for buoys
and satellites such as Sentinel-1) is given as better than 1 ms
(see, e.g., https://www.atomic-clock.galleon.eu.com, last ac-
cess: 4 September 2020, and https://sentinel.esa.int/web/
sentinel/technical-guides/sentinel-1-sar/pod/egp, last access:
4 September 2020). Similar considerations apply to Eq. (8).
Hence, in Eqs. (20) and (21) we have σ 2

U = (2σ
2
coord+

σ 2
tr)/1T

2 both for velocity retrievals from satellite image
pairs and buoy arrays. For given position and tracking errors,
the second term in Eqs. (20) and (21) decreases with increas-
ing time interval1T and areaA. The third term involving the
coordinate uncertainty σcoord also decreases with increasing
area A.

Another issue that has to be considered is the time syn-
chronization between individual buoys in an array. Differ-
ences of a few seconds may be possible in practice. In the fol-
lowing discussion we assume that position data of all buoys
are exactly synchronized but also discuss an example for
which this was not the case in Sect. 3.5.
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3.4 Deformation retrievals from square grid cells

Here we first focus on the retrieval of deformation parame-
ters calculated from square grid cells in SAR images or from
square-shaped buoy arrays. For SAR images, we consider the
case in which geolocation errors may have slight variations,
hence σcoord 6= 0. If a square of side length L, with sides par-
allel to the x and y axes, is positioned in a spatially varying
velocity field as shown in Fig. 3, the uncertainty of the diver-
gence is

σ 2
div =

3σ 2
coord
L2

(
u2
x + v

2
y

)
+
σ 2

coord
L2

(
u2
y + v

2
x

)
+

4σ 2
coord

1T 2L2 +
2σ 2

tr

1T 2L2 . (22)

This follows from Eq. (20) with the velocities given in Fig. 3
at the edges 1–4 of the square. The uncertainty of the vortic-
ity is from Eq. (21):

σ 2
vrt =

3σ 2
coord
L2

(
u2
y + v

2
x

)
+
σ 2

coord
L2

(
u2
x + v

2
y

)
+

4σ 2
coord

1T 2L2 +
2σ 2

tr

1T 2L2 . (23)

Uncertainties of shear and total deformation can be calcu-
lated using Eqs. (15b) and (16b) as weighted averages of the
error variances of (i) divergence and vorticity and of (ii) shear
and divergence, respectively. The second term in Eq. (22) and
first term in Eq. (23) indicates that the uncertainties of diver-
gence and vorticity are affected by contributions from pure
shear. The third and fourth term of Eqs. (22) and (23) are in-
dependent of the velocity gradients and are only a function
of position and tracking error, time interval between posi-
tion measurements, and size of the square. The fourth term
is equal to Eq. (17) in Lindsay and Stern (2003). In general,
it is more realistic to assume that arrays of four buoys are ar-
bitrarily shaped quadrangles. As mentioned in Sect. 1, drift
vectors from SAR image pairs are irregularly spaced if calcu-
lated using feature tracking (e.g., Komarov and Barber, 2014;
Muckenhuber et al., 2016; Demchev et al., 2017). While σtr,
σcoord, and 1T are constant, σA and A depend on the size
and shape of the quadrangle that changes from grid cell to
grid cell (Figs. 1c and 2). In this case the most convenient
approach for calculating deformation parameters is the ap-
plication of Eqs. (20) and (21) together with Eqs. (15) and
(16). We emphasize, however, that the heterogeneous spatial
distribution of drift vectors is regarded as a disadvantage for
evaluating and analyzing sea ice deformation, since the latter
is a scale-dependent process (Korosov and Rampal, 2017).

Figure 3. Uncertainty of divergence and vorticity for a square in a
spatially varying velocity field with gradients ux , uy , vx , vy .

3.4.1 Geolocation error and uncertainties in SAR
images

When ice drift is retrieved from images of modern SAR sys-
tems, the contribution of those terms that depend on σcoord/L

can usually be neglected, as we will show below. For En-
visat ASAR stripmap and wide-swath mode images (IM and
WSM), e.g., Small et al. (2005) reported differences be-
tween measured positions of reflectors and their positions
in the SAR image of 1.63± 0.82 m in azimuth (consid-
ering bistatic correction) and 2.02± 0.51 m in slant range
for normal imaging mode in single-look complex format.
Ground-range products require the transformation from slant
to ground range as an additional step. When judging the ef-
fect of position errors on the uncertainty of divergence and
vorticity, the systematic bias (mean error) of positions af-
fects all vertices of a grid cell in the same way; hence only
the standard deviation σ has to be considered as geoloca-
tion uncertainty. Considering the σ values of position errors
given above, we use a value of 1 m as a conservative esti-
mate of the azimuth and ground-range position uncertainty
for IM. For ground-range WSM images, the accuracy of po-
sitioning was better than 1 pixel. If we assume that the ratio
σ [m]/σ [pixel] is approximately the same for IM and WSM,
the uncertainty for the latter is about 7 m at maximum. In
the study of Hollands and Dierking (2011), e.g., resolution
pyramids and cascades are used for retrieving sea ice dis-
placements from Envisat ASAR IM and WSM data. For the
level of highest spatial resolution, the side length of the grid
cells (distance between adjacent displacement vectors) was
300 m for IM and 1200 m for WSM. Hence, the correspond-
ing ratios σ 2

coord/L
2 are on the order of 12/3002

≈ 10−5 and
72/12002

≈ 3.4× 10−5, respectively. For modern SAR sys-
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tems such as TerraSAR-X and Sentinel-1, the positioning ac-
curacy is even better than for Envisat (e.g., Schubert et al.,
2008; Schubert et al., 2017). The geolocation error of older
SAR systems, however, is larger. In their analysis of drift
and deformation products from the RADARSAT Geophys-
ical Processor System (RGPS), Lindsay and Stern (2003) re-
port geolocation errors of 225 and 277 m for RADARSAT
ScanSAR images (to be treated as bias; see above). For
the combined geolocation and tracking uncertainty εRGPS =√

