Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER, UK
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Kelly A. Hogan
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Robert D. Larter
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Neil S. Arnold
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER, UK
Frank O. Nitsche
Lamont-Doherty Earth Observatory of Columbia University, P.O. Box 1000, Palisades, NY 10964-8000, USA
Nicholas R. Golledge
Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand
Julian A. Dowdeswell
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER, UK
Related authors
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022, https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Rebecca Dell, Neil Arnold, Ian Willis, Alison Banwell, Andrew Williamson, Hamish Pritchard, and Andrew Orr
The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020, https://doi.org/10.5194/tc-14-2313-2020, 2020
Short summary
Short summary
A semi-automated method is developed from pre-existing work to track surface water bodies across Antarctic ice shelves over time, using data from Sentinel-2 and Landsat 8. This method is applied to the Nivlisen Ice Shelf for the 2016–2017 melt season. The results reveal two large linear meltwater systems, which hold 63 % of the peak total surface meltwater volume on 26 January 2017. These meltwater systems migrate towards the ice shelf front as the melt season progresses.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Alanna V. Alevropoulos-Borrill, Isabel J. Nias, Antony J. Payne, Nicholas R. Golledge, and Rory J. Bingham
The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020, https://doi.org/10.5194/tc-14-1245-2020, 2020
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Dominic A. Hodgson, Tom A. Jordan, Jan De Rydt, Peter T. Fretwell, Samuel A. Seddon, David Becker, Kelly A. Hogan, Andrew M. Smith, and David G. Vaughan
The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, https://doi.org/10.5194/tc-13-545-2019, 2019
Short summary
Short summary
The Brunt Ice Shelf in Antarctica is home to Halley VIa, the latest in a series of six British research stations that have occupied the ice shelf since 1956. A recent rapid growth of rifts in the Brunt Ice Shelf signals the onset of its largest calving event since records began. Here we consider whether this calving event will lead to a new steady state for the ice shelf or an unpinning from the bed, which could predispose it to accelerated flow or collapse.
Daniel P. Lowry, Nicholas R. Golledge, Laurie Menviel, and Nancy A. N. Bertler
Clim. Past, 15, 189–215, https://doi.org/10.5194/cp-15-189-2019, https://doi.org/10.5194/cp-15-189-2019, 2019
Short summary
Short summary
Using two climate models, we seek to better understand changes in Antarctic climate and Southern Ocean conditions during the last deglaciation. We highlight the importance of sea ice and ice topography changes for Antarctic surface temperatures and snow accumulation as well as the sensitivity of Southern Ocean temperatures to meltwater fluxes. The results demonstrate that climate model simulations of the deglaciation could be greatly improved by considering ice–ocean interactions and feedbacks.
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Jan Erik Arndt, Robert D. Larter, Peter Friedl, Karsten Gohl, Kathrin Höppner, and the Science Team of Expedition PS104
The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, https://doi.org/10.5194/tc-12-2039-2018, 2018
Short summary
Short summary
The calving line location of the Pine Island Glacier did not show any trend within the last 70 years until calving in 2015 led to unprecedented retreat. In February 2017 we accessed this previously ice-shelf-covered area with RV Polarstern and mapped the sea-floor topography for the first time. Satellite imagery of the last decades show how the newly mapped shoals affected the ice shelf development and highlights that sea-floor topography is an important factor in initiating calving events.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Conrad P. Koziol and Neil Arnold
The Cryosphere, 12, 971–991, https://doi.org/10.5194/tc-12-971-2018, https://doi.org/10.5194/tc-12-971-2018, 2018
Short summary
Short summary
We model the summer acceleration of ice velocities at a land-terminating margin of the Greenland Ice Sheet. Model results compare favourably against GPS data, reflecting positively on the model components and the datasets used. When we run the model into the future, we find that summer velocities increase with increasing levels of surface melt but that changes in annual velocities may be limited.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Conrad P. Koziol and Neil Arnold
The Cryosphere, 11, 2783–2797, https://doi.org/10.5194/tc-11-2783-2017, https://doi.org/10.5194/tc-11-2783-2017, 2017
Short summary
Short summary
We develop a new ice sheet model and couple it to an existing subglacial hydrology model. A workflow for initializing the coupled model at the start of summer is proposed and demonstrated on the Russell Glacier area of Western Greenland. This is a first step towards modelling ice velocities during the summer.
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill
Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017, https://doi.org/10.5194/cp-13-959-2017, 2017
Short summary
Short summary
We investigated how the Antarctic climate and ice sheets evolved during a period of warmer-than-present temperatures 4 million years ago, during a time when the carbon dioxide concentration in the atmosphere was very similar to today's level. Using computer models to first simulate the climate, and then how the ice sheets responded, we found that Antarctica most likely lost around 8.5 m sea-level equivalent ice volume as both East and West Antarctic ice sheets retreated.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber
The Cryosphere, 11, 363–380, https://doi.org/10.5194/tc-11-363-2017, https://doi.org/10.5194/tc-11-363-2017, 2017
Short summary
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.
Evan J. Gowan, Paul Tregoning, Anthony Purcell, James Lea, Oscar J. Fransner, Riko Noormets, and J. A. Dowdeswell
Geosci. Model Dev., 9, 1673–1682, https://doi.org/10.5194/gmd-9-1673-2016, https://doi.org/10.5194/gmd-9-1673-2016, 2016
Short summary
Short summary
We present a program that can create paleo-ice sheet reconstructions, using an assumed basal shear stress, margin location and basal topography as input. This allows for the quick determination of relatively realistic past ice sheet configurations without reliance on highly uncertain factors such as climate and ice dynamics. This is ideal for modelling Earth deformation due to the loading of ice sheets. The subsequent ice sheet configurations can be used as an input for climate modelling.
C. L. Fyffe, B. W. Brock, M. P. Kirkbride, D. W. F. Mair, N. S. Arnold, C. Smiraglia, G. Diolaiuti, and F. Diotri
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5373-2015, https://doi.org/10.5194/tcd-9-5373-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Dye-tracing of a debris-covered glacier revealed that its hydrological system was not similar to that of a debris-free glacier. Beneath the thick debris covering the lower glacier the drainage system was mainly inefficient, probably due lower sub-debris melt rates causing a lack of the large inputs required to open efficient channels. However, efficient channels opened by the large melt inputs from the debris-free areas did route water from the moulins above the thick debris.
C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas
The Cryosphere, 9, 613–629, https://doi.org/10.5194/tc-9-613-2015, https://doi.org/10.5194/tc-9-613-2015, 2015
N. S. Arnold, A. F. Banwell, and I. C. Willis
The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, https://doi.org/10.5194/tc-8-1149-2014, 2014
O. J. Marsh, W. Rack, D. Floricioiu, N. R. Golledge, and W. Lawson
The Cryosphere, 7, 1375–1384, https://doi.org/10.5194/tc-7-1375-2013, https://doi.org/10.5194/tc-7-1375-2013, 2013
J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage
The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, https://doi.org/10.5194/tc-7-499-2013, 2013
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Antarctic
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Melt sensitivity of irreversible retreat of Pine Island Glacier
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
The long-term sea-level commitment from Antarctica
The influence of present-day regional surface mass balance uncertainties on the future evolution of the Antarctic Ice Sheet
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model
The effect of ice shelf rheology on shelf edge bending
Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
A physics-based Antarctic melt detection technique: combining Advanced Microwave Scanning Radiometer 2, radiative-transfer modeling, and firn modeling
Brief communication: Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland
Widespread increase in discharge from west Antarctic Peninsula glaciers since 2018
Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Detecting Holocene retreat and readvance in the Amundsen Sea sector of Antarctica: assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith and Kohler region of West Antarctica
A history-matching analysis of the Antarctic Ice Sheet since the last interglacial – Part 1: Ice sheet evolution
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Geometric amplification and suppression of ice-shelf basal melt in West Antarctica
Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
The staggered retreat of grounded ice in the Ross Sea, Antarctica, since the Last Glacial Maximum (LGM)
The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
ISMIP6-based Antarctic Projections to 2100: simulations with the BISICLES ice sheet model
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Evaluation of four calving laws for Antarctic ice shelves
Oceanic gateways in Antarctica – Impact of relative sea-level change on sub-shelf melt
Englacial architecture of Lambert Glacier, East Antarctica
Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
The evolution of future Antarctic surface melt using PISM-dEBM-simple
Characteristics and rarity of the strong 1940s westerly wind event over the Amundsen Sea, West Antarctica
Sensitivity of the MAR regional climate model snowpack to the parameterization of the assimilation of satellite-derived wet-snow masks on the Antarctic Peninsula
Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica
Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry
Evaluating the impact of enhanced horizontal resolution over the Antarctic domain using a variable-resolution Earth system model
Statistically parameterizing and evaluating a positive degree-day model to estimate surface melt in Antarctica from 1979 to 2022
Widespread slowdown in thinning rates of West Antarctic ice shelves
Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations
Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?
