Articles | Volume 13, issue 10
https://doi.org/10.5194/tc-13-2537-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-2537-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations
Institute of Geography, Friedrich-Alexander-Universität
Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
Philipp Malz
Institute of Geography, Friedrich-Alexander-Universität
Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
Christian Sommer
Institute of Geography, Friedrich-Alexander-Universität
Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
Stefan Lippl
Institute of Geography, Friedrich-Alexander-Universität
Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
Alejo Cochachin
Unidad de Glaciología y Recursos Hídricos (UGRH), Autoridad Nacional del Agua (ANA), 02001 Huaraz, Perú
Matthias Braun
Institute of Geography, Friedrich-Alexander-Universität
Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
Related authors
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571, https://doi.org/10.5194/egusphere-2024-1571, 2024
Short summary
Short summary
In the present work, we provide a new ice-thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S by using inversion modeling. This model consists of two steps; the first takes basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the previously made assumptions are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstruction available.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Peter Friedl, Thorsten C. Seehaus, Anja Wendt, Matthias H. Braun, and Kathrin Höppner
The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, https://doi.org/10.5194/tc-12-1347-2018, 2018
Short summary
Short summary
Fleming Glacier is the biggest tributary glacier of the former Wordie Ice Shelf. Radar satellite data and airborne ice elevation measurements show that the glacier accelerated by ~27 % between 2008–2011 and that ice thinning increased by ~70 %. This was likely a response to a two-phase ungrounding of the glacier tongue between 2008 and 2011, which was mainly triggered by increased basal melt during two strong upwelling events of warm circumpolar deep water.
Thorsten Seehaus, Alison J. Cook, Aline B. Silva, and Matthias Braun
The Cryosphere, 12, 577–594, https://doi.org/10.5194/tc-12-577-2018, https://doi.org/10.5194/tc-12-577-2018, 2018
Short summary
Short summary
The ice sheet of northern Antarctic Peninsula has been significantly affected by climate change within the last century. A temporally and spatially detailed study on the evolution of glacier retreat and flow speeds of 74 basins is provided. Since 1985 a total frontal retreat of 238 km2 and since 1992 regional mean changes in ice flow by up to 58 % are observed. The trends in ice dynamics are correlated with geometric parameters of the glacier catchments and regional climatic settings.
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3056, https://doi.org/10.5194/egusphere-2024-3056, 2024
Short summary
Short summary
Supraglacial lakes develop from meltwater collecting on the surface of glaciers. These lakes can drain rapidly, discharging meltwater to the glacier bed. In this study, we assess the spatial and temporal distribution of rapid drainages in Northeast Greenland using optical satellite images. After comparing rapid drainage occurrence with several environmental and geophysical parameters, little indication of the influencing conditions for a rapid drainage was found.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571, https://doi.org/10.5194/egusphere-2024-1571, 2024
Short summary
Short summary
In the present work, we provide a new ice-thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S by using inversion modeling. This model consists of two steps; the first takes basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the previously made assumptions are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstruction available.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1151, https://doi.org/10.5194/egusphere-2024-1151, 2024
Short summary
Short summary
We study the evolution of a massive lake on the Greenland Ice Sheet using satellite and airborne data and some modelling. The lake is emptying rapidly. The water flows to the base of the glacier through cracks and gullies that remain visible over years. Some of them become reactive. We find features inside the glacier that stem from the drainage events with even 1 km width. These features are persistent over the years, although they are changing in shape.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Jonathan Oberreuter, Edwin Badillo-Rivera, Edwin Loarte, Katy Medina, Alejo Cochachin, and José Uribe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-336, https://doi.org/10.5194/essd-2021-336, 2022
Manuscript not accepted for further review
Short summary
Short summary
We present a representative set of data of interpreted ice thickness and ice surface elevation of the ablation area of the Artesonraju glacier between 2012 and 2020. The results show a maximum depth of 235 ± 18 m and a decreasing mean depth ranging from 134 ± 18 m in 2013 to 110 ± 18 m in 2020. Additionally, we estimate a mean ice thickness change rate of −4.2 ± 3.2 m yr−1 between 2014 and 2020, which is in agreement with the elevation change in the same period of −3.2 ± 0.2 m yr−1.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
E. Karantanellis, R. Arav, A. Dille, S. Lippl, G. Marsy, L. Torresani, and S. Oude Elberink
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1099–1105, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1099-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1099-2020, 2020
Peter Friedl, Thorsten C. Seehaus, Anja Wendt, Matthias H. Braun, and Kathrin Höppner
The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, https://doi.org/10.5194/tc-12-1347-2018, 2018
Short summary
Short summary
Fleming Glacier is the biggest tributary glacier of the former Wordie Ice Shelf. Radar satellite data and airborne ice elevation measurements show that the glacier accelerated by ~27 % between 2008–2011 and that ice thinning increased by ~70 %. This was likely a response to a two-phase ungrounding of the glacier tongue between 2008 and 2011, which was mainly triggered by increased basal melt during two strong upwelling events of warm circumpolar deep water.
Thorsten Seehaus, Alison J. Cook, Aline B. Silva, and Matthias Braun
The Cryosphere, 12, 577–594, https://doi.org/10.5194/tc-12-577-2018, https://doi.org/10.5194/tc-12-577-2018, 2018
Short summary
Short summary
The ice sheet of northern Antarctic Peninsula has been significantly affected by climate change within the last century. A temporally and spatially detailed study on the evolution of glacier retreat and flow speeds of 74 basins is provided. Since 1985 a total frontal retreat of 238 km2 and since 1992 regional mean changes in ice flow by up to 58 % are observed. The trends in ice dynamics are correlated with geometric parameters of the glacier catchments and regional climatic settings.
