Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-657-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-657-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau
School of Water Resources and Environment, China University of
Geosciences, Beijing 100083, China
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Yue Qin
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Yuhan Wang
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Hongyi Li
Cold and Arid Regions Environmental and Engineering Research
Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Yanlin Zhang
Cold and Arid Regions Environmental and Engineering Research
Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Tingjun Zhang
Key Laboratory of West China's Environmental Systems (MOE), College
of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
China
Related authors
No articles found.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Cuicui Mu, Xiaoqing Peng, Ran Du, Hebin Liu, Haodong Jin, Benben Liang, Mei Mu, Wen Sun, Chenyan Fan, Xiaodong Wu, Oliver W. Frauenfeld, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-347, https://doi.org/10.5194/essd-2022-347, 2022
Revised manuscript not accepted
Short summary
Short summary
Permafrost warming lead to greenhouse gases release to the atmosphere, resulting in a positive feedback to climate change. But, there are some uncertainties for lacks of observations. Here, we summarized a long-term observations on the meteorological, permafrost, and carbon to publish. This datasets include 5 meteorological stations, 21 boreholes 12 active layer sites, and 10 soil organic carbon contents. These are important to study the response of frozen ground to climate change.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022, https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
Short summary
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect ground-based passive microwave and optical remote-sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in continuously providing electromagnetic and physical features of snowpack and environment. The dataset is expected to serve the evaluation and development of microwave radiative transfer models and snow process models, along with land surface process models.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary
Short summary
Long-term snow cover data are not only of importance for climate research. Currently China still lacks a high-quality snow cover extent (SCE) product for climate research. This study develops a multi-level decision tree algorithm for cloud and snow discrimination and gap-filled technique based on AVHRR surface reflectance data. We generate a daily 5 km SCE product across China from 1981 to 2019. It has high accuracy and will serve as baseline data for climate and other applications.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Cited articles
Bartelt P. and Lehning, M.: A physical snowpack model for the swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Bonnaventure, P. P., Lewkowicz, A. G., Kremer, M., and Sawada, M. C.: A Permafrost Probability Model for the Southern Yukon and Northern British Columbia, Canada, Permafrost Periglac., 23, 52–68, https://doi.org/10.1002/ppp.1733, 2012.
Cao, Y., Nan, Z., and Hu, X.: Estimating groundwater storage changes in the Heihe river basin using GRACE, in: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012, 798–801, 2012.
Chen, R., Lu, S., Kang, E., Ji, X., Zhang, Z., Yang, Y., and Qing, W.: A distributed water-heat coupled model for mountainous watershed of an inland river basin of Northwest China (I) model structure and equations, Environ. Geol., 53, 1299–1309, https://doi.org/10.1007/s00254-007-0738-2,2008.
Cheng, G. and Jin, H.: Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China, Hydrogeol. J., 21, 5–23, https://doi.org/10.1007/s10040-012-0927-2, 2013.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res., 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007.
Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S., and Xiao, H.: Integrated study of the water-ecosystem-economy in the Heihe River Basin, Nat. Sci. Rev., 1, 413–428, https://doi.org/10.1093/nsr/nwu017, 2014.
Cherkauer, K. A., and Lettenmaier, D. P.: Hydrologic effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res., 104, 19599–19610, https://doi.org/10.1029/1999JD900337, 1999.
Cong, Z. T., Yang, D. W., Gao, B., Yang, H., and Hu, H.: Hydrological trend analysis in the Yellow River basin using a distributed hydrological model, Water Resour. Res., 45, W00A13, https://doi.org/10.1029/2008WR006852, 2009.
Cuo, L., Zhang, Y., Zhu, F., and Liang, L.: Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol., 2, 49–68, https://doi.org/10.1016/j.ejrh.2014.08.004, 2014.
Cuo, L., Zhang, Y., Bohn, T. J., Zhao, L., Li, J., Liu, Q., and Zhou, B.: Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau, J. Geophys. Res.-Atmos., 120, 8276–8298, https://doi.org/10.1002/2015JD023193, 2015.
Duan, L., Man, X., Kurylyk, B. L., and Cai, T.: Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in northeastern China, Water, 9, 25, https://doi.org/10.3390/w9010025, 2017.
Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014.
Fan, W.: Heihe 1 km LAI production, Heihe Plan Science Data Center at Lanzhou, https://doi.org/10.3972/heihe.090.2014.db, 2014.
Farouki, O. T.: The thermal properties of soils in cold regions, Cold Reg. Sci. Technol., 5, 67–75, https://doi.org/10.1016/0165-232X(81)90041-0, 1981.
Flerchinger, G. and Saxton, K.: Simultaneous heat and water model of a freezing snow-residue-soil system: I. Theory and development, T. ASAE, 32, 565–571, https://doi.org/10.13031/2013.31040, 1989.
Gao, B.: Code and case study for GBEHM, GitHub, available at: https://github.com/gb03/GBEHM, 2017.
Gao, B., Qin, Y., Wang, Y. H., Yang, D. W., and Zheng, Y. R.: Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China, Forests, 7, 10, https://doi.org/10.3390/f7010010, 2016.
Guo, D. and Wang, H.: Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010, J. Geophys. Res.-Atmos., 118, 5216–5230, https://doi.org/10.1002/jgrd.50457, 2013.
Hinzman, L. D., Deal, C. J., McGuire, A. D., Mernild, S. H., Polyakov, I. V., and Walsh, J. E.: Trajectory of the Arctic as an integrated system, Ecol. Appl., 23, 1837–1868, https://doi.org/10.1890/11-1498.1, 2013.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change Will Affect the Asian Water Towers, Science, 328, 1382–1385, https://doi.org/10.1126/science.1183188, 2010.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM data, Version 4, International Centre for Tropical Agriculture (CIAT), available at: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1, 2008.