Cosmogenic-nuclide data from Antarctic nunataks can constrain past ice sheet instabilities
Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM)
High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector
Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024, https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Short summary
We introduce a new fast model for water flow beneath the ice sheet capable of handling various hydrological and bed conditions in a unified way. Applying this model to Thwaites Glacier, we show that accounting for this water flow in ice sheet model projections has the potential to greatly increase the contribution to future sea level rise. We also demonstrate that the sensitivity of the ice sheet in response to external changes depends on the efficiency of the drainage and the bed type.
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024, https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
Short summary
We constructed a box model to evaluate the isotope effects of atmosphere–snow water vapor exchange at Dome A, Antarctica. The results show clear and invisible diurnal changes in surface snow isotopes under summer and winter conditions, respectively. The model also predicts that the annual net effects of atmosphere–snow water vapor exchange would be overall enrichments in snow isotopes since the effects in summer appear to be greater than those in winter at the study site.
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024, https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary
Short summary
We systematically assess the long-term sea-level response from Antarctica to warming projected over the next centuries, using two ice-sheet models. We show that this committed Antarctic sea-level contribution is substantially higher than the transient sea-level change projected for the coming decades. A low-emission scenario already poses considerable risk of multi-meter sea-level increase over the next millennia, while additional East Antarctic ice loss unfolds under the high-emission pathway.
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024, https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
Short summary
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Torsten Albrecht, Meike Bagge, and Volker Klemann
The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, https://doi.org/10.5194/tc-18-4233-2024, 2024
Short summary
Short summary
We performed coupled ice sheet–solid Earth simulations and discovered a positive (forebulge) feedback mechanism for advancing grounding lines, supporting a larger West Antarctic Ice Sheet during the Last Glacial Maximum. During deglaciation we found that the stabilizing glacial isostatic adjustment feedback dominates grounding-line retreat in the Ross Sea, with a weak Earth structure. This may have consequences for present and future ice sheet stability and potential rates of sea-level rise.
W. Roger Buck
The Cryosphere, 18, 4165–4176, https://doi.org/10.5194/tc-18-4165-2024, https://doi.org/10.5194/tc-18-4165-2024, 2024
Short summary
Short summary
Standard theory predicts that the edge of an ice shelf should bend downward. Satellite observations show that the edges of many ice shelves bend upward. A new theory for ice shelf bending is developed that, for the first time, includes the kind of vertical variations in ice flow properties expected for ice shelves. Upward bending of shelf edges is predicted as long as the ice surface is very cold and the ice flow properties depend strongly on temperature.
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Christoph Welling and The RNO-G Collaboration
The Cryosphere, 18, 3433–3437, https://doi.org/10.5194/tc-18-3433-2024, https://doi.org/10.5194/tc-18-3433-2024, 2024
Short summary
Short summary
We report on the measurement of the index of refraction in glacial ice at radio frequencies. We show that radio echoes from within the ice can be associated with specific features of the ice conductivity and use this to determine the wave velocity. This measurement is especially relevant for the Radio Neutrino Observatory Greenland (RNO-G), a neutrino detection experiment currently under construction at Summit Station, Greenland.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024, https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Short summary
The recent calving of Astrolabe Glacier in November 2021 presents an opportunity to better understand the processes leading to ice fracturing. Optical-satellite imagery is used to retrieve the calving cycle of the glacier ice tongue and to measure the ice velocity and strain rates in order to document fracture evolution. We observed that the presence of sea ice for consecutive years has favoured the glacier extension but failed to inhibit the growth of fractures that accelerated in June 2021.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1452, https://doi.org/10.5194/egusphere-2024-1452, 2024
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples and ground-penetrating radar from subglacial ridges) to assess the suitability for drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak.
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024, https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Short summary
Recent efforts have focused on using AI and satellite imagery to track crevasses for assessing ice shelf damage and informing ice flow models. Our study reveals a weak connection between these observed products and damage maps inferred from ice flow models. While there is some improvement in crevasse-dense regions, this association remains limited. Directly mapping ice damage from satellite observations may not significantly improve the representation of these processes within ice flow models.
Heather Louise Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
EGUsphere, https://doi.org/10.5194/egusphere-2024-1442, https://doi.org/10.5194/egusphere-2024-1442, 2024
Short summary
Short summary
We used satellite observations to measure recent changes in ice speed and flow direction in the Pope, Smith and Kohler Region of West Antarctica (2005–2022). We found substantial speed up on seven ice streams of up to 87 %. However, Kohler West Glacier has slowed by 10%, due to the redirection of ice flow into its rapidly thinning neighbour. This process of ‘ice piracy’ hasn’t previously been directly observed on this rapid timescale and may influence future ice shelf and sheet mass changes.
Benoit S. Lecavalier and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1291, https://doi.org/10.5194/egusphere-2024-1291, 2024
Short summary
Short summary
We present the evolution of the Antarctic Ice Sheet (AIS) over the last 200 ka by means of a history-matching analysis where an updated observational database constrained ~10,000 model simulations. During peak glaciation at the Last Glacial Maximum (LGM), the best-fitting sub-ensemble of AIS simulations reached an excess grounded ice volume relative to present of 9.2 to 26.5 meters equivalent sea-level relative to present. The LGM AIS volume can help resolve the LGM missing ice problem.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024, https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024, https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Short summary
We use the ice surface expression of the Gamburtsev Subglacial Mountains in East Antarctica to map the horizontal pattern of valleys and ridges in finer detail than possible from previous methods. In upland areas, valleys are spaced much less than 5 km apart, with consequences for the distribution of melting at the bed and hence the likelihood of ancient ice being preserved. Automated mapping techniques were tested alongside manual approaches, with a hybrid approach recommended for future work.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
Matthew A. Danielson and Philip J. Bart
The Cryosphere, 18, 1125–1138, https://doi.org/10.5194/tc-18-1125-2024, https://doi.org/10.5194/tc-18-1125-2024, 2024
Short summary
Short summary
The post-Last Glacial Maximum (LGM) retreat of the West Antarctic Ice Sheet in the Ross Sea was more significant than for any other Antarctic sector. Here we combined the available dates of retreat with new mapping of sediment deposited by the ice sheet during overall retreat. Our work shows that the post-LGM retreat through the Ross Sea was not uniform. This uneven retreat can cause instability in the present-day Antarctic ice sheet configuration and lead to future runaway retreat.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Helene L. Seroussi, Sophie Nowicki, and Mira Adhikari
EGUsphere, https://doi.org/10.5194/egusphere-2024-441, https://doi.org/10.5194/egusphere-2024-441, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Antarctic contribution to sea level over the 21st century, under a range of future climates, varying how sensitive the ice sheet is to different processes. We find that, under stronger warming scenarios, ocean temperatures increases and more snow falls on the ice sheet. When the ice sheet is sensitive to ocean warming, ocean melting driven loss exceeds snowfall driven gains, so that the sea level contribution is greater with more climate warming.