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Melanie Rankl, Johannes Jakob Fürst, Angelika Humbert, and Matthias Holger Braun
The Cryosphere, 11, 1199–1211, https://doi.org/10.5194/tc-11-1199-2017, https://doi.org/10.5194/tc-11-1199-2017, 2017
B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera
The Cryosphere, 8, 1807–1823, https://doi.org/10.5194/tc-8-1807-2014, https://doi.org/10.5194/tc-8-1807-2014, 2014
M. Rankl, C. Kienholz, and M. Braun
The Cryosphere, 8, 977–989, https://doi.org/10.5194/tc-8-977-2014, https://doi.org/10.5194/tc-8-977-2014, 2014
D. Schneider, C. Huggel, A. Cochachin, S. Guillén, and J. García
Adv. Geosci., 35, 145–155, https://doi.org/10.5194/adgeo-35-145-2014, https://doi.org/10.5194/adgeo-35-145-2014, 2014
Related subject area
Discipline: Glaciers | Subject: Remote Sensing
The Pléiades Glacier Observatory: high-resolution digital elevation models and ortho-imagery to monitor glacier change
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Lake ice break-up in Greenland: timing and spatiotemporal variability
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau
Out-of-the-box calving-front detection method using deep learning
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Cast shadows reveal changes in glacier surface elevation
Characterizing the surge behaviour and associated ice-dammed lake evolution of the Kyagar Glacier in the Karakoram
Constraining regional glacier reconstructions using past ice thickness of deglaciating areas – a case study in the European Alps
Climatic control on seasonal variations in mountain glacier surface velocity
High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities
Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems
Glacier extraction based on high-spatial-resolution remote-sensing images using a deep-learning approach with attention mechanism
TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications
Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law
Offset of MODIS land surface temperatures from in situ air temperatures in the upper Kaskawulsh Glacier region (St. Elias Mountains) indicates near-surface temperature inversions
Three different glacier surges at a spot: what satellites observe and what not
Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements
Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile
Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)
Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region
Aerodynamic roughness length of crevassed tidewater glaciers from UAV mapping
Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods
Brief communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data
InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR)
Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)
High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic
Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow
Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and imagery
Analyzing glacier retreat and mass balances using aerial and UAV photogrammetry in the Ötztal Alps, Austria
Surges of Harald Moltke Bræ, north-western Greenland: seasonal modulation and initiation at the terminus
Brief communication: An empirical relation between center frequency and measured thickness for radar sounding of temperate glaciers
Glacier Image Velocimetry: an open-source toolbox for easy and rapid calculation of high-resolution glacier velocity fields
Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019
Annual and inter-annual variability and trends of albedo of Icelandic glaciers
Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland
Detecting seasonal ice dynamics in satellite images
Sharp contrasts in observed and modeled crevasse patterns at Greenland's marine terminating glaciers
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand
The seasonal evolution of albedo across glaciers and the surrounding landscape of Taylor Valley, Antarctica
Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes
Multisensor validation of tidewater glacier flow fields derived from synthetic aperture radar (SAR) intensity tracking
Detecting dynamics of cave floor ice with selective cloud-to-cloud approach
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquín Muñoz-Cobo Belart, Fanny Brun, Liss M. Andreassen, Brian Menounos, and Charlotte Blondel
The Cryosphere, 18, 5551–5571, https://doi.org/10.5194/tc-18-5551-2024, https://doi.org/10.5194/tc-18-5551-2024, 2024
Short summary
Short summary
Repeat elevation measurements are crucial for monitoring glacier health and to understand how glaciers affect river flows and sea level. Until recently, high-resolution elevation data were mostly available for polar regions and High Mountain Asia. Our project, the Pléiades Glacier Observatory, now provides high-resolution topographies of 140 glacier sites worldwide. This is a novel and open dataset to monitor the impact of climate change on glaciers at high resolution and accuracy.
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024, https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Short summary
The study of glacier sliding along slopes is relevant in many aspects of glaciology. We processed Sentinel-2 satellite optical images of Mont Blanc, obtaining surface velocities of 30 glaciers between 2016 and 2024. The study revealed different behaviours and velocity variations that have relationships with glacier morphology. A velocity anomaly was observed in some glaciers of the southern side in 2020–2022, but its origin needs to be investigated further.
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024, https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Short summary
There are sometimes gaps in global glacier velocity records produced using satellite image feature-tracking algorithms during times of rapid glacier acceleration, which hinders the study of glacier flow processes. We present an open-source pipeline for customizing the feature-tracking parameters and for including images from an additional source. We applied it to five glaciers and found that it produced accurate velocity data that supplemented their velocity records during rapid acceleration.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024, https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
Short summary
Radar beams from satellites exhibit reflection differences between water and ice. This condition, as well as the comprehensive coverage and high temporal resolution of the Sentinel-1 satellites, allows automatically detecting the timing of when ice cover of lakes in Greenland disappear. We found that lake ice breaks up 3 d later per 100 m elevation gain and that the average break-up timing varies by ±8 d in 2017–2021, which has major implications for the energy budget of the lakes.
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024, https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Short summary
The lower part of mountain glaciers is often covered with debris. Knowing the thickness of the debris is important as it influences the melting and future evolution of the affected glaciers. We have developed an open-source approach to map variations in debris thickness on glaciers using a low-cost drone equipped with a thermal infrared camera. The resulting high-resolution maps of debris surface temperature and thickness enable more accurate monitoring and modelling of debris-covered glaciers.
