Articles | Volume 13, issue 2
The Cryosphere, 13, 675–691, 2019
https://doi.org/10.5194/tc-13-675-2019
The Cryosphere, 13, 675–691, 2019
https://doi.org/10.5194/tc-13-675-2019
Research article
28 Feb 2019
Research article | 28 Feb 2019

Combined SMAP–SMOS thin sea ice thickness retrieval

Cătălin Paţilea et al.

Related authors

Wind Transport of Snow Impacts Ka- and Ku-band Radar Signatures on Arctic Sea Ice
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, John Yackel, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-116,https://doi.org/10.5194/tc-2022-116, 2022
Preprint under review for TC
Short summary
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Wenkai Guo, Polona Itkin, Suman Singha, Anthony Paul Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-86,https://doi.org/10.5194/tc-2022-86, 2022
Preprint under review for TC
Short summary
Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022,https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Rain-on-Snow (ROS) Understudied in Sea Ice Remote Sensing: A Multi-Sensor Analysis of ROS during MOSAiC
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rotosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-383,https://doi.org/10.5194/tc-2021-383, 2022
Revised manuscript under review for TC
Short summary
Antarctic sea ice types from active and passive microwave remote sensing
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-381,https://doi.org/10.5194/tc-2021-381, 2022
Revised manuscript under review for TC
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022,https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022,https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022,https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022,https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022,https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary

Cited articles

Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T.: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res.-Oceans, 112, C08004, https://doi.org/10.1029/2006JC003543, 2007. a
Bilello, M. A.: Formation, growth, and decay of sea-ice in the Canadian Arctic Archipelago, Arctic, 14, 2–24, 1961. a, b
Corbella, I., Duffo, N., Vall-llossera, M., Camps, A., and Torres, F.: The visibility function in interferometric aperture synthesis radiometry, IEEE Trans. Geosci. Remote Sens., 42, 1677–1682, 2004. a
Corbella, I., Torres, F., Camps, A., Colliander, A., Martín-Neira, M., Ribo, S., Rautiainen, K., Duffo, N., and Vall-llossera, M.: MIRAS end-to-end calibration: application to SMOS L1 processor, IEEE Trans. Geosci. Remote Sens., 43, 1126–1134, 2005. a
Corbella, I., Durán, I., Wu, L., Torres, F., Duffo, N., Khazâal, A., and Martín-Neira, M.: Impact of Correlator Efficiency Errors on SMOS Land-Sea Contamination, IEEE Geosci. Remote Sens. Lett., 12, 1813–1817, 2015. a
Download
Short summary
Sea ice thickness is important for representing atmosphere–ocean interactions in climate models. A validated satellite sea ice thickness measurement algorithm is transferred to a new sensor. The results offer a better temporal and spatial coverage of satellite measurements in the polar regions. Here we describe the calibration procedure between the two sensors, taking into account their technical differences. In addition a new filter for interference from artificial radio sources is implemented.