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024, https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Short summary
A total of 937 seawater paired oxygen isotope (δ18O)–salinity samples collected during seven cruises on the SE Amundsen Sea between 1994 and 2020 reveal a deep freshwater source with δ18O − 29.4±1.0‰, consistent with the signature of local ice shelf melt. Local mean meteoric water content – comprised primarily of glacial meltwater – increased between 1994 and 2020 but exhibited greater interannual variability than increasing trend.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Short summary
We present new projections of the evolution of the Antarctic ice sheet until the end of the millennium, calibrated with observations. We show that the ocean will be the main trigger of future ice loss. As temperatures continue to rise, the atmosphere's role may shift from mitigating to amplifying Antarctic mass loss already by the end of the century. For high-emission scenarios, this may lead to substantial sea-level rise. Adopting sustainable practices would however reduce the rate of ice loss.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2737, https://doi.org/10.5194/egusphere-2023-2737, 2023
Short summary
Short summary
The study investigates how changing sea levels around Antarctica can potentially affect the floating ice shelves. It utilizes numerical models for both the Antarctic Ice Sheet and the solid Earth, investigating features like troughs and sills that control the flow of ocean water onto the continental shelf. The research finds that variations in sea level alone can significantly impact the melting rates of ice shelves.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 17, 4571–4599, https://doi.org/10.5194/tc-17-4571-2023, https://doi.org/10.5194/tc-17-4571-2023, 2023
Short summary
Short summary
We adopt the novel surface module dEBM-simple in the Parallel Ice Sheet Model (PISM) to investigate the impact of atmospheric warming on Antarctic surface melt and long-term ice sheet dynamics. As an enhancement compared to traditional temperature-based melt schemes, the module accounts for changes in ice surface albedo and thus the melt–albedo feedback. Our results underscore the critical role of ice–atmosphere feedbacks in the future sea-level contribution of Antarctica on long timescales.
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023, https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Short summary
Glaciers in West Antarctica are rapidly melting, but the causes are unknown due to limited observations. A leading hypothesis is that an unusually large wind event in the 1940s initiated the ocean-driven melting. Using proxy reconstructions (e.g., using ice cores) and climate model simulations, we find that wind events similar to the 1940s event are relatively common on millennial timescales, implying that ocean variability or climate trends are also necessary to explain the start of ice loss.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere, 17, 4079–4101, https://doi.org/10.5194/tc-17-4079-2023, https://doi.org/10.5194/tc-17-4079-2023, 2023
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector
The Cryosphere, 17, 1623–1643, https://doi.org/10.5194/tc-17-1623-2023, https://doi.org/10.5194/tc-17-1623-2023, 2023
Short summary
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere, 17, 1513–1543, https://doi.org/10.5194/tc-17-1513-2023, https://doi.org/10.5194/tc-17-1513-2023, 2023
Short summary
Short summary
Contributions to future sea level from the Antarctic Ice Sheet remain poorly constrained. One reason is that ice sheet model initialization methods can have significant impacts on how the ice sheet responds to future forcings. We investigate the impacts of two key parameters used during model initialization. We find that these parameter choices alone can impact multi-century sea level rise by up to 2 m, emphasizing the need to carefully consider these choices for sea level rise predictions.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Cited articles
Abdalati, W. and Steffen, K.: Greenland ice sheet melt extent: 1979–1999,
J. Geophys. Res., 106, 33983–33988,
https://doi.org/10.1029/2001JD900181, 2001.
Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., and Kievit, R. A.:
Raincloud plots: a multi-platform tool for robust data
visualization, Wellcome Open Res., 4, 63, https://doi.org/10.12688/wellcomeopenres.15191.1, 2019.
Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S.: Deformation of till beneath ice stream B, West Antarctica, Nature, 322, 57–59,
https://doi.org/10.1038/322057a0, 1986.
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E., and Larson, G. J.: How glaciers entrain and transport basal sediment: physical constraints, Quaternary Sci. Rev., 16, 1017–1038,
https://doi.org/10.1016/S0277-3791(97)00034-6, 1997.
Alley, R. B., Dupont, T. K., Parizek, B. R., Anandakrishnan, S., Lawson, D. E., Larson, G. J., and Evenson, E. B.: Outburst flooding and the initiation of ice-stream surges in response to climatic cooling: A hypothesis, Geomorphology, 75, 76–89, https://doi.org/10.1016/j.geomorph.2004.01.011, 2006.
Anderson, J. B. and Oakes-Fretwell, L.: Geomorphology of the onset area of a
paleo-ice stream, Marguerite Bay, Antarctic Peninsula, Earth Surf.
Proc. Land., 33, 503–512, https://doi.org/10.1002/esp.1662, 2008.
Andrews, J. T., Milliman, J. D., Jennings, A. E., Rynes, N., and Dwyer, J.:
Sediment thicknesses and Holocene glacial marine sedimentation rates in
three East Greenland fjords (ca. 68∘ N), J. Geol., 102,
669–683, https://doi.org/10.1086/629711, 1994.
Arnold, N.: A new approach for dealing with depressions in digital elevation
models when calculating flow accumulation values, Prog. Phys. Geog., 34, 781–809, https://doi.org/10.1177/0309133310384542, 2010.
Atkins, C. B. and Dickinson, W. W.: Landscape modification by meltwater
channels at margins of cold-based glaciers, Dry Valleys, Antarctica, Boreas,
36, 47–55, https://doi.org/10.1080/03009480600827306, 2007.
Bamber, J. L., Siegert, M. J., Griggs, J. A., Marshall, S. J., and Spada, G.:
Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet, Science,
341, 997–999, https://doi.org/10.1126/science.1239794, 2013.
Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., can den Broeke, M. R., and Hosking, J. S.: Trends in Antarctica Peninsula
surface melting conditions from observations and regional climate modelling,
J. Geophys. Res.-Earth, 118, 315–330,
https://doi.org/10.1029/2012JF002559, 2013.
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M. A.:
Short-term variability in Greenland Ice Sheet motion forced by
time-varying meltwater drainage: Implications for the relationship between
subglacial drainage system behavior and ice velocity, J. Geophys. Res., 117, F03002, https://doi.org/10.1029/2011JF002220, 2012.
Batchelor, C. L., Dowdeswell, J. A., and Rignot, E.: Submarine landforms reveal varying rates and styles of deglaciation in North-West Greenland fjords, Mar. Geol., 402, 60–80, https://doi.org/10.1016/j.margeo.2017.08.003,
2018.
Beaud, F., Venditti, J. G., Flowers, G. E., and Koppes, M.: Excavation of
subglacial bedrock channels by seasonal meltwater flow, Earth Surf.
Proc. Land., 43, 1960–1972, https://doi.org/10.1002/esp.4367,
2018.
Bell, R. E.: The role of subglacial water in ice-sheet mass balance, Nat.
Geosci., 1, 297–304, https://doi.org/10.1038/ngeo186, 2008.
Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A., and Joughin, I.: Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams, Nature, 445, 904–907, https://doi.org/10.1038/nature05554, 2007.
Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J.,
Zappa, C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.: Antarctic ice shelf potentially stabilized by export of meltwater in surface
river, Nature, 544, 344–348, https://doi.org/10.1038/nature22048, 2017.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Bjarnadóttir, L. R., Winsborrow, M. C. M., and Andreassen, K.: Large
subglacial meltwater features in the central Barents Sea, Geology, 45,
159–162, https://doi.org/10.1130/G38195.1, 2017.
Björnsson, H.: Jökulhlaups in Iceland: prediction, characteristics
and simulation, Ann. Glaciol., 16, 95–106,
https://doi.org/10.3189/1992AoG16-1-95-106, 1992.
Björnsson, H.: Subglacial lakes and jökulhlaups in Iceland, Global
Planet. Change, 35, 255–271,
https://doi.org/10.1016/S0921-8181(02)00130-3, 2002.
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Seismic
measurements reveal a saturated porous layer beneath an active Antarctic ice
stream, Nature, 322, 54–57, https://doi.org/10.1038/322054a0, 1986.
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Till beneath Ice Stream B: 1. Properties derived from seismic travel times, J. Geophys. Res., 92, 8903–8911, https://doi.org/10.1029/JB092iB09p08903, 1987.
Blankenship, D. D., Bell, R. E., Hodge, S. M., Brozena, J. M., Behrendt, J.
C., and Finn, C. A.: Active volcanism beneath the West Antarctic ice sheet
and implications for ice-sheet stability, Nature, 361, 526–529,
https://doi.org/10.1038/361526a0, 1993.