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168, https://doi.org/10.5194/tc-18-153-2024, https://doi.org/10.5194/tc-18-153-2024, 2024
Short summary
Short summary
This study built a glacial lake dataset with 15376 samples in seven types and proposed an automatic method by two-stage (the semantic segmentation network and post-processing) optimizations to detect glacial lakes. The proposed method for glacial lake extraction has achieved the best results so far, in which the F1 score and IoU reached 0.945 and 0.907, respectively. The area of the minimum glacial lake that can be entirely and correctly extracted has been raised to the 100 m2 level.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Monika Pfau, Georg Veh, and Wolfgang Schwanghart
The Cryosphere, 17, 3535–3551, https://doi.org/10.5194/tc-17-3535-2023, https://doi.org/10.5194/tc-17-3535-2023, 2023
Short summary
Short summary
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the length of shadows from surrounding mountains can be used to detect gains or losses in glacier elevation.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023, https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Short summary
We performed high-resolution debris-thickness mapping using land surface temperature (LST) measured from an unpiloted aerial vehicle (UAV) at various times of the day. LSTs from UAVs require calibration that varies in time. We test two approaches to quantify supraglacial debris cover, and we find that the non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best model to predict debris thickness depends on the time of the day and the terrain aspect.
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022, https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
Short summary
The available remote-sensing data are increasingly abundant, and the efficient and rapid acquisition of glacier boundaries based on these data is currently a frontier issue in glacier research. In this study, we designed a complete solution to automatically extract glacier outlines from the high-resolution images. Compared with other methods, our method achieves the best performance for glacier boundary extraction in parts of the Tanggula Mountains, Kunlun Mountains and Qilian Mountains.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022, https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
Short summary
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level rise and glacier-related hazards. Yet there is currently no universal law to describe this mechanism. We propose a universal glacier sliding law and a method to qualitatively constrain it. We use satellite remote sensing to create velocity maps over 6 years at Shisper Glacier, Pakistan, including its recent surge, and show that the observations corroborate the generalized theory.
Ingalise Kindstedt, Kristin M. Schild, Dominic Winski, Karl Kreutz, Luke Copland, Seth Campbell, and Erin McConnell
The Cryosphere, 16, 3051–3070, https://doi.org/10.5194/tc-16-3051-2022, https://doi.org/10.5194/tc-16-3051-2022, 2022
Short summary
Short summary
We show that neither the large spatial footprint of the MODIS sensor nor poorly constrained snow emissivity values explain the observed cold offset in MODIS land surface temperatures (LSTs) in the St. Elias. Instead, the offset is most prominent under conditions associated with near-surface temperature inversions. This work represents an advance in the application of MODIS LSTs to glaciated alpine regions, where we often depend solely on remote sensing products for temperature information.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Melanie Marochov, Chris R. Stokes, and Patrice E. Carbonneau
The Cryosphere, 15, 5041–5059, https://doi.org/10.5194/tc-15-5041-2021, https://doi.org/10.5194/tc-15-5041-2021, 2021
Short summary
Short summary
Research into the use of deep learning for pixel-level classification of landscapes containing marine-terminating glaciers is lacking. We adapt a novel and transferable deep learning workflow to classify satellite imagery containing marine-terminating outlet glaciers in Greenland. Our workflow achieves high accuracy and mimics human visual performance, potentially providing a useful tool to monitor glacier change and further understand the impacts of climate change in complex glacial settings.
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021, https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021, https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
Short summary
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation. Understanding these features is important for glacier hydrology and related hazards. We use linear spectral unmixing of satellite data to assess the composition of map supraglacial debris across the Himalaya range in 2015. One of the highlights of this study is the automated mapping of supraglacial ponds, which complements and expands the existing supraglacial debris and lake databases.
Corey Scher, Nicholas C. Steiner, and Kyle C. McDonald
The Cryosphere, 15, 4465–4482, https://doi.org/10.5194/tc-15-4465-2021, https://doi.org/10.5194/tc-15-4465-2021, 2021
Short summary
Short summary
Time series synthetic aperture radar enables detection of seasonal reach-scale glacier surface melting across continents, a key component of surface energy balance for mountain glaciers. We observe melting across all areas of the Hindu Kush Himalaya (HKH) cryosphere. Surface melting for the HKH lasts for close to 5 months per year on average and for just below 2 months at elevations exceeding 7000 m a.s.l. Further, there are indications that melting is more than superficial at high elevations.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
Sergey Samsonov, Kristy Tiampo, and Ryan Cassotto
The Cryosphere, 15, 4221–4239, https://doi.org/10.5194/tc-15-4221-2021, https://doi.org/10.5194/tc-15-4221-2021, 2021
Short summary
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.
Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout
The Cryosphere, 15, 3861–3876, https://doi.org/10.5194/tc-15-3861-2021, https://doi.org/10.5194/tc-15-3861-2021, 2021
Short summary
Short summary
We investigate the disintegration of the B30 iceberg using satellite remote sensing and find that the iceberg lost 378 km3 of ice in 6.5 years, corresponding to 80 % of its initial volume. About two thirds are due to fragmentation at the sides, and one third is due to melting at the iceberg’s base. The release of fresh water and nutrients impacts ocean circulation, sea ice formation, and biological production. We show that adding a snow layer is important when deriving iceberg thickness.
Joschka Geissler, Christoph Mayer, Juilson Jubanski, Ulrich Münzer, and Florian Siegert
The Cryosphere, 15, 3699–3717, https://doi.org/10.5194/tc-15-3699-2021, https://doi.org/10.5194/tc-15-3699-2021, 2021
Short summary
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Joseph A. MacGregor, Michael Studinger, Emily Arnold, Carlton J. Leuschen, Fernando Rodríguez-Morales, and John D. Paden
The Cryosphere, 15, 2569–2574, https://doi.org/10.5194/tc-15-2569-2021, https://doi.org/10.5194/tc-15-2569-2021, 2021
Short summary
Short summary
We combine multiple recent global glacier datasets and extend one of them (GlaThiDa) to evaluate past performance of radar-sounding surveys of the thickness of Earth's temperate glaciers. An empirical envelope for radar performance as a function of center frequency is determined, its limitations are discussed and its relevance to future radar-sounder survey and system designs is considered.