2σ 2
coord+ σ

2
tr , they found a value of 286 m. With a tracking

uncertainty of 100 m, the geolocation uncertainty is hence
190 m. The initial grid cells used for the RGPS are squares of
10 km side length, but they change their shape in successive
time steps since the RGPS drift and deformation products
are based on the Lagrangian approach. The ratio σ 2

coord/L
2

is approximately 2002/10 0002
= 4.0× 10−4. The third and

fourth term in Eqs. (22) and (23) can be directly computed
from position and tracking error, the time interval 1T be-
tween image acquisitions, and the grid cell size. The ratio
between the fourth and the third term is σ 2

tr/2σ
2
coord. In the

following section, the relative contributions of single terms
in Eqs. (22) and (23) are discussed.

3.4.2 Examples: uncertainties versus true magnitudes
of deformation

According to Sect. 3.1, a value of ±1 d−1 can be regarded
as a large divergence rate which is rarely exceeded in real-
ity. Large values of shear were at about 0.7 d−1. Consider-
ing the numbers for divergence and shear given in Sect. 3.1
we can deduce that the terms

(
u2
x + v

2
y

)
and

(
u2
y + v

2
x

)
in

Eqs. (22) and (23) are < 1 d−2 in most cases and at larger
length scales and weak deformation more likely on the or-
der of 10−1 or 10−2 d−2. This means that σ 2

coord/L
2 and

3σ 2
coord/L

2 can be used as upper bounds for the first and sec-
ond term in Eqs. (22) and (23) (see Table 1).

Hollands and Dierking (2011) found tracking errors be-
tween 0.8 and 1.6 pixels (their Tables 3 and 4, standard devi-
ations), which corresponded to 20–40 m for IM (pixel size
25 m) and 120–240 m for WSM (pixel size 150 m). With
σcoord = 1 m for IM and 7 m for WSM, the ratios between
the fourth and third term in Eqs. (22) and (23) are hence
200–800 for IM and 147–588 for WSM. In this case the first
three terms can be neglected compared to the fourth (see Ta-
ble 1, columns 2 and 3, in which the range from minimum to
maximum values for the fourth term is estimated using corre-
sponding combinations of 1T and σtr). With a grid cell size
of L= 300 m (IM) and 1200 m (WS), and time differences
ranging from 1.2 to 5.8 d for IM image pairs and from 2 to
6 d for WSM image pairs, the uncertainties σdiv and σvrt were
between 2.4 % d−1 and 14 % d−1 for IM and 3.5 % d−1 and
12.7 % d−1 for WSM (calculated for each image pair listed
in Table 1 of Hollands and Dierking, 2011, with the corre-
sponding tracking errors from their Tables 3 and 4). Com-

paring these values to the typical magnitudes of divergence
and vorticity in Sect. 3.1, the respective uncertainties are too
large in areas of weaker deformation.

Lindsay and Stern (2003) calculated deformation param-
eters for the RGPS initial velocity grid (L= 10 km) and a
time interval 1T of 3 d. They use a tracking error of 100 m
for RADARSAT ScanSAR images (pixel size 100 m) and as-
sumed that the geolocation error can be regarded as bias with
zero uncertainty. Hence, only the fourth term of Eqs. (22)
and (23) is used (their Eq. 17), and uncertainties for diver-
gence and vorticity are 0.5 % d−1 (Table 1, column 4). How-
ever, when considering the uncertainty of the geolocation er-
ror mentioned in Sect. 3.4.1, the fourth term contributes less
than the other three terms (Table 1, column 5). Only if terms(
u2
x + v

2
y

)
and

(
u2
y + v

2
x

)
are of magnitudes < 0.001 d−2,

the first and second term can be neglected compared to the
third term.

At first sight, larger time intervals and grid cells seem
to be advantageous to keep the uncertainties of deforma-
tion parameters at a low level. However, larger time inter-
vals may cause problems in the retrieval of the ice drift field,
since ice structures, which serve as reference for the retrieval,
may change or even vanish with time. Larger grid cells may
smooth out local variations of deformation.

If the first and second term in Eqs. (22) and (23) can
be neglected, i.e., when magnitudes of deformation pa-
rameters are low (which is most likely for measurements
over larger spatial scales and for weak deformation events),
we can determine the minimum grid cell size that is re-
quired to keep the uncertainties of divergence and vortic-
ity below a given threshold. If we assume an uncertainty
threshold of 1 % d−1, then the third and fourth term of
Eqs. (22) and (23) tells us that the ratio between com-
bined position and tracking uncertainty and grid cell size

should satisfy
√

4σ 2
coord+ 2σ 2

tr /L≤ 0.01
[
d−1]
×1T [d]. If

σcoord� σtr we obtain σtr/L≤ 0.01
[
d−1]
×1T [d]/

√
2∼=

0.007 [d−1
]×1T [d]. For 1T = 1 d, this means a grid cell

length of roughly 150× σtr (uncertainty 1 % d−1) or larger
(uncertainty < 1 % d−1).