Bougamont, M., Christoffersen, P., Nias, I., Vaughan, D. G., Smith, A. M., and Brisbourne, A.: Contrasting hydrological controls on bed properties during the acceleration of Pine Island Glacier, West Antarctica, J.
Geophys. Res.-Earth, 124, 80–96, https://doi.org/10.1029/2018JF004707, 2018.
Brennand, T. A. and Shaw, J.: Tunnel channels and associated landforms,
south-central Ontario: their implications for ice-sheet
hydrology, Can. J. Earth Sci., 31, 505–522, https://doi.org/10.1139/e94-045, 1994.
Bretz, J. H.: The channeled scablands of the Columbia Plateau, J.
Geol., 31, 617–649, https://doi.org/10.1086/623053, 1923.
Bretz, J. H.: The Lake Missoula floods and the channeled scabland,
J. Geol., 77, 505–543, https://doi.org/10.1086/627452, 1969.
Carlson, A. E., LeGrande, A. N., Oppo, D. W., Came, R. E., Schmidt, G. A.,
Anslow, F. S., Licciardi, J. M., and Obbink, E. A.: Rapid early Holocene
deglaciation of the Laurentide ice sheet, Nat. Geosci., 1, 620–624,
https://doi.org/10.1038/ngeo285, 2008.
Carter, S. P., Blankenship, D. D., Young, D. A., Peters, M. E., Holt, J. W., and Siegert, M. J.: Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial lake discharge, Earth Planet. Sc. Lett., 283, 24–37, https://doi.org/10.1016/j.epsl.2009.03.019, 2009.
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains, The Cryosphere, 11, 381–405, https://doi.org/10.5194/tc-11-381-2017, 2017.
Cook, C. P., Van De Flierdt, T., Williams, T., et al.:
Dynamic behaviour of the East Antarctic
ice sheet during Pliocene warmth, Nat. Geosci., 6, 765–769,
https://doi.org/10.1038/ngeo1889, 2013.
Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint
propagation, Earth Surf. Proc. Land., 38, 683–695,
https://doi.org/10.1002/esp.3313, 2013.
Cooper, M. A., Michaelides, K., Siegert, M. J., and Bamber, J. L.:
Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment,
Greenland, Geophys. Res. Lett., 43, 6350–6357,
doi:10.1002/2016GL069458, 2016.
Corr, H. F. and Vaughan, D. G.: A recent volcanic eruption beneath the West
Antarctic ice sheet, Nat. Geosci., 1, 122–125,
https://doi.org/10.1038/ngeo106, 2008.
Cowton, T., Nienow, P., Bartholomew, I., Sole, A., and Mair, D.: Rapid
erosion beneath the Greenland ice sheet, Geology, 40, 343–346,
https://doi.org/10.1130/G32687.1, 2012.
Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde, D.,
and Bhatia, M. P.: Fracture propagation to the base of the Greenland Ice
Sheet during supraglacial lake drainage, Science, 320, 778–781,
https://doi.org/10.1126/science.1153360, 2008.
Davies, J. H.: Global map of solid Earth surface heat floow, Geochem.
Geophy. Geosy., 14, 4608–4622, https://doi.org/10.1002/ggge.20271,
2013.
DeConto, R. M. and Pollard, D.: A coupled climate–ice sheet modeling
approach to the early Cenozoic history of the Antarctic ice
sheet, Palaeogeogr. Palaeocl., 198, 39–52,
https://doi.org/10.1016/S0031-0182(03)00393-6, 2003.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597,
https://doi.org/10.1038/nature17145, 2016.
Denton, G. H. and Sugden, D. E.: Meltwater features that suggest Miocene
ice-sheet overriding of the Transantarctic Mountains in Victoria Land,
Antarctica, Geogr. Ann. A, 87, 67–85,
https://doi.org/10.1111/j.0435-3676.2005.00245.x, 2005.
Denton, G. H., Prentice, M. L., Kellogg, D. E., and Kellogg, T. B.: Late Tertiary
history of the Antarctic ice sheet: Evidence from the Dry
Valleys, Geology, 12, 263–267,
https://doi.org/10.1130/0091-7613(1984)12<263:LTHOTA>2.0.CO;2, 1984.
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., and Wilch, T. I.: East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective, Geogr. Ann. A, 75, 155–204, https://doi.org/10.1080/04353676.1993.11880393, 1993.
Domack, E., Amblàs, D., Gilbert, R., Brachfeld, S., Camerlenghi, A.,
Rebesco, M., Canals, M., and Urgeles, R.: Subglacial morphology and glacial
evolution of the Palmer deep outlet system, Antarctic
Peninsula, Geomorphology, 75, 125–142,
https://doi.org/10.1016/j.geomorph.2004.06.013, 2006.
Dow, C. F., Werder, M. A., Babonis, G., Nowicki, S., Walker, R. T., Csatho,
B., and Morlighem, M.: Dynamics of active subglacial lakes in Recovery Ice
Stream, J. Geophys. Res.-Earth, 123, 837–850.
https://doi.org/10.1002/2017JF004409, 2018.
Dowdeswell, J. A., Evans, J., and Ó Cofaigh, C.: Submarine landforms and
shallow acoustic stratigraphy of a 400 km-long fjord-shelf-slope transect,
Kangerlussuaq margin, East Greenland, Quaternary Sci. Rev., 29,
3359–3369, https://doi.org/10.1016/j.quascirev.2010.06.006, 2010.
Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K.,
and Hogan, K. A.: The variety and distribution of submarine glacial landforms
and implications for ice-sheet reconstruction, in: Atlas of Submarine Glacial landforms: Modern, Quaternary and Ancient, edited by: Dowdeswell, J. A.,
Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Geological Society, London, Memoirs, 46, 519–552,
https://doi.org/10.1144/M46.183, 2016.
Dowsett, H. J.: The PRISM palaeoclimate reconstruction and Pliocene
sea-surface temperature, in: Deep-Time Perspectives on Climate Change:
Marrying the Signal from Computer Models and Biological Proxies,
edited by: Williams, M., Haywood, A. M., Gregory, F. J., and
Schmidt, D. N., Geological
Society of London, Micropalaeontological Society Special Publication,
459–480, 2007.
Elsworth, C. W. and Suckale, J.: Rapid ice flow rearrangement induced by
subglacial drainage in West Antarctica, Geophys. Res. Lett., 43,
11697–11707, https://doi.org/10.1002/2016GL070430, 2016.
Engelhardt, H., Humphrey, N., Kamb, B., and Fahnestock, M.: Physical
conditions at the base of a fast moving Antarctic ice stream, Science,
248, 57–59, https://doi.org/10.1126/science.248.4951.57, 1990.
Escutia, C., Bárcena, M. A., Lucchi, R. G., Romero, O., Ballegeer, A. M.,
Gonzalez, J. J., and Harwood, D. M.: Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins, Global Planet.
Change, 69, 170–184, https://doi.org/10.1016/j.gloplacha.2009.09.003, 2009.
Evatt, G. W., Fowler, A. C., Clark, C. D., and Hulton, N. R. J.: Subglacial floods beneath ice sheets, Philos. T. Roy. Soc. A, 364, 1769–1794, https://doi.org/10.1098/rsta.2006.1798, 2006.
Feldmann, J. and Levermann, A.: Collapse of the West Antarctic Ice Sheet
after local destabilization of the Amundsen Basin, P.
Natl. Acad. Sci USA, 112, 14191–14196, https://doi.org/10.1073/pnas.1512482112, 2015.
Flament, T., Berthier, E., and Rémy, F.: Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models, The Cryosphere, 8, 673–687, https://doi.org/10.5194/tc-8-673-2014, 2014.
Flowers, G. E.: Modelling water flow under glaciers and ice
sheets, P. R. Soc. A, 471, 20140907, https://doi.org/10.1098/rspa.2014.0907, 2015.
Fogwill, C. J., Turney, C. S., Meissner, K. J., Golledge, N. R., Spence, P.,
Roberts, J. L., England, M. H., Jones, R. T., and Carter, L.: Testing the
sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past
changes and future implications, J. Quaternary Sci., 29,
91–98, https://doi.org/10.1002/jqs.2683, 2014.