Maximillian Van Wyk de Vries and Andrew D. Wickert
The Cryosphere, 15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021, https://doi.org/10.5194/tc-15-2115-2021, 2021
Short summary
Short summary
We can measure glacier flow and sliding velocity by tracking patterns on the ice surface in satellite images. The surface velocity of glaciers provides important information to support assessments of glacier response to climate change, to improve regional assessments of ice thickness, and to assist with glacier fieldwork. Our paper describes Glacier Image Velocimetry (GIV), a new, easy-to-use, and open-source toolbox for calculating high-resolution velocity time series for any glacier on earth.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021, https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Short summary
Surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. During the melt season in the Northern Hemisphere solar energy absorbed by snow- and ice-covered surfaces is mainly controlled by surface albedo. For Icelandic glaciers, air temperature and surface albedo are the dominating factors governing annual variability of glacier surface melt. Satellite data from the MODIS sensor are used to create a data set spanning the glacier melt season.
Bryan Riel, Brent Minchew, and Ian Joughin
The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, https://doi.org/10.5194/tc-15-407-2021, 2021
Short summary
Short summary
The availability of large volumes of publicly available remote sensing data over terrestrial glaciers provides new opportunities for studying the response of glaciers to a changing climate. We present an efficient method for tracking changes in glacier speeds at high spatial and temporal resolutions from surface observations, demonstrating the recovery of traveling waves over Jakobshavn Isbræ, Greenland. Quantification of wave properties may ultimately enhance understanding of glacier dynamics.
Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews
The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, https://doi.org/10.5194/tc-14-4365-2020, 2020
Short summary
Short summary
Seasonal variability is a fundamental characteristic of any Earth surface system, but we do not fully understand which of the world's glaciers speed up and slow down on an annual cycle. Such short-timescale accelerations may offer clues about how individual glaciers will respond to longer-term changes in climate, but understanding any behavior requires an ability to observe it. We describe how to use satellite image feature tracking to determine the magnitude and timing of seasonal ice dynamics.
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020, https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary
Short summary
Accurate predictions of future changes in glacier flow require the realistic simulation of glacier terminus position change in numerical models. We use crevasse observations for 19 Greenland glaciers to explore whether the two commonly used crevasse depth models match observations. The models cannot reproduce spatial patterns, and we largely attribute discrepancies between modeled and observed depths to the models' inability to account for advection.
Angus J. Dowson, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 14, 3425–3448, https://doi.org/10.5194/tc-14-3425-2020, https://doi.org/10.5194/tc-14-3425-2020, 2020
Short summary
Short summary
Satellite observations over 19 years are used to characterise the spatial and temporal variability of surface albedo across the gardens of Eden and Allah, two of New Zealand’s largest ice fields. The variability in response of individual glaciers reveals the role of topographic setting and suggests that glaciers in the Southern Alps do not behave as a single climatic unit. There is evidence that the timing of the minimum surface albedo has shifted to later in the summer on 10 of the 12 glaciers.
Anna Bergstrom, Michael N. Gooseff, Madeline Myers, Peter T. Doran, and Julian M. Cross
The Cryosphere, 14, 769–788, https://doi.org/10.5194/tc-14-769-2020, https://doi.org/10.5194/tc-14-769-2020, 2020
Short summary
Short summary
This study sought to understand patterns of reflectance of visible light across the landscape of the McMurdo Dry Valleys, Antarctica. We used a helicopter-based platform to measure reflectance along an entire valley with a particular focus on the glaciers, as reflectance strongly controls glacier melt and available water to the downstream ecosystem. We found that patterns are controlled by gradients in snowfall, wind redistribution, and landscape structure, which can trap snow and sediment.
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Short summary
Glacier growth such as that found on the Tibetan Plateau (TP) is counterintuitive in a warming world. Climate models and meteorological data are conflicting about the reasons for this glacier anomaly. We quantify the glacier changes in High Mountain Asia using satellite laser altimetry as well as the growth of over 1300 inland lakes on the TP. Our study suggests that increased summer precipitation is likely the largest contributor to the recently observed increases in glacier and lake masses.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay
The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019, https://doi.org/10.5194/tc-13-2835-2019, 2019
Short summary
Short summary
Cave ice formations can be considered an indicator of long-term changes in the landscape. Using terrestrial laser scanning we generated a time series database of a 3-D cave model. We present a novel approach toward registration of scan missions into a unified coordinate system and methodology for detection of cave floor ice changes. We demonstrate the results of the ice dynamics monitoring correlated with meteorological observations in the Silická ľadnica cave situated in the Slovak Karst.
Cited articles
Atwood, D. K., Meyer, F., and Arendt, A.: Using L-band SAR coherence to
delineate glacier extent, Can. J. Remote Sens., 36,
S186–S195, https://doi.org/10.5589/m10-014, 2010.
Baraer, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J., Huh, K.-I.,
Portocarrero, C., Gómez, J., and Rathay, S.: Glacier recession and water
resources in Peru's Cordillera Blanca, J. Glaciol., 58,
134–150, https://doi.org/10.3189/2012JoG11J186, 2012.
Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, Á. Þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, 2014.
Braun, M., Malz, P., Sommer, C., Farias, D., Sauter, T., Casassa, G.,
Soruco, A., Skvarca, P., and Seehaus, T.: Constraining glacier elevation and
mass changes in South America, Nat. Clim. Change, 9, 130–136,
https://doi.org/10.1038/s41558-018-0375-7, 2019.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999, 2017.
Burns, P. and Nolin, A.: Using atmospherically-corrected Landsat imagery to
measure glacier area change in the Cordillera Blanca, Peru from 1987 to
2010, Remote Sens. Environ., 140, 165–178,
https://doi.org/10.1016/j.rse.2013.08.026, 2014.