3.5 Deformation retrievals from triangular grid cells or
buoy arrays

Also triangles are used for calculations of deformation pa-
rameters in SAR images (e.g., Bouillon and Rampal, 2015;
Griebel and Dierking, 2018), and they form the smallest units
of buoy arrays (e.g., Hutchings et al., 2011; Hutchings et al.,
2012). Using the same approach as for the square above, we
obtain the following for a triangle with its base a parallel to
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Table 1. Magnitudes of terms 1 to 4 in Eqs. (23) and (24).

Reference Hollands and Dierking
(2011)

Hollands and Dierking
(2011)

Lindsay and Stern
(2003)

Lindsay and Stern
(2003)

Image mode ASAR IM
σcoord = 1 m
L= 300 m

ASAR WS
σcoord = 7 m
L= 1200 m

RADARSAT
ScanSAR,
assumed: σcoord = 0
L= 10 km

RADARSAT
ScanSAR
σcoord = 190 m
L= 10 km

1. Term < 3.33× 10−5 d−2 < 1.02× 10−4 d−2 0 < 1.2× 10−3 d−2

2. Term < 1.11× 10−5 d−2 < 3.40× 10−5 d−2 0 < 4.0× 10−4 d−2

3. Term
1T = 1 d
1T = 3 d
1T = 6 d

4.44× 10−5 d−2

0.49× 10−5 d−2

0.12× 10−5 d−2

1.36× 10−4 d−2

1.51× 10−5 d−2

0.38× 10−5 d−2
0 1.78× 10−4 d−2

4. Term
1T = 3 d, σtr = 100 m
max: 1T = 1 d, σtr = 40 m
min: 1T = 6 d, σtr = 20 m
max: 1T = 1 d, σtr = 240 m
min: 1T = 6 d, σtr = 120 m

3.56× 10−2 d−2

2.47× 10−4 d−2 0.08 d−2

5.56× 10−4 d−2

2.2× 10−5 d−2 2.2× 10−5 d−2

the x axis (Fig. 4):

σ 2
div =

σ 2
coord

(
a2
+ b2
+ c2)

h2
aa

2

(
u2
x + v

2
y

)
+

(
2σ 2

coord+ σ
2
tr
)(
a2
+ b2
+ c2)

1T 2h2
aa

2

+
2σ 2

coord
h2
aa

2

[(
u2
x + v

2
x

)(
a2
+ a2

1 − aa1

)
+

(
u2
y + v

2
y

)
h2
a +

(
uxuy + vxvy

)
(2a1− a)ha

]
. (24)

Sides b and c, height ha , and segments a1 and a2 are shown in
Fig. 4. For the vorticity, the sum (u2

x+v
2
y) in the first term has

to be replaced by (u2
y + v

2
x). Equation (24), which is shown

here for an acute triangle (all internal angles < 90◦), is also
valid for an obtuse triangle (one internal angle> 90◦) setting
a1 negative and a2 to zero. For a right triangle with b = a,
c =
√

2a, ha = a, and a1 = a, Eq. (24) yields

σ 2
div =

6σ 2
coord
a2

(
u2
x + v

2
y

)
+

2σ 2
coord
a2

(
u2
y + v

2
x

+
(
uxuy + vxvy

))
+

8σ 2
coord

1T 2a2 +
4σ 2

tr

1T 2a2 . (25a)

However, if the right angle is placed at the left side of the tri-
angle, i.e., c = a, b =

√
2a, ha = a, and a1 = 0, the resulting

equation changes to

σ 2
div =

6σ 2
coord
a2

(
u2
x + v

2
y

)
+

2σ 2
coord
a2

[
u2
y + v

2
x

−
(
uxuy + vxvy

)]
+

8σ 2
coord

1T 2a2 +
4σ 2

tr

1T 2a2 . (25b)

Figure 4. Uncertainty of divergence for a triangle in a spatially
varying velocity field with gradients ux , uy , vx , vy . The height
ha is 2A/a (A can be calculated from Heron’s formula), and a1 =
c2
−h2

a . Side a is the base of the triangle.

Similarly as for the grid of squares, the contributions of terms
1–3 of Eqs. (25a) and (25b) can be neglected when geoloca-
tion uncertainties are much smaller than tracking uncertain-
ties. When comparing the third and fourth terms of Eqs. (25)
and (22) one finds that the squared uncertainty of a right tri-
angle is 2 times the squared uncertainty of a square for a = L
and identical σcoord, σtr, and 1T , which can be attributed to
the reduced coverage of the triangle over the varying veloc-
ity field. For an uncertainty of 1 % d−1, we obtain a value of
≤ 0.005 [d−1] ×1T [d] for the ratio σtr/a, corresponding to
a base length a of 200× σtr if 1T = 1 d.
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The uncertainty of divergence for the equal-sided triangle
(c = b = a, h2

a = 3a2/4, and a1 = a/2) is

σ 2
div =

6σ 2
coord
a2

(
u2
x + v

2
y

)
+

2σ 2
coord
a2

(
u2
y + v

2
x

)
+

8σ 2
coord

1T 2a2 +
4σ 2

tr

1T 2a2 . (26)

Note that compared to a square of length L, the area of an
equal-sided triangle with base L is 0.433Asquare. The area
of an arbitrary triangle with constant base increases when
changing its shape from the equal-sided to the right triangle.

