Articles | Volume 13, issue 2
https://doi.org/10.5194/tc-13-675-2019
https://doi.org/10.5194/tc-13-675-2019
Research article
 | 
28 Feb 2019
Research article |  | 28 Feb 2019

Combined SMAP–SMOS thin sea ice thickness retrieval

Cătălin Paţilea, Georg Heygster, Marcus Huntemann, and Gunnar Spreen

Related authors

Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Sea Ice Freeboard Extrapolation from ICESat-2 to Sentinel-1
Karl Kortum, Suman Singha, and Gunnar Spreen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3351,https://doi.org/10.5194/egusphere-2024-3351, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Regional and seasonal evolution of melt ponds on Arctic sea ice
Hannah Niehaus, Gunnar Spreen, Larysa Istomina, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-3127,https://doi.org/10.5194/egusphere-2024-3127, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary

Cited articles

Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T.: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res.-Oceans, 112, C08004, https://doi.org/10.1029/2006JC003543, 2007. a
Bilello, M. A.: Formation, growth, and decay of sea-ice in the Canadian Arctic Archipelago, Arctic, 14, 2–24, 1961. a, b
Corbella, I., Duffo, N., Vall-llossera, M., Camps, A., and Torres, F.: The visibility function in interferometric aperture synthesis radiometry, IEEE Trans. Geosci. Remote Sens., 42, 1677–1682, 2004. a
Corbella, I., Torres, F., Camps, A., Colliander, A., Martín-Neira, M., Ribo, S., Rautiainen, K., Duffo, N., and Vall-llossera, M.: MIRAS end-to-end calibration: application to SMOS L1 processor, IEEE Trans. Geosci. Remote Sens., 43, 1126–1134, 2005. a
Corbella, I., Durán, I., Wu, L., Torres, F., Duffo, N., Khazâal, A., and Martín-Neira, M.: Impact of Correlator Efficiency Errors on SMOS Land-Sea Contamination, IEEE Geosci. Remote Sens. Lett., 12, 1813–1817, 2015. a
Download
Short summary
Sea ice thickness is important for representing atmosphere–ocean interactions in climate models. A validated satellite sea ice thickness measurement algorithm is transferred to a new sensor. The results offer a better temporal and spatial coverage of satellite measurements in the polar regions. Here we describe the calibration procedure between the two sensors, taking into account their technical differences. In addition a new filter for interference from artificial radio sources is implemented.