Carey, M.: In the Shadow of Melting Glaciers: Climate Change and Andean
Society, Oxford University Press, 2010.
Casey, J. A., Howell, S. E. L., Tivy, A., and Haas, C.: Separability of sea
ice types from wide swath C- and L-band synthetic aperture radar imagery
acquired during the melt season, Remote Sens. Environ., 174,
314–328, https://doi.org/10.1016/j.rse.2015.12.021, 2016.
Casimiro, W. S. L., Ronchail, J., Labat, D., Espinoza, J. C., and Guyot, J.
L.: Basin-scale analysis of rainfall and runoff in Peru (1969–2004):
Pacific, Titicaca and Amazonas drainages, Hydrolog. Sci. J.,
57, 625–642, https://doi.org/10.1080/02626667.2012.672985, 2012.
Casimiro, W. S. L., Labat, D., Ronchail, J., Espinoza, J. C., and Guyot, J.
L.: Trends in rainfall and temperature in the Peruvian Amazon–Andes basin
over the last 40 years (1965–2007), Hydrol. Process., 27,
2944–2957, https://doi.org/10.1002/hyp.9418, 2013.
NOAA Climate Prediction Center: NOAA's Climate Prediction Center, available at:
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, last access: 20 April 2018.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A.,
Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L.,
and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms. IHP-VII
Technical Documents in Hydrology No. 86, IACS Contribution No. 2,
UNESCO-IHP, Paris, Polar Rec., 48, 1–124, https://doi.org/10.1017/S0032247411000805,
2011.
Colonia, D., Torres, J., Haeberli, W., Schauwecker, S., Braendle, E.,
Giraldez, C., and Cochachin, A.: Compiling an Inventory of Glacier-Bed
Overdeepenings and Potential New Lakes in De-Glaciating Areas of the
Peruvian Andes: Approach, First Results, and Perspectives for Adaptation to
Climate Change, Water, 9, https://doi.org/10.3390/w9050336, 2017.
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015.
Cook, S. J., Kougkoulos, I., Edwards, L. A., Dortch, J., and Hoffmann, D.: Glacier change and glacial lake outburst flood risk in the Bolivian Andes, The Cryosphere, 10, 2399–2413, https://doi.org/10.5194/tc-10-2399-2016, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J.
Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Drenkhan, F., Guardamino, L., Huggel, C., and Frey, H.: Current and future
glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin,
Peruvian Andes, Global Planet. Change, 169, 105–118,
https://doi.org/10.1016/j.gloplacha.2018.07.005, 2018.
Drenkhan, F., Huggel, C., Guardamino, L., and Haeberli, W.: Managing risks
and future options from new lakes in the deglaciating Andes of Peru: The
example of the Vilcanota-Urubamba basin, Sci. Total Environ.,
665, 465–483, https://doi.org/10.1016/j.scitotenv.2019.02.070, 2019.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Favier, V., Wagnon, P., and Ribstein, P.: Glaciers of the outer and inner
tropics: A different behaviour but a common response to climatic forcing,
Geophys. Res. Lett., 31, L16403, https://doi.org/10.1029/2004GL020654, 2004.
Fountain, A. G., Krimmel, R. M., and Trabant, D.: A strategy for monitoring glaciers, U.S. Geological Survey, Information
Services, [Washington], Denver, CO, ISBN 978-0-607-86638-4, 1997.
Francou Bernard, Vuille Mathias, Wagnon Patrick, Mendoza Javier and Sicart
Jean-Emmanuel: Tropical climate change recorded by a glacier in the central
Andes during the last decades of the twentieth century: Chacaltaya, Bolivia,
16∘ S, J. Geophys. Res.-Atmos., 108, 1–12,
https://doi.org/10.1029/2002JD002959, 2003.
Gardelle, J., Berthier, E., and Arnaud, Y.: Slight mass gain of Karakoram
glaciers in the early twenty-first century, Nat. Geosci., 5, 322–325,
https://doi.org/10.1038/ngeo145, 2012.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A.,
Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S.
R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and
Paul, F.: A Reconciled Estimate of Glacier Contributions to Sea Level Rise:
2003 to 2009, Science, 340, 852–857, https://doi.org/10.1126/science.1234532,
2013.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day
South American climate, Palaeogeogr. Palaeocl.,
281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Georges, C.: 20th-Century Glacier Fluctuations in the Tropical Cordillera
Blanca, Perú, Arct. Antarct. Alp. Res., 36, 100–107,
2004.
GLIMS algorithm working group: GLIMS algorithm working group,
available at: http://glims.colorado.edu/algorithms/algor.html#Anchor-3800 (last access: 5 April 2018), 2004.
Hanshaw, M. N. and Bookhagen, B.: Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru, The Cryosphere, 8, 359–376, https://doi.org/10.5194/tc-8-359-2014, 2014.
Hastenrath, S. and Ames, A.: Recession of Yanamarey Glacier in Cordillera
Blanca, Peru, during the 20th century, J. Glaciol., 41,
191–196, https://doi.org/10.3189/S0022143000017883, 1995.
Herreros, J., Moreno, I., Taupin, J.-D., Ginot, P., Patris, N., Angelis, M.
D., Ledru, M.-P., Delachaux, F., and Schotterer, U.: Environmental records
from temperate glacier ice on Nevado Coropuna saddle, southern Peru, in
Advances in Geosciences, vol. 22, 27–34, Copernicus GmbH, 2009.
Hidrandina SA: Unit of glaciology and Hydrology Huaraz, ŁInventario de Glaciares del Perú, 1989.
Hoffmann, D.: Participatory Glacier Lake Monitoring in Apolobamba Protected
Area. A Bolivian Experience “Journal of Sustainability Education”,
available from:
http://www.jsedimensions.org/wordpress/content/participatory-glacier-lake-monitoring-in-apolobamba-protected-area-a-bolivian-experience_
2012_03/ (last access: 22 October 2018), 2012.