3.5.1 Uncertainties in position and temporal sampling

For buoys, the tracking error is zero. Itkin et al. (2017) quoted
25 m as geolocation accuracy for stationary buoys but used
50 m to account for effects of buoy drift. One of us (Hutch-
ings) analyzed the position errors of GPS receivers in the
Fairbanks (Alaska) region. The errors were normally dis-
tributed for position data collected at the same location for
several days. The relative position error between pairs of
GPS receivers, which has to be used for deformation calcu-
lations, was 2 m over distances of 1–10 km. Reported time
intervals between acquisitions of buoy positions range from
10 s to 3 h (Hutchings, 2012; Itkin et al., 2017) with uncer-
tainties in time less than milliseconds (see above). Hutch-
ings at al. (2012), however, mention also a time error of 30 s,
which was due to the acquisition times of the buoys not be-
ing exactly time coincident. In such an exceptional case, the
second term on the right-hand side of Eq. (8) may have to
be considered. If the ice drifts in the x direction (i.e., v = 0),
the right-hand side of Eq. (8) reads (2σ 2

coord+ u
2σ 2
1T )/1T

2

(σtr = 0 for buoys). Here we ask the following: what is the
maximum value of the drift velocity for which the term
u2σ 2

1T can still be neglected? Our criterion for neglecting
it is that its value is 1 % of 2σ 2

coord or less. Then the ve-
locity u must be equal to or smaller than 424 m h−1 if we
assume that σcoord = 25 m and σ1T = 30 s. If σcoord = 2 m,
the result is u= 34 m h−1. The speed of sea ice drift ranges
mainly between 0 and 1.3 km h−1, with possible extreme val-
ues around 3.6 km h−1 (see Sect. 3.3), which means that the
term u2σ 2

1T has to be taken into account in most cases.
Conversely, we may ask how large the acceptable maxi-
mum temporal sampling error is so that the second term
is negligible (i.e., < 1 % compared to the first term). With
umax = 3.6 km h−1

= 1 m s−1 and σcoord = 2 m one obtains
σ1T = 0.3 s, and for σcoord = 25 m it is σ1T = 3.5 s.

3.5.2 Optimal sizes of buoy arrays

In this section we ask how large the area of a triangle-shaped
buoy array has to be chosen to keep the uncertainty for defor-
mation below a given threshold. We assume that the temporal
sampling error can be neglected. The time interval 1T is set
to the temporal sampling rate of buoy positions. For buoy ar-

rays, the tracking error is zero. With a given threshold for
the uncertainty of divergence, e.g., one can use Eqs. (25) and
(26) to calculate base a of right-angle or equal-sided trian-
gles. Solutions of these simple cases can serve for approxi-
mately fixing the optimal area size for triangles of arbitrary
shapes. For such triangles, the corresponding Eq. (24) cannot
be directly solved since they need to be described by addi-
tional geometric parameters besides base a.

The first two terms of Eqs. (25) and (26) require the knowl-
edge of the sea ice velocity field and its gradients. We will
here focus on cases for which these terms can be neglected.
This requires that 81T −2

� 6(u2
x+v

2
y) or 81T −2

� 6(u2
y+

v2
x). Itkin et al. (2017) analyzed deformation for constella-

tions of three buoys using temporal sampling intervals of
1T1 = 1 h and1T2 = 3 h, which results in1T −2

1 = 576 d−2

and 1T −2
2 = 64 d−2. For a large fraction of measured di-

vergence and shear data we can assume that
(
u2
x + v

2
y

)
and(

u2
y + v

2
x

)
are smaller than 1 d−2 (see Sect. 3.4.2) and ne-

glect the first two terms in Eqs. (25) and (26). At low mag-
nitudes of deformation this is also justified for 1T3 = 24 h,
which gives 1T −2

3 = 1 d−2.
Using only the third term (8/1T 2)×(σ 2

coord/a
2) the uncer-

tainty of the divergence can be expressed as σdiv = 71/a h−1

for 1T1 = 1 h and 24/a h−1 for 1T2 = 3 h, where σcoord =

25 m and the value for base a has to be given in meters. In
the following we accept an uncertainty of 5 % or less rel-
ative to the majority of the magnitudes of divergence de-
rived in Itkin et al. (2017), which are ≤ 0.4 d−1

= 0.017 h−1.
Hence the uncertainty is σdiv = 0.00085 h−1, which means
that base a of the triangle has to be larger than 83.5 km for
1T1 = 1 h and 28 km for 1T2 = 3 h. If one calculates the di-
vergence using only the position change after 24 h, the re-
quired base is 2.95/a h−1, and for σdiv = 0.00085 h−1 one
obtains a = 3.5 km. Hence, by choosing a larger time inter-
val, acceptable uncertainties can be obtained over smaller
spatial scales. If positions acquired at shorter time intervals
are available, they can be used for controlling the temporal
evolution of the ice drift. Using σcoord = 2 m instead of 25 m
in the example given above, we obtain σdiv = 5.7/a h−1 for
1T = 1 h, i.e., a base length of 6.7 km for a single measure-
ment with σdiv = 0.00085 h−1 and 2.2 km for one measure-
ment with 1T = 3 h. Itkin et al. (2017) used triangle arrays
with the smallest distance between two buoys of 2 km and
the largest of 70 km.