Fowler, A. C.: Dynamics of subglacial floods, P. Roy. Soc. Lond. A Mat., 465, 1809–1828, https://doi.org/10.1098/rspa.2008.0488, 2009.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fricker, H. A. and Scambos, T.: Connected subglacial lake activity on lower
Mercer and Whillans ice streams, West Antarctica, 2003–2008, J. Glaciol., 55, 303–315, https://doi.org/10.3189/002214309788608813,
2009.
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An active
subglacial water system in West Antarctica mapped from space, Science, 315, 1544–1548, https://doi.org/10.1126/science.1136897, 2007.
Fricker, H. A., Carter, S. P., Bell, R. E., and Scambos, T.: Active lakes of
Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial
hydrological system, J. Glaciol., 60, 1015–1030,
https://doi.org/10.3189/2014JoG14J063, 2014.
Fricker, H. A., Siegfried, M. R., Carter, S. P., and Scambos, T. A.: A decade of
progress in observing and modelling Antarctic subglacial water systems,
Philos. T. Roy. Soc. A, 374, 20140294,
https://doi.org/10.1098/rsta.2014.0294, 2016.
Gales, J. A., Larter, R. D., Mitchell, N. C., and Dowdeswell, J. A.: Geomorphic
signature of Antarctic submarine gullies: implications for continental slope
processes, Mar. Geol., 337, 112–124,
https://doi.org/10.1016/j.margeo.2013.02.003, 2013.
Gohl, K., Denk, A., Eagles, G., and Wobbe, F.: Deciphering tectonic phases of
the Amundsen Sea Embayment shelf, West Antarctica, from a magnetic anomaly
grid, Tectonophysics, 585, 113–123, https://doi.org/10.1016/j.tecto.2012.06.036, 2013.
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.: Dynamics
of the last glacial maximum Antarctic ice-sheet and its response to ocean
forcing, P. Natl. Acad. Sci. USA, 109, 16052–16056, https://doi.org/10.1073/pnas.1205385109, 2012.
Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A., Graham, A. G., Smith, J. A., Hillenbrand, C. D., Licht, K. J., Denton, G. H., and Ackert, R. P.: Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet, Quaternary Sci. Rev., 78, 225–247,
https://doi.org/10.1016/j.quascirev.2013.08.011, 2013.
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H.,
Cortese, G., and Levy, R. H.: Antarctic contribution to meltwater pulse 1A
from reduced Southern Ocean overturning, Nat. Commun., 5, 5107,
https://doi.org/10.1038/ncomms6107, 2014.
Graham, A. G. C., Larter, R. D., Gohl, K., Hillenbrand, C.-D., Smith, J. A.,
and Kuhn, G.: Bed form signature of a West Antarctic ice stream reveals a
multitemporal record of flow and substrate control, Quaternary Sci.
Rev., 28, 2774–2793, https://doi.org/10.1016/j.quascirev.2009.07.003,
2009.
Graham, A. G., Larter, R. D., Gohl, K., Dowdeswell, J. A., Hillenbrand, C. D.,
Smith, J. A., Evans, J., Kuhn, G., and Deen, T.: Flow and retreat of the Late
Quaternary Pine Island-Thwaites palaeo-ice stream, West Antarctica, J. Geophys. Res., 115, F03025,
https://doi.org/10.1029/2009JF001482, 2010.
Gray, L., Joughin, I., Tulaczyk, S., Spikes, V. B., Bindschadler, R., and
Jezek, K.: Evidence for subglacial water transport in the West Antarctic Ice
Sheet through three-dimensional satellite radar interferometry, Geophys. Res. Lett., 32, L03501, https://doi.org/10.1029/2004GL021387, 2005.
Greenwood, S. L., Clason, C. C., and Jakobsson, M.: Ice-flow and meltwater
landform assemblages in the Gulf of Bothnia, in: Atlas of Submarine Glacial landforms: Modern, Quaternary and
Ancient, edited by: Dowdeswell, J. A., Canals,
M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A.,
Geological Society, London, Memoirs, 46, 321–324,
https://doi.org/10.1144/M46.163, 2016.
Greenwood, S. L., Clason, C. C., Nyberg, J., Jakobsson, M., and Holmlund, P.:
The Bothnian Sea ice stream: early Holocene retreat dynamics of the
south-central Fennoscandian Ice Sheet, Boreas, 46, 346-362,
https://doi.org/10.1111/bor.12217, 2017.
Gupta, S., Collier, J. S., Palmer-Felgate, A., and Potter, G.: Catastrophic,
flooding origin of shelf valley systems in the English
Channel, Nature, 448, 342–345, https://doi.org/10.1038/nature06018,
2007.
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C.,
Irvine-Fynn, T., Wise, S., and Griffiths, M.: Increased runoff from melt from
the Greenland Ice Sheet: a response to global warming, J. Climate, 21, 331–341, https://doi.org/10.1175/2007JCLI1964.1, 2008.
Holtedahl, O.: Notes on the formation of fjords and fjord valleys,
Geogr. Ann., 49A, 199–203,
https://doi.org/10.1080/04353676.1967.11879749, 1967.
Humbert, A., Steinhage, D., Helm, V., Beyer, S., and Kleiner, T.: Missing
evidence of widespread subglacial lakes at Recovery Glacier,
Antarctica, J. Geophys. Res.-Earth, 123, 2802–2826,
https://doi.org/10.1029/2017JF004591, 2018.
Ives, J. D.: Glacial drainage channels as indicators of lateglacial
conditions in Labrador-Ungava: a discussion, Cahiers de Géographie
Quebec, 5, 57–72, https://doi.org/10.7202/020113ar, 1958.
Jansen, J. D., Codilean, A. T., Stroeven, A. P., Fabel, D., Hättestrand,
C., Kleman, J., Harbor, J. M., Heyman, J., Kubik, P. W., and Xu, S.: Inner
gorges cut by subglacial meltwater during Fennoscandian ice sheet
decay, Nat. Commun., 5, 3815, https://doi.org/10.1038/ncomms4815,
2014.
Jordan, T. A., Ferraccioli, F., Corr, H., Graham, A., Armadillo, E., and
Bozzo, E.: Hypothesis for mega-outburst flooding from a palaeo-subglacial
lake beneath the East Antarctic Ice Sheet, Terra Nova, 22, 283–289,
https://doi.org/10.1111/j.1365-3121.2010.00944.x, 2010.
Joughin, I., Tulaczyk, S., Bindschadler, R., and Price, S. F.: Changes in West Antarctic ice stream velocities: observation and analysis, J. Geophys. Res., 107, 2289, https://doi.org/10.1029/2001JB001029, 2002.
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W.,
Scambos, T., and Vaughan, D. G.: Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne
data, J. Glaciol., 55, 245–257,
https://doi.org/10.3189/002214309788608705, 2009.
Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse
potentially under way for the Thwaites Glacier Basin, West
Antarctica, Science, 344, 735–738,
https://doi.org/10.1126/science.1249055, 2014.
Kamb, B.: Basal zone of the West Antarctic ice streams and its role
in lubrication of their rapid motion, in:
The West Antarctic ice sheet: behavior and environment
edited by: Alley, R. B. and Bindschadler, R. A., American
Geophysical Union, 157–199, https://doi.org/10.1029/AR077p0157, 2001.
Kipf, A., Mortimer, N., Werner, R., Gohl, K., Van Den Bogaard, P., Hauff, F.,
and Hoernle, K.: Granitoids and dykes of the Pine Island Bay region, West
Antarctica, Antarct. Sci., 24, 473–484,
https://doi.org/10.1017/S0954102012000259, 2012.
King, J. C. and Turner, J.: Antarctic meteorology and climatology, Cambridge
University Press, Cambridge, UK, 2007.
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of
meltwater onto and across Antarctic ice shelves, Nature, 544, 349–352,
https://doi.org/10.1038/nature22049, 2017.
Kor, P. S. G., Shaw, J., and Sharpe, D. R.: Erosion of bedrock by subglacial
meltwater, Georgian Bay, Ontario: a regional view, Can. J. Earth Sci., 28, 623–642,
https://doi.org/10.1139/e91-054, 1991.
