Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2977-2020
https://doi.org/10.5194/tc-14-2977-2020
Research article
 | 
14 Sep 2020
Research article |  | 14 Sep 2020

Seasonal transition dates can reveal biases in Arctic sea ice simulations

Abigail Smith, Alexandra Jahn, and Muyin Wang

Related authors

Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022,https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary
Definition differences and internal variability affect the simulated Arctic sea ice melt season
Abigail Smith and Alexandra Jahn
The Cryosphere, 13, 1–20, https://doi.org/10.5194/tc-13-1-2019,https://doi.org/10.5194/tc-13-1-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Sea-ice conditions from 1880 to 2017 on the Northeast Greenland continental shelf: a biomarker and observational record comparison
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024,https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
The radiative and geometric properties of melting first-year landfast sea ice in the Arctic
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024,https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Improving short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024,https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024,https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024,https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary

Cited articles

Ballinger, T., Lee, C., Sheridan, S., Crawford, A., Overland, J., and Wang, M.: Subseasonal atmospheric regimes and ocean background forcing of Pacific Arctic sea ice melt onset, Clim. Dynam., 52, 5657–5672, https://doi.org/10.1007/s00382-018-4467-x, 2019. a, b
Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Mapping the future expansion of Arctic open water, Nature Climate Change, 6, 280–285, https://doi.org/10.1038/NCLIMATE2848, 2016. a, b
Belchanksy, G., Douglas, D., and Platonov, N.: Duration of the Arctic Sea Ice Melt Season : Regional and Interannual Variability, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2, 2004. a
Bitz, C. M. and Roe, G. H.: A Mechanism for the High Rate of Sea Ice Thinning in the Arctic Ocean, J. Climate, 17, 3623–3632, https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2, 2004. a, b
Bliss, A. C. and Anderson, M. R.: Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012, The Cryosphere, 8, 2089–2100, https://doi.org/10.5194/tc-8-2089-2014, 2014. a
Download
Short summary
The annual cycle of Arctic sea ice can be used to gain more information about how climate model simulations of sea ice compare to observations. In some models, the September sea ice area agrees with observations for the wrong reasons because biases in the timing of seasonal transitions compensate for other unrealistic sea ice characteristics. This research was done to provide new process-based metrics of Arctic sea ice using satellite observations, the CESM Large Ensemble, and CMIP6 models.