Since the area and shape of the triangle change under the
action of continuous stress, the uncertainty does not simply
decrease by a factor of 1/

√
n, i.e., with the number n of

buoy position readings. If we assume that the three-buoy ar-
ray keeps the shape of an equal-sided triangle for 24 h, with
an increase in side length from a0 to 1.1a0 (i.e., the area of
the triangle increases by a factor of 1.05), the uncertainty of
the last single measurement at the end of the 24 h period is
lower by a factor of 1/1.1= 0.91 (Eq. 26, third term). Here it
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is assumed that the divergence is constant, the ratio ux/vy is
fixed by the ratio between base a and height ha of the trian-
gle, and the vorticity is zero, i.e., uy = vx = 0. As mentioned
above, the position error may be as small as 2 m.

3.6 Combination of grid cells or buoys

The combination of grid cells or several buoys is one pos-
sibility to lower the uncertainty of the area σA. In general,
the uncertainty of deformation rates is reduced when they
are evaluated over a larger area, as can be deduced from the
equations provided in Sect. 2.4 and 2.5. However, the uncer-
tainty of the area, σA, appears explicitly only in the equa-
tions derived for the general case, Sect. 2.5. In Sect. 3.4
and 3.5 we showed that the terms including σA can be ne-
glected since velocity gradients observed for sea ice are usu-
ally small. Since, on the other hand, the change in the area
inside a buoy array or of a grid cell can also be used to quan-
tify deformation (Lindsay and Stern, 2003), it is worthwhile
to have a closer look at the effect of combining several grid
cells or buoys.

Because buoy arrays rarely reveal simple shapes such as
squares or right triangles, the uncertainties in area have to be
calculated numerically using Eqs. (11) or (12). Hutchings et
al. (2012), e.g., used 22 buoys, which they split into arrays
of approximately equilateral triangles but also into arrays of
6, 9, and 12 buoys. Here we discuss combinations of squares
and triangles.

First we investigate the effect of splitting a square or a right
triangle into smaller units. We start with a square window
covering N×N cells, i.e., we have 4N displacement vectors
around it. Let L′ be the length of each side of a square cov-
ering several grid cells (Fig. 5). We divide each side of the
square into N segments of equal length. If N = 2 then each
side of the square is 2 segments of length L′/2, and corre-
spondingly for N > 2 it is L′/N . The term 6(xi+1− xi−1)

2

is zero if both xi+1 and xi−1 are located on the vertical sides
of the square. On the top and bottom sides parallel to the
x axis, N − 1 terms in the summation contribute (2L′/N)2

for each side (indicated by green bars in Fig. 3). In addi-
tion, each corner contributes (L′/N)2 (blue bars). The to-
tal contribution is hence 2(N − 1)(2L′/N)2+ 4(L′/N)2 =
4(2N−1)(L′/N)2. The term6(yi+1−yi−1)

2 contributes the
same amount. Hence application of Eq. (12) yields

σ 2
A = σ

2
coord(4N − 2)(L′/N)2). (27a)

Since each side of the square is divided into N segments, the
total number of points defining the boundary is n= 4N . With
L= L′/N , we can rewrite Eq. (27a) as σ 2

A = σ
2
coord(n−2)L2.

However, the notation in Eq. (27a), using N and L′ instead
of n and L, is preferable because it explicitly shows that σ 2

A

decreases as N increases for a fixed L′. Note that Eq. (27a)
is valid for buoy arrays. In case of SAR images, the tracking
error has to be considered as well. When σ 2

A is estimated for
an area that deforms between acquisitions of SAR image 1

and 2, and the variance of the position error σ 2
coord can be

set to zero (see Sect. 2.1), σ 2
A = 0 for image 1. In image 2,

however, it is σ 2
A = σ

2
tr(n− 2)L2 (Lindsay and Stern, 2003).

For a right triangle, we have only two contributions from
the corners instead of four as for the square (Fig. 5). In the x
direction, e.g., the term xi+4− xi+2 is zero. Hence the total
contribution in the x and y direction is 4(N − 1)(2L′/N)2+
4(L′/N)2 or

σ 2
A = σ

2
coord(4N − 3)(L′/N)2. (27b)

This can be written as σ 2
A/(σ

2
coordL

′2)= (4N−3)/N2, which
takes the values 1, 5/4, 1 for N = 1,2,3, and then decreases
as N increases. Note that the uncertainty initially increases
from N = 1 to N = 2, and an improvement over N = 1 is
not reached until N = 4.

In SAR applications, the question is whether it is prefer-
able to use, e.g., the smallest possible (“elementary”) square
cell (determined by the resolution of the ice drift field) with
four drift vectors at the edges or to combine adjacent cells.
Formally, the uncertainty in area for the elementary cell is
2σ 2

coordL
2, and for a cell with side length L′ =N ×L, cov-

ering N ×4 drift vectors, Eq. (27a) yields σ 2
A = σ

2
coord(4N −

2)L2. Hence the uncertainty of the area increases when ele-
mentary cells are combined. However, since also the cell area
increases by a factor of N2, the single terms in Eqs. (13)–
(21) that include the factor A−2 decrease. When all terms
except the fourth in Eqs. (22) and (23) can be neglected, it
is immediately clear that the uncertainties of divergence and
vorticity decrease if several elementary cells are combined
into a larger square. The effect of local variations of the drift
field on the deformation rate, however, can be considered in
more detail when elementary cells (or smaller units of buoys
arrays) are used for the calculations.