Huh, K. I., Mark, B. G., Ahn, Y., and Hopkinson, C.: Volume change of
tropical Peruvian glaciers from multi-temporal digital elevation models and
volume–surface area scaling, Geogr. Ann. A, 99, 222–239, https://doi.org/10.1080/04353676.2017.1313095, 2017.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Instituto Geofisico del Peru: Cambio climatico en la cuenca del
rio mantaro, 260, 2010.
Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S.: Recent contributions of
glaciers and ice caps to sea level rise, Nature, 482, 514–518,
https://doi.org/10.1038/nature10847, 2012.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kaser, G.: Glacier-climate interaction at low latitudes, J. Glaciol., 47, 195–204, https://doi.org/10.3189/172756501781832296, 2001.
Kaser, G. and Osmaston, H.: Tropical Glaciers, Cambridge University Press,
2002.
Kaser, G., Juen, I., Georges, C., Gómez, J., and Tamayo, W.: The impact
of glaciers on the runoff and the reconstruction of mass balance history
from hydrological data in the tropical Cordillera Blanca, Perú, J.
Hydrol., 282, 130–144, https://doi.org/10.1016/S0022-1694(03)00259-2, 2003.
Léon, H., Loarte, E., Medina, K., Dávila, L., Rabatel, A.,
Muñoz, R., Rastner, P., and Frey, H.: Multi-temporal snow cover
analysis with MODIS data in the Cordillera Barroso, Peru, in: EGU2019-10368.
Presented at the EGU General Assembly 2019, Vienna, p. 1, 2019.
Lippl, S., Vijay, S., and Braun, M.: Automatic delineation of debris-covered
glaciers using InSAR coherence derived from X-, C- and L-band radar data: a
case study of Yazgyl Glacier, J. Glaciol., 64, 1–11,
https://doi.org/10.1017/jog.2018.70, 2018.
Lopez, P., Chevallier, P., Favier, V., Pouyaud, B., Ordenes, F., and
Oerlemans, J.: A regional view of fluctuations in glacier length in southern
South America, Global Planet. Change, 71, 85–108,
https://doi.org/10.1016/j.gloplacha.2009.12.009, 2010.
López-Moreno, J. I., Fontaneda, S., Bazo, J., Revuelto, J.,
Azorin-Molina, C., Valero-Garcés, B., Morán-Tejeda, E.,
Vicente-Serrano, S. M., Zubieta, R., and Alejo-Cochachín, J.: Recent
glacier retreat and climate trends in Cordillera Huaytapallana, Peru, Global Planet. Change, 112, 1–11, https://doi.org/10.1016/j.gloplacha.2013.10.010, 2014.
Malz, P., Meier, W., Casassa, G., Jaña, R., Skvarca, P., and Braun, M.
H.: Elevation and Mass Changes of the Southern Patagonia Icefield Derived
from TanDEM-X and SRTM Data, Remote Sensing, 10, 188,
https://doi.org/10.3390/rs10020188, 2018.
Mark, B. G. and Seltzer, G. O.: Evaluation of recent glacier recession in
the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass
loss and climatic forcing, Quaternary Sci. Rev., 24,
2265–2280, https://doi.org/10.1016/j.quascirev.2005.01.003, 2005.
Maussion, F., Gurgiser, W., Großhauser, M., Kaser, G., and Marzeion, B.: ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru, The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015, 2015.
McFadden, E. M., Ramage, J., and Rodbell, D. T.: Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005, The Cryosphere, 5, 419–430, https://doi.org/10.5194/tc-5-419-2011, 2011.
McNabb, R., Nuth, C., Kääb, A., and Girod, L.: Sensitivity of glacier volume change estimation to DEM void interpolation, The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, 2019.
Mernild, S. H., Liston, G. E., Hiemstra, C., and Wilson, R.: The Andes
Cordillera. Part III: glacier surface mass balance and contribution to sea
level rise (1979–2014), Int. J. Climatol., 37,
3154–3174, https://doi.org/10.1002/joc.4907, 2017.
Morizawa, K., Asaoka, Y., Kazama, S., and Gunawardhana, L. N.: Temporal
glacier area changes correlated with the El Niño/La Niña Southern
Oscillation using satellite imagery, Hydrol. Res. Lett., 7, 18–22,
https://doi.org/10.3178/hrl.7.18, 2013.
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second Version
3, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K.,
Frey, H., Joshi, S. P., Konovalov, V., Bris, R. L., Mölg, N., Nosenko,
G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer,
K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines
derived from remote-sensing data, Ann. Glaciol., 54, 171–182,
https://doi.org/10.3189/2013AoG63A296, 2013.
Peduzzi, P., Herold, C., and Silverio, W.: Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru), The Cryosphere, 4, 313–323, https://doi.org/10.5194/tc-4-313-2010, 2010.
Polk, M. H., Young, K. R., Baraer, M., Mark, B. G., McKenzie, J. M., Bury,
J., and Carey, M.: Exploring hydrologic connections between tropical mountain
wetlands and glacier recession in Peru's Cordillera Blanca, Appl.
Geogr., 78, 94–103, https://doi.org/10.1016/j.apgeog.2016.11.004, 2017.
Pouyaud, B., Zapata, M., Yerren, J., Gomez, J., Rosas, G., Suarez, W., and
Ribstein, P.: Avenir des ressources en eau glaciaire de la Cordillère
Blanche/On the future of the water resources from glacier melting in the
Cordillera Blanca, Peru, Hydrolog. Sci. J., 50, 999–1022,
https://doi.org/10.1623/hysj.2005.50.6.999, 2005.