Kuhn, G., Hillenbrand, C. D., Kasten, S., Smith, J. A., Nitsche, F. O.,
Frederichs, T., Wiers, S., Ehrmann, W., Klages, J. P., and Mogollón, J. M.:
Evidence for a palaeo-subglacial lake on the Antarctic continental
shelf, Nat. Commun., 8, 15591, https://doi.org/10.1038/ncomms15591,
2017.
LaMasurier, W.: Shield volcanoes of Marie Byrd Land, West Antarctic rift:
oceanic island similarities, continental signature, and tectonic controls,
B. Volcanol., 75, 726–744,
https://doi.org/10.1007/s00445-013-0726-1, 2013.
Lamb, M. P. and Fonstad, M. A.: Rapid formation of a modern bedrock canyon by
a single flood event, Nat. Geosci., 3, 477–481, https://doi.org/10.1038/ngeo894, 2010.
Larsen, I. J. and Lamb, M. P.: Progressive incision of the Channeled Scablands
by outburst floods, Nature, 538, 229–232, https://doi.org/10.1038/nature19817,
2016.
Larter, R. D., Graham, A. G., Gohl, K., Kuhn, G., Hillenbrand, C. D., Smith,
J. A., Deen, T. J., Livermore, R. A., and Schenke, H. W.: Subglacial bedforms
reveal complex basal regime in a zone of paleo–ice stream convergence,
Amundsen Sea embayment, West Antarctica, Geology, 37, 411–414,
https://doi.org/10.1130/G25505A.1, 2009.
Larter, R. D., Hogan, K. A., Hillenbrand, C.-D., Smith, J. A., Batchelor, C. L., Cartigny, M., Tate, A. J., Kirkham, J. D., Roseby, Z. A., Kuhn, G., Graham, A. G. C., and Dowdeswell, J. A.: Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream, The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, 2019.
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger, S., Helm, V., Smeets, C. J. P. P., Van Den Broeke, M. R., Van De Berg, W. J., Van Meijgaard, E., and Eijkelboom, M.: Meltwater produced by wind–albedo
interaction stored in an East Antarctic ice shelf, Nat. Clim.
Change, 7, 58–62, https://doi.org/10.1038/nclimate3180, 2016.
Lewis, A. R., Marchant, D. R., Kowalewski, D. E., Baldwin, S. L., and Webb, L. E.:
The age and origin of the Labyrinth, western Dry Valleys, Antarctica:
Evidence for extensive middle Miocene subglacial floods and freshwater
discharge to the Southern Ocean, Geology, 34, 513–516,
https://doi.org/10.1130/G22145.1, 2006.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., and Machlus,
M. L.: Major middle Miocene global climate change: Evidence from East
Antarctica and the Transantarctic Mountains, Geol. Soc. Am. Bull., 119, 1449–1461, https://doi.org/10.1130/B26134, 2007.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S. R.,
Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J. I., and
Willenbring, J. K.: Mid-Miocene cooling and the extinction of tundra in
continental Antarctica, P. Natl. Acad. Sci. USA,
105, 10676–10680, https://doi.org/10.1073/pnas.0802501105, 2008.
Lindow, J., Kamp, P. J., Mukasa, S. B., Kleber, M., Lisker, F., Gohl, K.,
Kuhn, G., and Spiegel, C.: Exhumation history along the eastern Amundsen Sea
coast, West Antarctica, revealed by low-temperature
thermochronology, Tectonics, 35, 2239–2257, https://doi.org/10.1002/2016TC004236, 2016.
Livingstone, S. J. and Clark, C. D.: Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation, Earth Surf. Dynam., 4, 567–589, https://doi.org/10.5194/esurf-4-567-2016, 2016.
Livingstone, S. J., Clark, C. D., and Tarasov, L.: Modelling North American
palaeo-subglacial lakes and their meltwater drainage pathways, Earth
Planet. Sc. Lett., 375, 13–33,
https://doi.org/10.1016/j.epsl.2013.04.017, 2013a.
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J.: Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets, The Cryosphere, 7, 1721-1740, https://doi.org/10.5194/tc-7-1721-2013, 2013b.
Livingstone, S. J., Utting, D. J., Ruffell, A., Clark, C. D., Pawley, S.,
Atkinson, N., and Fowler, A. C.: Discovery of relict subglacial lakes and
their geometry and mechanism of drainage, Nat. Commun., 7, 11767,
https://doi.org/10.1038/ncomms11767, 2016.
Livingstone, S. J., Chu, W., Ely, J. C., and Kingslake, J.: Paleofluvial and
subglacial channel networks beneath Humboldt Glacier,
Greenland, Geology, 45, 551–554, https://doi.org/10.1130/G38860.1, 2017.
Loose, B., Naveira Garabato, A. C., Schlosser, P., Jenkins, W. J., Vaughan, D., and Heywood, K. J.: Evidence of an active volcanic heat beneath the Pine
Island Glacier, Nat. Commun., 9, 2431,
https://doi.org/10.1038/s41467-018-04421-3, 2018.
Lowe, A. L. and Anderson, J. B.: Reconstruction of the West Antarctic ice
sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent
retreat history, Quaternary Sci. Rev., 21, 1879–1897,
https://doi.org/10.1016/S0277-3791(02)00006-9, 2002.
Lowe, A. L. and Anderson, J. B.: Evidence for abundant subglacial meltwater
beneath the paleo-ice sheet in Pine Island Bay, Antarctica, J. Glaciol., 49, 125–138, https://doi.org/10.3189/172756503781830971,
2003.
Mannerfelt, C. M.: Några glacialmorfologiska Formelement, Geografiska
Annaler, 27, 1–239, 1945.
Marchant, D. R. and Denton, G. H.: Miocene and Pliocene paleoclimate of the
Dry Valleys region, southern Victoria Land: a geomorphological
approach, Mar. Micropaleontol., 27, 253–271,
https://doi.org/10.1016/0377-8398(95)00065-8, 1996.
Marchant, D. R., Denton, G. H., Sugden, D. E., and Swisher III, C. C.: Miocene
glacial stratigraphy and landscape evolution of the western Asgard Range,
Antarctica, Geogr. Ann. A, 75,
303–330, https://doi.org/10.1080/04353676.1993.11880398, 1993.
Marchant, D. R., Jamieson, S. S., and Sugden, D. E.: The geomorphic signature of massive subglacial floods in Victoria Land, Antarctica, Geophysical
Monograph, 192, 111–126, https://doi.org/10.1029/2010GM000943, 2011.
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D.,
Eagles, G., and Vaughan, D. G.: Heat flux distribution of Antarctica
unveiled, Geophys. Res. Lett., 44, 11417–11426,
https://doi.org/10.1002/2017GL075609, 2017.
Mayer, L. A., Paton, M., Gee, L., Gardner, S. V., and Ware, C.: Interactive 3-D Visualization: A tool for seafloor navigation, exploration and engineering, in: OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, RI, USA, USA, 11–14 September 2000, IEEE, 2, 913–919,
https://doi.org/10.1109/OCEANS.2000.881373, 2000.
Meyer, C. R., Fernandes, M. C., Creyts, T. T., and Rice, J. R.: Effects of ice deformation on Röthlisberger channels and implications for transitions in subglacial hydrology, J. Glaciol., 62, 750–762,
https://doi.org/10.1017/jog.2016.65, 2016.
Millan, R., Rignot, E., Bernier, V., and Morlighem, M.: Bathymetry of the
Amundsen Sea Embayment sector of West Antarctica from operation IceBridge
gravity and other data, Geophys. Res. Lett., 44, 1360–1368,
https://doi.org/10.1002/2016GL072071, 2017.
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., and Sosdian, S.: High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation, Geology, 40, 407–410, https://doi.org/10.1130/G32869.1, 2012.
Morlighem, M., Rignot, E. J., Binder, T., Blankenship, D. D., Drews, R.,
Eagles, G., Eisen, O., Fretwell, P., Helm, V., Hofstede, C. M., Humbert, A.,
Jokat, W., Karlsson, N. A., Lee, W. S., Millan, R., Mouginot, J., Paden, J. D., Rosier, S. H. R., Ruppel, A. S., Seroussi, H. L., Smith, E. C., Steinhage, D., and Young, D. A.: BedMachine Antarctica v1: a new subglacial bed topography and ocean bathymetry dataset of Antarctica combining mass conservation, gravity inversion and streamline diffusion, American Geophysical Union, Fall Meeting 2018, Abstract #C51E-1117, 2018.