For buoy arrays it may be of advantage to use a larger
number of buoys along the outline of a polygon. Here we
study the example of an isosceles triangle with two sides
of equal length (Fig. 6), which, e.g., comes closest to the
array/subarrays used by Hutchings et al. (2012). The term
6(xi+1− xi−1)

2 of Eq. (12) results in (6N − 4.5)(L′/N)2;
for the term6(yi+1−yi−1)

2 we obtain (8N−6)(h/N)2. The
areal uncertainty is hence

σ 2
A = (σ

2
coord/2)[(3N − 2.25)(L′/N)2+ (4N − 3)(h/N)2]. (28)

Compared to an array consisting of three buoys at the edges
of the triangle, the uncertainty can be reduced forN ≥ 4, i.e.,
at least 12 buoys are required along the outline of the triangle.
This also applies to the use of SAR images, when drift fields
are retrieved from triangular cells.

If the shape of an array with many buoys approximately
approaches the shape of a circle with radius r , and if the sum
of two line segments s connecting vertices with summation
index i+ 1 and i differs only slightly compared to the chord
length sc between vertices i+1 to i−1, the uncertainty of the
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Figure 5. Derivation of equation 30 in the x direction for N = 3. Green and blue bars indicate terms to be considered in the derivation of
Eqs. (28a) and (28b).

Figure 6. Application of Eq. (12) on a triangle with two equal sides
for N = 3.

area can be estimated as follows. We require that s2
c ≈ (2s)

2.
According to Eq. (12) the uncertainty in area is

σ 2
A =

σ 2
coord
4

n∑
i=1

s2
ci =

σ 2
coord
4

ns2
c ≈

σ 2
coord
4

n4s2

≈ σ 2
coord n

(
r

2π
n

)2

=
4σ 2

coord
n

π2r2, (29)

in agreement with Jansson and Persson (2014, Eq. 29). Here
we use the relationship s = 2πr/n and take into account that
both the even chords (i− 1, i+ 1) with i = 1,3,5, . . . and
the odd chords with i = 2,4,6, . . . each approximate the to-
tal perimeter of the circle (see, e.g., Fig. 2, hexagon). To cal-
culate the number of chords required to fulfill Eq. (29), we
demand that n′sc(1+e)= 2πr , with n′ = n/2, where e is the
error between the perimeter of a regular polygon and a circle.
With sc/r = 2sin(π/n′) the condition is sin(π/n′)(1+ e)=
π/n′. If n′ = 10 (i.e., a circled-shaped array with 20 buoys),
e is < 0.017.

3.7 Validity

It has to be kept in mind that the fundamental Eqs. (1), (2),
(4), and (5) that we used for estimating the statistical uncer-
tainties in the retrieval of deformation parameters are based
on simplifying assumptions. Hence it is necessary to consider
their range of validity when applying them.

3.7.1 Truncation error

The right-hand side of Eq. (5) for estimating ux is based on
the trapezoid rule applied to the contour integral on the left
side. The trapezoid rule is exact if u is linear in x and y; oth-
erwise, the nonlinear part of u gives rise to a truncation error.
Define segment k of the contour integral to be the straight
line from (xk , yk) to (xk+1, yk+1), and define1xk = xk+1−xk
and1yk = yk+1−yk . Then segment k of the contour integral∮
udy is estimated by (uk+1+ uk)1yk/2, as in Eq. (5), and

the associated error is

ek =−
1

12

(
uxx1x

2
k + 2uxy1xk1yk + uyy1y2

k

)
1yk, (30)

where the partial derivatives are evaluated at some point on
segment k (Atkinson, 1989). As can be seen, if u is linear in
x and y on segment k then ek = 0. Similar error expressions
apply to the estimates of the other velocity derivatives.

Higher-order estimates for ux could be derived, but they
would not necessarily be more accurate because the ice mo-
tion may not be continuously differentiable to higher order;
e.g., uxxx and higher derivatives may not exist. Higher-order
estimates would only be more accurate for sufficiently differ-
entiable fields.

3.7.2 Spatial resolution

Equation (5) provides an area-averaged estimate of ux . The
question arises as to whether the spatial resolution (i.e., the
area) is small enough to capture the spatial variability in u(x,
y). One way to answer this question is to subdivide the re-
gion into smaller pieces and repeat the calculation of ux for
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each piece. If the variability of ux from piece to piece is large
then the subdivision of the original area was necessary; oth-
erwise, it was not. In practice, subdividing a region means
adding new data points, which is not always possible, unless
the original region is purposely chosen to consist of the union
of several smaller pieces. An alternative method for deter-
mining whether the spatial resolution is adequate is given at
the end of Sect. 3.8 below.

3.7.3 Temporal sampling

What temporal sampling is necessary to resolve changes in
the sea ice velocity field? The velocity may be decomposed
into a mean field and a fluctuating part (Thorndike, 1986).
Rampal et al. (2009) showed that the variance of the fluctuat-
ing part has two regimes separated by a timescale of ∼ 1.5 d.
Since buoys deployed on sea ice report their positions every
few hours or less, their sampling frequency is sufficient to
resolve the velocity and its fluctuations. The revisit time of
modern satellite constellations such as Sentinel-1 is less than
a day at the high latitudes of the poles, but older systems
with 3 d sampling may have missed some of the deformation
caused by spatial variations in those fluctuations.