Rabatel, A., Bermejo, A., Loarte, E., Soruco, A., Gomez, J., Leonardini, G.,
Vincent, C., and Sicart, J. E.: Can the snowline be used as an indicator of
the equilibrium line and mass balance for glaciers in the outer tropics?,
J. Glaciol., 58, 1027–1036, https://doi.org/10.3189/2012JoG12J027, 2012.
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M., Condom, T., Consoli, G., Favier, V., Jomelli, V., Galarraga, R., Ginot, P., Maisincho, L., Mendoza, J., Ménégoz, M., Ramirez, E., Ribstein, P., Suarez, W., Villacis, M., and Wagnon, P.: Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change, The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, 2013.
Racoviteanu, A.: GLIMS Glacier Database, Boulder, CO, National Snow and Ice Data Center,
https://doi.org/10.7265/N5V98602, 2005.
Racoviteanu, A. E., Manley, W. F., Arnaud, Y., and Williams, M. W.:
Evaluating digital elevation models for glaciologic applications: An example
from Nevado Coropuna, Peruvian Andes, Global Planet. Change, 59,
110–125, https://doi.org/10.1016/j.gloplacha.2006.11.036, 2007.
Racoviteanu, A. E., Arnaud, Y., Williams, M. W., and Ordoñez, J.: Decadal
changes in glacier parameters in the Cordillera Blanca, Peru, derived from
remote sensing, J. Glaciol., 54, 499–510,
https://doi.org/10.3189/002214308785836922, 2008.
Ramirez, E., Francou, B., Ribstein, P., Descloitres, M., Guerin, R.,
Mendoza, J., Gallaire, R., Pouyaud, B., and Jordan, E.: Small glaciers
disappearing in the tropical Andes: a case-study in Bolivia: Glaciar
Chacaltaya (16∘ S), J. Glaciol., 47, 187–194, 2001.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, https://doi.org/10.7265/N5-RGI-60, 2017.
Rolstad, C., Haug, T., and Denby, B.: Spatially integrated geodetic glacier
mass balance and its uncertainty based on geostatistical analysis:
application to the western Svartisen ice cap, Norway, J. Glaciol.,
55, 666–680, https://doi.org/10.3189/002214309789470950, 2009.
Rossi, C., Minet, C., Fritz, T., Eineder, M., and Bamler, R.: Temporal
monitoring of subglacial volcanoes with TanDEM-X – Application to the
2014–2015 eruption within the Bárðarbunga volcanic system, Iceland,
Remote Sens. Environ., 181, 186–197, https://doi.org/10.1016/j.rse.2016.04.003,
2016.
Sagredo, E. A. and Lowell, T. V.: Climatology of Andean glaciers: A
framework to understand glacier response to climate change, Global
Planet. Change, 86–87, 101–109, 2012.
Salzmann, N., Huggel, C., Rohrer, M., Silverio, W., Mark, B. G., Burns, P., and Portocarrero, C.: Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes, The Cryosphere, 7, 103–118, https://doi.org/10.5194/tc-7-103-2013, 2013.
Schauwecker, S., Rohrer, M., Huggel, C., Endries, J., Montoya, N., Neukom,
R., Perry, B., Salzmann, N., Schwarb, M., and Suarez, W.: The freezing level
in the tropical Andes, Peru: An indicator for present and future glacier
extents, J. Geophys. Res.-Atmos., 122, 2016JD025943,
https://doi.org/10.1002/2016JD025943, 2017.
Seehaus, T., Marinsek, S., Helm, V., Skvarca, P., and Braun, M.: Changes in
ice dynamics, elevation and mass discharge of
Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula, Earth
Planet. Sci. Lett., 427, 125–135,
https://doi.org/10.1016/j.epsl.2015.06.047, 2015.
Seehaus, T., Malz, P., Sommer, C., and Braun, M. H.: Surface elevation changes of the tropical glaciers throughout Peru between 2000 and 2016, PANGAEA, https://doi.org/10.1594/PANGAEA.906211, 2019.
Silverio, W. and Jaquet, J.-M.: Glacial cover mapping (1987–1996) of the
Cordillera Blanca (Peru) using satellite imagery, Remote Sens.
Environ., 95, 342–350, https://doi.org/10.1016/j.rse.2004.12.012, 2005.
Silverio, W. and Jaquet, J.-M.: Multi-temporal and multi-source cartography
of the glacial cover of Nevado Coropuna (Arequipa, Peru) between 1955 and
2003, Int. J. Remote Sens., 33, 5876–5888,
https://doi.org/10.1080/01431161.2012.676742, 2012.
Silverio, W. and Jaquet, J.-M.: Evaluating glacier fluctuations in
Cordillera Blanca (Peru), Arch. Sci., 18, 145–162, 2017.
Soruco, A., Vincent, C., Francou, B., and Gonzalez, J. F.: Glacier decline
between 1963 and 2006 in the Cordillera Real, Bolivia, Geophys. Res. Lett.,
36, L03502, https://doi.org/10.1029/2008GL036238, 2009a.
Soruco, A., Vincent, C., Francou, B., Ribstein, P., Berger, T., Sicart, J.
E., Wagnon, P., Arnaud, Y., Favier, V., and Lejeune, Y.: Mass balance of
Glaciar Zongo, Bolivia, between 1956 and 2006, using glaciological,
hydrological and geodetic methods, Ann. Glaciol., 50, 1–8,
https://doi.org/10.3189/172756409787769799, 2009b.
Toutin, T.: Three-dimensional topographic mapping with ASTER stereo data in
rugged topography, IEEE T. Geosci. Remote,
40, 2241–2247, https://doi.org/10.1109/TGRS.2002.802878, 2002.