Mullins, H. T. and Hinchey, E. J.: Erosion and infill of New York Finger
Lakes: Implications for Laurentide ice sheet deglaciation, Geology, 17, 622–625, https://doi.org/10.1130/0091-7613(1989)017<0622:EAIONY>2.3.CO;2, 1989.
Nitsche, F. O., Gohl, K., Larter, R. D., Hillenbrand, C.-D., Kuhn, G., Smith, J. A., Jacobs, S., Anderson, J. B., and Jakobsson, M.: Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica, The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, 2013.
Noormets, R., Dowdeswell, J. A., Larter, R. D., Ó Cofaigh, C., and Evans,
J.: Morphology of the upper continental slope in the Bellingshausen and
Amundsen Seas–Implications for sedimentary processes at the shelf edge of
West Antarctica, Mar. Geol., 258, 100–114,
https://doi.org/10.1016/j.margeo.2008.11.011, 2009.
Nye, J. F.: Water flow in glaciers: jökulhlaups, tunnels and veins,
J. Glaciol., 17, 181–207, https://doi.org/10.3189/S0022143000001354X, 1976.
Ó Cofaigh, C., Pudsey, C. J., Dowdeswell, J. A., and Morris, P.: Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf, Geophys. Res. Lett., 29, 41-1–41-4,
https://doi.org/10.1029/2001GL014488, 2002.
Ó Cofaigh, C., Dowdeswell, J. A., Evans, J., Kenyon, N. H., Taylor, J., Mienert, J., and Wilken, M.: Timing and significance of glacially influenced mass-wasting in the submarine channels of the Greenland Basin, Marine Geol., 207, 39–54, https://doi.org/10.1016/j.margeo.2004.02.009, 2004.
Ó Cofaigh, C., Dowdeswell, J. A., Allen, C. S., Hiemstra, J. F., Pudsey,
C. J., Evans, J., and Evans, D. J.: Flow dynamics and till genesis associated
with a marine-based Antarctic palaeo-ice stream, Quaternary Sci.
Rev., 24, 709–740, https://doi.org/10.1016/j.quascirev.2004.10.006,
2005.
O'Connor, J. E. and Baker, V. R.: Magnitudes and implications of peak
discharges from glacial Lake Missoula, Geol. Soc. Am. Bull., 104, 267–279, https://doi.org/10.1130/0016-7606(1992)104<0267:MAIOPD>2.3.CO;2, 1992.
Oswald, G. K. A. and Robin, G. D. Q.: Lakes beneath the Antarctic ice sheet,
Nature, 245, 251–254, https://doi.org/10.1038/245251a0, 1973.
Pankhurst, R. J., Millar, I. L., Grunow, A. M., and Storey, B. C.: The
pre-Cenozoic magmatic history of the Thurston Island crustal block, West
Antarctica, J. Geophys. Res., 98,
11835–11849, https://doi.org/10.1029/93JB01157, 1993.
Pattyn, F. and Van Huele, W.: Power law or power flaw?, Earth Surf.
Proc. Land., 23, 761–767,
https://doi.org/10.1002/(SICI)1096-9837(199808)23:8<761::AID-ESP892>3.0.CO;2-K, 1998.
Perol, T., Rice, J. R., Platt, J. D., and Suckale, J.: Subglacial hydrology
and ice stream margin locations, J. Geophys. Res.-Earth, 120, 1352–1368, https://doi.org/10.1002/2015JF003542, 2015.
Peters, N. J., Willis, I. C., and Arnold, N. S.: Numerical analysis of rapid
water transfer beneath Antarctica, J. Glaciol., 55, 640–650,
https://doi.org/10.3189/002214309789470923, 2009.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458,
329–332, https://doi.org/10.1038/nature07809, 2009.
Raymo, M. E., Lisiecki, L. E., and Nisancioglu, K. H.: Plio-Pleistocene ice
volume, Antarctic climate, and the global δ18O record, Science,
313, 492–495, https://doi.org/10.1126/science.1123296, 2006.
Rignot, E., Bamber, J. L., Van Den Broeke, M. R., Davis, C., Li, Y., Van De
Berg, W. J., and Van Meijgaard, E.: Recent Antarctic ice mass loss from radar
interferometry and regional climate modelling, Nat. Geosci., 1,
106–110, https://doi.org/10.1038/ngeo102, 2008.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Roberts, M. J.: Jökulhlaups: a reassessment of floodwater flow through
glaciers, Rev. Geophys., 43, RG1002,
https://doi.org/10.1029/2003RG000147, 2005.
Robin, G. D. Q., Swithinbank, C. W. M., and Smith, B. M. E.: Radio echo exploration of the Antarctic ice sheet, International symposium on Antarctic
glaciological exploration (ISAGE), Hanover, New Hampshire, USA, 3–7 September 1970.
Rose, K. C., Ross, N., Bingham, R. G., Corr, H. F., Ferraccioli, F., Jordan,
T. A., Le Brocq, A. M., Rippin, D. M., and Siegert, M. J.: A temperate former
West Antarctic ice sheet suggested by an extensive zone of subglacial
meltwater channels, Geology, 42, 971–974,
https://doi.org/10.1130/G35980.1, 2014.
Röthlisberger, H.: Water pressure in intra-and subglacial
channels, J. Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188, 1972.
Russell, A. J., Gregory, A. R., Large, A. R. G., Fleisher, P. J., and Harris,
T. D.: Tunnel channel formation during the November 1996 jökulhlaup,
Skeiðarárjökull, Iceland, Ann. Glaciol., 45, 95–103,
https://doi.org/10.3189/172756407782282552, 2007.
Sawagaki, T. and Hirakawa, K.: Erosion of bedrock by subglacial meltwater,
Soya Coast, East Antarctica, Geogr. Ann. A, 79, 223–238, https://doi.org/10.1111/1468-0459.00019, 1997.
Schenk, T., Csathó, B., Ahn, Y., Yoon, T., Shin, S. W.,
and Huh, K. I.: DEM generation from the Antarctic LiDAR data: Site report, US Geol. Surv., 48pp., available at:
http://www.nsm.buffalo.edu/Research/rsl/research/DEM/presentations_papers/dryvalleys_atm_sitereport_v5_04sep.pdf (last access: 9 July 2019), 2004.
Schenke, H. W., Gauger, S., Lemenkova, P., and Feigl, T.: Swath sonar bathymetry during POLARSTERN cruise ANT-XXIII/4 (PS69) with links to multibeam raw data files, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.680792, 2008.
Schoof, C.: Ice-sheet acceleration driven by melt supply
variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water
system transition beneath Thwaites Glacier, West Antarctica, P. Natl. Acad. Sci. USA, 110, 12225–12228,
https://doi.org/10.1073/pnas.1302828110, 2013.
Selby, M. J. and Wilson, A. T.: The origin of the labyrinth, Wright Valley,
Antarctica, Geol. Soc. Am. Bull., 82, 471–476,
https://doi.org/10.1130/0016-7606(1971)82[471:TOOTLW]2.0.CO;2, 1971.
Shackleton, C., Patton, H., Hubbard, A., Winsborrow, M., Kingslake, J.,
Esteves, M., Andreassen, K., and Greenwood, S. L.: Subglacial water storage
and drainage beneath the Fennoscandian and Barents Sea ice sheets,
Quaternary Sci. Rev., 201, 13–28, https://doi.org/10.1016/j.quascirev.2018.10.007, 2018.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., and
Nowicki, S.: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 556, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Shreve, R. L.: Movement of water in glaciers, J. Glaciol., 11,
205–214, https://doi.org/10.1017/S002214300002219X, 1972.
Siegert, M. J., Dowdeswell, J. A., Gorman, M. R., and McIntyre, N. F.: An
inventory of Antarctic sub-glacial lakes, Antarct. Sci., 8, 281–286,
https://doi.org/10.1017/S0954102096000405, 1996.