3.7.4 Correlation of errors

We have assumed that different error sources are uncorre-
lated, and hence we have ignored the second term on the
right-hand side of Eq. (2). While it is often true that spa-
tial errors are uncorrelated with temporal errors, it may
not always be the case that spatial errors are uncorre-
lated with each other. For example, for the distance d =
2
√
(x′− x)2+ (y′− y)2 between two points (x′, y′) and (x,

y), the full error variance of d is given by

σ 2
d =

(
∂d

∂x′

)2

σ 2
x′ +

(
∂d

∂x

)2

σ 2
x +

(
∂d

∂y′

)2

σ 2
y′

+

(
∂d

∂y

)2

σ 2
y + 2

(
∂d

∂x′

)(
∂d

∂x

)
σx′x

+ 2
(
∂d

∂y′

)(
∂d

∂y

)
σy′y + 2

(
∂d

∂x′

)(
∂d

∂y′

)
σx′y′

+ 2
(
∂d

∂x

)(
∂d

∂y

)
σxy + 2

(
∂d

∂x′

)(
∂d

∂y

)
σx′y

+ 2
(
∂d

∂x

)(
∂d

∂y′

)
σxy′ . (31)

If the coordinate uncertainties are all equal (σx = σy =
σx′ = σy′ = σcoord) and the covariances are all equal (σxy =
σx′y′ = σx′y = σxy′ = σy′y = σx′x = c), then we obtain σ 2

d =

2σ 2
coord− 2c. Since the correlation between, e.g., x and y

(and correspondingly for all combinations above) is ρ =
σxy/(σxσy)= c/σ

2
coord, we obtain σ 2

d = 2σ 2
coord (1− ρ). In

this case, a positive correlation serves to reduce σ 2
d while a

negative correlation serves to increase it. Since position er-

rors are more likely to be positively correlated (due to sys-
temic bias), ignoring the correlation terms is actually a con-
servative approach to error estimation.

3.7.5 Velocity discontinuities

When calculating uncertainties of deformation parameters, it
is implicitly assumed that the sea ice velocity does not have
discontinuities within the polygon in which the deformation
is being estimated. This is because we use Eq. (5), which
is based on Green’s theorem. Numerous observations of the
sea ice velocity field show narrow shear zones or “linear
kinematic features” (e.g., Kwok, 2003; Marsan et al., 2004;
Kwok, 2006) across which the velocity jumps abruptly, as a
result of stresses in the ice that create leads and ridges. Some
researchers, e.g., Griebel and Dierking (2017) have proposed
methods to detect and isolate these discontinuities in the ve-
locity field to avoid smoothing effects when averaging adja-
cent velocity vectors (e.g., for replacing outliers).

When applying Eq. (5) over an area with a discontinuity
in the velocity field, a step-like function occurring between
two positions ri+1 and ri with ri = (xi , yi) is instead repre-
sented by a linear gradient. As the interval 1r is decreased,
the gradient increases. Hence, there is a numerical scaling
effect: e.g., divergence and shear increase when calculated
on grids of velocity vectors with higher spatial resolution. A
discontinuity can be defined by a threshold for the difference
of the velocities on both sides of it. The threshold depends
on realistic values of velocity gradients in sea ice and on the
spatial resolution of the grid. The detection of possible dis-
continuities in a discrete field of velocity vectors, e.g., re-
trieved from SAR images, is helpful for the interpretation of
the magnitudes of deformation.

3.8 Alternative methods of analysis

In Sect. 2, the area-averaged velocity derivatives in a region
are obtained by estimating contour integrals of the velocity
around the boundary of the region. Two alternatives to this
boundary integral (BI) method are briefly discussed here:
the least squares (LS) method and the finite difference (FD)
method.

In the LS method, the velocity components u and v are
modeled as linear functions of x and y, plus error. Suppose
velocities (uk , vk) are given at locations (xk , yk) for k = 1 to
n. The linear model is

uk = A+Bxk +Cyk + εk, (32a)
vk =D+Exk +Fyk + δk, (32b)

where the constantsA,B,C,D,E, F are chosen to minimize
the variance of the errors εk and δk . The velocity derivatives
ux and uy are then B and C, while vx and vy are E and F .
The next step is to check whether the linear model accounts
for a reasonable fraction of the variance in uk and vk by com-
puting the squared correlation and then whether the linear
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model does in fact provide a good fit to the data (by exam-
ining the spatial pattern of the errors εk and δk) or whether a
quadratic or other nonlinear model is more appropriate.

The FD method provides an estimate of ux (and the other
velocity derivatives) at a single point, based on Taylor series
expansions of u and v about that point. For example, suppose
we have velocities uk+1 and uk−1 at locations (xk+1, y) and
(xk−1, y), where xk = x0+ k1x. Then an estimate of ux at
(xk , y) is

uFD
x =

uk+1− uk−1

21x
=
u(xk +1x,y)− u(xk −1x,y)

21x

= ux +
1
6
uxxx1x

2
+O(1x4), (33)

where the derivatives on the right-hand side are evaluated at
(xk , y). The first term on the right-hand side is the true value
of ux at (xk , y); the rest of the terms are the truncation error,
i.e., error= uFD

x −ux = (1/6)uxxx1x
2
+ higher-order terms.