Ubeda, J.: El impacto del cambio climático en los glaciares del complejo
volcánico Nevado Coropuna, (Cordillera Occidental de los Andes
Centrales), info:eu-repo/semantics/doctoralThesis, Universidad Complutense
de Madrid, Servicio de Publicaciones, Madrid, 13 April, available
at: https://eprints.ucm.es/12076/ (last access: 26 October 2018), 2011.
UGRH: INVENTARIO DE GLACIARES CORDILLERA BLANCA, 81, available at: http://repositorio.ana.gob.pe/bitstream/handle/ANA/490/ANA0000276.pdf?sequence=1&isAllowed=y (last access: 24 September 2019), 2010.
UGRH: Inventario de glaciares del Peru, available at: http://ponce.sdsu.edu/INVENTARIO_GLACIARES_ANA.pdf (last access: 24 September 2019), 2014.
Ulaby, F. T., Stiles, W. H., and Abdelrazik, M.: Snowcover Influence on
Backscattering from Terrain, IEEE T. Geosci. Remote, GE-22, 126–133, https://doi.org/10.1109/TGRS.1984.350604, 1984.
Veettil, B. K.: Glacier mapping in the Cordillera Blanca, Peru, tropical
Andes, using Sentinel-2 and Landsat data, Singapore J. Trop.
Geo., 39, 351–363, https://doi.org/10.1111/sjtg.12247, 2018.
Veettil, B. K. and Kamp, U.: Remote sensing of glaciers in the tropical
Andes: a review, Int. J. Remote Sens., 38,
7101–7137, https://doi.org/10.1080/01431161.2017.1371868, 2017.
Veettil, B. K. and Souza, S. F. de: Study of 40-year glacier retreat in the
northern region of the Cordillera Vilcanota, Peru, using satellite images:
preliminary results, Remote Sens. Lett., 8, 78–85,
https://doi.org/10.1080/2150704X.2016.1235811, 2017.
Veettil, B. K., Bremer, U. F., Souza, S. F. de, Maier, É. L. B., and
Simões, J. C.: Variations in annual snowline and area of an ice-covered
stratovolcano in the Cordillera Ampato, Peru, using remote sensing data
(1986–2014), Geocarto Int., 31, 544–556,
https://doi.org/10.1080/10106049.2015.1059902, 2016.
Veettil, B. K., Souza, S. F. de, Simões, J. C., and Pereira, S. F. R.:
Decadal evolution of glaciers and glacial lakes in the Apolobamba–Carabaya
region, tropical Andes (Bolivia–Peru), Geogr. Ann. A,
99, 193–206, https://doi.org/10.1080/04353676.2017.1299577,
2017a.
Veettil, B. K., Wang, S., Florêncio de Souza, S., Bremer, U. F., and
Simões, J. C.: Glacier monitoring and glacier-climate interactions in
the tropical Andes: A review, J. S. Am. Earth Sci., 77,
218–246, https://doi.org/10.1016/j.jsames.2017.04.009, 2017b.
Veettil, B. K., Wang, S., Bremer, U. F., de Souza, S. F., and Simões, J.
C.: Recent trends in annual snowline variations in the northern wet outer
tropics: case studies from southern Cordillera Blanca, Peru, Theor.
Appl. Climatol., 129, 213–227, https://doi.org/10.1007/s00704-016-1775-0, 2017c.
Veettil, B. K., Wang, S., Simões, J. C., Ruiz Pereira, S. F., and de
Souza, S. F.: Regional climate forcing and topographic influence on glacier
shrinkage: eastern cordilleras of Peru, Int. J.
Climatol., 38, 979–995, https://doi.org/10.1002/joc.5226, 2017d.
Vijay, S. and Braun, M.: Elevation Change Rates of Glaciers in the
Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013,
Remote Sensing, 8, 1038, https://doi.org/10.3390/rs8121038, 2016.
Vuille, M.: Climate Change and Water Resources in the Tropical Andes,
Inter-American Development Bank, IDB Technical Note, 515, 2013.
Vuille, M., Kaser, G., and Juen, I.: Glacier mass balance variability in the
Cordillera Blanca, Peru and its relationship with climate and the
large-scale circulation, Global Planet. Change, 62, 14–28,
https://doi.org/10.1016/j.gloplacha.2007.11.003, 2008.
Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D.,
Soruco, A., Villacis, M., Yarleque, C., Elison Timm, O., Condom, T.,
Salzmann, N., and Sicart, J.-E.: Rapid decline of snow and ice in the
tropical Andes – Impacts, uncertainties and challenges ahead, Earth-Sci.
Rev., 176, 195–213, https://doi.org/10.1016/j.earscirev.2017.09.019,
2018.
Wagnon, P., Ribstein, P., Francou, B., and Pouyaud, B.: Annual cycle of
energy balance of Zongo Glacier, Cordillera Real, Bolivia, J. Geophys. Res.,
104, 3907–3923, https://doi.org/10.1029/1998JD200011, 1999.
Wagnon, P., Ribstein, P., Francou, B., and Sicart, J. E.: Anomalous heat and
mass budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño year,
J. Glaciol., 47, 21–28, https://doi.org/10.3189/172756501781832593,
2001.
WGMS: Fluctuations of Glaciers 1990–1995, 2018.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zink, M., Bartusch, M., and Miller, D.: TanDEM-X Mission Status, in IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), 1–4,
available at: http://elib.dlr.de/70355/ (last access: 4 April 2018), 2011.
Short summary
The glaciers in Peru are strongly affected by climate change and have shown significant ice loss in the last century. We present the first multi-temporal, countrywide quantification of glacier area and ice mass changes. A glacier area loss of −548.5 ± 65.7 km2 (−29 %) and ice mass loss of −7.62 ± 1.05 Gt is obtained for the period 2000–2016. The ice loss rate increased towards the end of the observation period. The glacier changes revealed can be attributed to regional climatic changes and ENSO.
The glaciers in Peru are strongly affected by climate change and have shown significant ice loss...