Siegert, M. J., Hindmarsh, R., Corr, H., Smith, A., Woodward, J., King, E. C., Payne, A. J., and Joughin, I.: Subglacial Lake Ellsworth: A candidate for in situ exploration in West Antarctica, Geophys. Res. Lett., 31, L23403,
https://doi.org/10.1029/2004GL021477, 2004.
Siegert, M. J., Carter, S., Tabacco, I., Popov, S., and Blankenship, D. D.: A
revised inventory of Antarctic subglacial lakes, Antarct. Sci., 17,
453–460, https://doi.org/10.1017/S0954102005002889, 2005.
Siegert, M. J., Ross, N., and Le Brocq, A. M.: Recent advances in understanding
Antarctic subglacial lakes and hydrology, Philos. T. Roy. Soc. A, 374, https://doi.org/10.1098/rsta.2014.0306, 2015.
Siegfried, M. R., Fricker, H. A., Carter, S. P., and Tulaczyk, S.: Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica,
Geophys. Res. Lett., 43, 2640–2648, https://doi.org/10.1002/2016GL067758, 2016.
Simkins, L. M., Anderson, J. B., Greenwood, S. L., Gonnermann, H. M., Prothro, L. O., Halberstadt, A. R. W., Stearns, L. A., Pollard, D., and DeConto, R. M.: Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet, Nat. Geosci., 10, 691–697
https://doi.org/10.1038/ngeo3012, 2017.
Sissons, J. B.: Supposed ice-dammed lakes in Britain, with particular
reference to the Eddleston Valley, southern Scotland, Geografiska Annaler,
40, 159–187, https://doi.org/10.1080/200114422.1958.11880929, 1958.
Smith, B. E., Fricker, H. A., Joughin, I. R., and Tulaczyk, S.: An inventory of
active subglacial lakes in Antarctica detected by ICESat
(2003–2008), J. Glaciol., 55, 573–595,
https://doi.org/10.3189/002214309789470879, 2009.
Smith, B. E., Gourmelen, N., Huth, A., and Joughin, I.: Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica, The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, 2017.
Smith, J. A., Hillenbrand, C.-D., Larter, R. D., Graham, A. G. C., and Kuhn, G.: The sediment infill of subglacial meltwater channels on the West Antarctic continental shelf, Quaternary Res., 71, 190–200,
https://doi.org/10.1016/j.yqres.2008.11.005, 2009.
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat.
Geosci., 1, 827–831, https://doi.org/10.1038/ngeo356, 2008.
Sugden, D. E. and Denton, G. H.: Cenozoic landscape evolution of the Convoy
Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore
synthesis, Geol. Soc. Am. Bull., 116, 840–857,
https://doi.org/10.1130/B25356.1, 2004.
Sugden, D. E., Denton, G. H., and Marchant, D. R.: Subglacial meltwater channel
systems and ice sheet overriding, Asgard Range, Antarctica, Geogr.
Ann. A, 73, 109–121, https://doi.org/10.2307/520986, 1991.
Sugden, D. E., Summerfield, M. A., Denton, G. H., Wilch, T. I., McIntosh, W. C., Marchant, D. R., and Rutford, R. H.: Landscape development in the Royal Society Range, southern Victoria Land, Antarctica: stability since the mid-Miocene, Geomorphology, 28, 181–200.
https://doi.org/10.1016/S0169-555X(98)00108-1, 1999.
Tedesco, M.: Assessment and development of snowmelt retrieval algorithms
over Antarctica from K-band spaceborne brightness temperature
(1979–2008), Remote Sens. Environ., 113, 979–997,
https://doi.org/10.1016/j.rse.2009.01.009, 2009.
Tedesco, M. and Monaghan, A. J.: An updated Antarctic melt record through
2009 and its linkages to high-latitude and tropical climate
variability, Geophys. Res. Lett., 36, L18502,
https://doi.org/10.1029/2009GL039186, 2009.
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and Broeke, M. R.:
Satellite-based estimates of Antarctic surface meltwater fluxes,
Geophys. Res. Lett., 40, 6148–6153, https://doi.org/10.1002/2013GL058138,
2013.
Tulaczyk, S., Kamb, B., and Engelhardt, H. F.: Estimates of effective stress
beneath a modern West Antarctic ice stream from till preconsolidation and
void ratio, Boreas, 30, 101–114,
https://doi.org/10.1111/j.1502-3885.2001.tb01216.x, 2001.
United States Antarctic Resource Centre: LIDAR High-resolution DEM Final DATA Downloads, available at: https://usarc.usgs.gov/lidar_dload.shtml, last accessed 10 January 2017.
U.S. Geological Survey: Landsat Image Mosaic of Antarctica (LIMA), U.S.
Geological Survey Fact Sheet 2007–3116, 4 pp., 2007.
van der Vegt, P., Janszen, A., and Moscariello, A.: Tunnel valleys: current
knowledge and future perspectives, Geological Society, London, Special
Publications, 368, 75–97, https://doi.org/10.1144/SP368.13, 2012.
Van Wyk de Vries, M., Bingham, R. G., and Hein, A. S.: A new volcanic province:
an inventory of subglacial volcanoes in West Antarctica, Geological Society,
London, Special Publications, 461, 231–248,
https://doi.org/10.1144/SP461.7, 2017.
Waitt, R. B.: Case for periodic, colossal jökulhlaups from Pleistocene
Lake Missoula, Geol. Soc. Am. Bull., 96, 1271–1286,
https://doi.org/10.1130/0016-7606(1985)96<1271:CFPCJF>2.0.CO;2, 1985.
Walder, J. S.: Hydraulics of subglacial cavities, J. Glaciol.,
32, 439–445, https://doi.org/10.3189/S002214300001216, 1986.
Walder, J. S. and Fowler, A.: Channelized subglacial drainage over a
deformable bed, J. Glaciol., 40, 3–15,
https://doi.org/10.3189/S0022143000003750, 1994.
Wilch, T. I., McIntosh, W. C., and Dunbar, N. W.: Late Quaternary volcanic
activity in Marie Byrd Land: Potential 40Ar/39Ar-dated time
horizons in West Antarctic ice and marine cores, Geol. Soc. Am. Bull., 111, 1563–1580, https://doi.org/10.1130/0016-7606, 1999.
Willis, I. C., Pope, E. L., Leysinger Vieli, G. J.-M., Arnold, N. S., and Long,
S.: Drainage networks, lakes and water fluxes beneath the Antarctic ice
sheet, Ann. Glaciol., 57, 96–108,
https://doi.org/10.1017/aog.2016.15, 2016.
Wingham, D. J., Siegert, M. J., Shepherd, A., and Muir, A. S.: Rapid discharge
connects Antarctic subglacial lakes, Nature, 440, 1033–1036,
https://doi.org/10.1038/nature04660, 2006.
Wright, A. and Siegert, M.: A fourth inventory of Antarctic subglacial
lakes, Antarct. Sci., 24, 659–664.
https://doi.org/10.1017/S095410201200048X, 2012.
Wright Jr., H. E.: Tunnel valleys, glacier surges, and subglacial hydrology
of the Superior Lobe, Minnesota, Geol. Soc. Am. Mem., 136,
251–276, https://doi.org/10.1130/MEM136-p251, 1973.
Yu, H., Rignot, E., Seroussi, H., and Morlighem, M.: Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws, The Cryosphere, 12, 3861–3876, https://doi.org/10.5194/tc-12-3861-2018, 2018.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface melt-induced acceleration of Greenland ice-sheet
flow, Science, 297, 218–222, https://doi.org/10.1126/science.1072708,
2002.
Short summary
A series of huge (500 m wide, 50 m deep) channels were eroded by water flowing beneath Pine Island and Thwaites glaciers in the past. The channels are similar to canyon systems produced by floods of meltwater released beneath the Antarctic Ice Sheet millions of years ago. The spatial extent of the channels formed beneath Pine Island and Thwaites glaciers demonstrates significant quantities of water, possibly discharged from trapped subglacial lakes, flowed beneath these glaciers in the past.
A series of huge (500 m wide, 50 m deep) channels were eroded by water flowing beneath Pine...