In summary, the BI method provides area-averaged esti-
mates of ux , uy , vx , vy ; the LS method provides the best
linear models of u and v, from which ux , uy , vx , vy follow;
and the FD method provides point estimates of ux , uy , vx ,
vy .

For a rectangular region with velocities given only at the
four corners, it turns out that all three methods give the same
estimates of ux , uy , vx , vy , assuming the FD estimate is made
at the center of the rectangle. For a general configuration of
points, the three methods give different estimates. Note that
in the BI method, velocities inside the boundary of the re-
gion are ignored. In the LS method, velocities farther from
the mean location (x̄, ȳ) have greater weight in determining
the slope of the linear model. The FD method is most appro-
priate for regularly spaced square grids, whereas the BI and
LS methods are equally applicable to irregular grids.

The LS method can be used as a diagnostic tool to deter-
mine whether the spatial resolution of the velocity data ade-
quately captures the variability of the velocity field. Analysis
of the spatial pattern of the LS residuals (errors) by standard
methods (autocorrelation) reveals whether the linear veloc-
ity model is in fact a good fit to the velocity data or not. If
it is a good fit, then the spatial resolution is adequate and
the truncation error in the BI method is small. If it is not a
good fit and sufficient data are available, the region should
be divided into smaller pieces and the calculation repeated
for each piece. The BI method should be used to calculate
the actual (area-averaged) velocity derivatives, since it does
not depend on a model that needs to be checked for goodness
of fit.

4 Conclusions

In this study we derived equations for calculating the uncer-
tainty of different deformation parameters for a given area,
using displacement vectors retrieved from SAR images or

buoy arrays. In the most general case, presented in Sect. 2.5,
errors in measurements of position (geolocation error), ve-
locity (determined from displacement), and area size have
to be considered. Uncertainties in velocity and area size can
be related to uncertainties in position measurements and (for
velocity) time readings (Sect. 2.2 and 2.3). When retrieving
displacements from pairs of SAR images, a tracking error has
to be considered additionally.

In Sect. 3, uncertainties of divergence and vorticity are de-
rived based on the general equations introduced in Sect. 2,
assuming squares and triangles as outlines for the area over
which deformation is calculated. We chose these geometric
shapes since they have been frequently used in past and re-
cent studies of deformation in sea ice. The major findings are
as follows.

– The equations reveal that the uncertainties in divergence
and vorticity increase with the magnitudes of the ve-
locity gradients and with the geolocation and track-
ing errors. They decrease with increasing size of the
area and the time interval 1T used for calculating
the velocity gradients (Sect. 3.4 and 3.5). These re-
sults agree with the recent work of Bouchat and Trem-
blay (2020). Since uncertainties of shear and total de-
formation are weighted averages of divergence and vor-
ticity (Sect. 2.5), the conclusions drawn for the latter are
also valid for the former.

– Since geolocation errors in SAR images are usually cor-
related over scales of ≥ 10 km they can be treated as a
constant bias. In this case, position uncertainties are rel-
atively small and may even be set to zero (Sects. 2.1,
2.4, 3.7.4).

– Geolocation errors in imaging modes of modern SAR
systems are smaller than their spatial resolution (see
Sect. 3.4.1). Errors in time readings of buoy positions
and SAR image acquisitions are negligible in most
cases. For buoy arrays, the magnitude of the position er-
ror may not be negligible. Here, the reader is advised to
check the manual for the position sensor and pay atten-
tion to whether the error is given as standard deviation
or in another format.

– The tracking error that needs to be considered for dis-
placement fields retrieved from SAR images is on the
order of the length of 1 pixel, as several studies have
shown. If the geolocation error can be neglected rel-
ative to the tracking error, a good approximation for
the uncertainty of divergence and vorticity valid for a
square with side L or a triangle with base L is σ =
a× σtr/(1T ×L), where a =

√
2 for the square and

a = 2 for the triangle. If squares or triangles are small,
the ratio σtr/L and hence the uncertainty is large.

– For a given threshold of acceptable uncertainty we es-
timated the necessary size of rectangular grid cells in
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SAR images and triangular buoy arrays, focusing on
divergence and vorticity as examples (Sect. 3.4.2 and
3.5.2.). At larger temporal sampling rates, the areas can
be made smaller.

– The area uncertainty of the smallest possible (elemen-
tary) cell, determined by the position of three or four
adjacent displacement vectors at the edges of a trian-
gle or square, is smaller than for a group of adjacent
elementary cells with more displacement vectors on the
perimeter around the group (Sect. 3.6). If, on the other
hand, for an area of fixed size a variable number N of
displacement vectors can be selected, the area uncer-
tainty normally decreases with increasing N . For trian-
gles, however, we found that the area uncertainty with
six displacement vectors is larger than the one with three
(see Sect. 3.6 for details).

– In Sect. 3.7 and 3.8 we provided thoughts concerning
the validity of the derived equations, which assume that
the velocity field inside elementary cells is continuous
and can be approximated by a two-dimensional linear
function. By including second-order terms or carrying
out least-square fits over subregions of the velocity field,
the validity of linearity can be judged. In the former case
the second-order terms need to remain below a certain
threshold; in the latter, the correlation coefficient should
be large. Discontinuities in the velocity field should be
detected before deformation is calculated to allow their
impact to be assessed and to consider appropriate strate-
gies to alleviate their impact.
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