Jin, H., He, R., Cheng, G., Wu, Q., Wang, S., Lu, L., and Chang X.: Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts, Environ. Res. Lett., 4, 045206, https://doi.org/10.1088/1748-9326/4/4/045206, 2009.
Jin, H. J., Zhao, L., Wang, S. L., and Jin, R.: Thermal regimes and degradation modes of permafrost along the Qinghai–Tibet Highway, Sci. China Ser. D, 49, 1170–1183, 2006.
Jordan, R.: A one-dimensional temperature model for a snow cover, Technical Documentation for SNTHERM.89, Cold Regions Research and Engineering Lab, Hanover NH, 49 pp., 1991.
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., and Voss, C. I.: Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow, Water Resour. Res., 52, 1286–1305, https://doi.org/10.1002/2015WR018057, 2016.
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A. G.: Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions, Environ. Res. Lett., 10, 094011, https://doi.org/10.1088/1748-9326/10/9/094011, 2015.
Li, D. L., Zhong, H. L., Wu, Q. B., Zhang, Y. J., Hou, Y. L., and Tang, M. C.: Analyses on changes of surface temperature over Qinghai–Xizang Plateau, Plateau Meteorology, 24, 291–298, 2005 (in Chinese).
Li, X., Cheng, G. D., Liu, S. M., Xiao, Q., Ma, M. G., Jin, R., Che, T., Liu, Q. H., Wang, W. Z., Qi, Y., Wen, J. G., Li, H. Y., Zhu, G. F., Guo, J. W., Ran, Y. H., Wang, S. G., Zhu, Z. L., Zhou, J., Hu, X. L., and Xu, Z. W.: Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design, B. Am. Meteorol. Soc., 94, 1145–1160, https://doi.org/10.1175/BAMS-D-12-00154.1, 2013.
Liu J., Hayakawab, N., Lu, M., Dong, S., and Yuan, J.: Hydrological and geocryological response of winter streamflow to climate warming in Northeast China, Cold Reg. Sci. Technol., 37, 15–24, https://doi.org/10.1016/S0165-232X(03)00012-0, 2003.
Liu, S. M., Xu, Z. W., Wang, W. Z., Jia, Z. Z., Zhu, M. J., Bai, J., and Wang, J. M.: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem, Hydrol. Earth Syst. Sci., 15, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011, 2011.
Liu, X. and Chen, B.: Climate warming in the Tibetan Plateau during recent decades, Int. J. Climatol., 20, 1729–1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
McClelland, J. W., Holmes, R. M., Peterson, B. J., and Stieglitz, M.: Increasing river discharge in the Eurasian Arctic:Consideration of dams, permafrost thaw, and fires as potential agents of change, J. Geophys. Res., 109, D18102, https://doi.org/10.1029/2004JD004583, 2004.
Niu, L., Ye, B., Li, J., and Sheng, Y.: Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China, China Earth Sci., 54, 615–624, https://doi.org/10.1007/s11430-010-4073-1, 2011.
Oerlemans, J.: Glaciers and Climate Change, Lisse: Swets & Zeitlinger, 145 pp., 2001.
Oerlemans, J. and Knap, W. H.: A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland, J. Glaciol., 44, 231–238, https://doi.org/10.3189/S0022143000002574, 1998.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J., Mahowald, N., Niu, G., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, Z., Zeng, X., and Zeng, X.: Technical Description of version 4.0 of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-47+STR, National Center for Atmospheric Research, Boulder, CO, 257 pp., 2010.
Ou, C., Leblon, B., Zhang, Y., LaRocque, A., Webster, K., and McLaughlin, J.: Modelling and mapping permafrost at high spatial resolution using Landsat and RADARSAT images in northern Ontario, Canada: Part 1 – Model calibration, Int. J. Remote Sens., 37, 2727–2750, https://doi.org/10.1080/01431161.2016.1157642, 2016.
O'Neill, H. B., Burn, C. R., Kokelj, S. V., and Lantz, T. C.: “Warm” tundra: atmospheric and near-surface ground temperature inversions across an alpine treeline in continuous permafrost, western arctic, Canada, Permafrost Periglac., 26, 103–118, https://doi.org/10.1002/ppp.1838, 2015.
Qiu, J.: Thawing permafrost reduces river runoff, Nature News, Nature Publishing Group, https://doi.org/10.1038/nature.2012.9749, 2012.
Rawlins, M., Lammers, R., Frolking, S., Fekete, B., and Vorosmarty, C.: Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model, Hydrol. Process., 17, 2521–2539, https://doi.org/10.1002/hyp.1271, 2003.
Rawlins, M. A., Nicolsky, D. J., McDonald, K. C., and Romanovsky, V. E.: Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model, J. Adv. Model. Earth Syst., 5, 659–675, https://doi.org/10.1002/jame.20045, 2013.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelinus, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sellers, P. J.: Canopy reflectance, photosynthesis, and transpiration, Int. J. Remote Sens., 8, 1335–1372, https://doi.org/10.1080/01431168508948283, 1985.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS – Part I: Model Formulation, J. Clim., 9, 676–705, https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2, 1996.
Sjöberg, Y., Coon, E., Sannel, A. B. K., Pannetier, R., Harp, D., Frampton, A., Painter, S. L., and Lyon, S. W.: Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling, Water Resour. Res., 52, 1591–1606, https://doi.org/10.1002/2015WR017571, 2016.
Song, X., Brus, D. J., Liu, F., Li, D., Zhao, Y., Yang, J., and Zhang, G.: Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China, Geoderma, 261, 11–22, https://doi.org/10.1016/j.geoderma.2015.06.024, 2016.
St. Jacques, J.-M. and Sauchyn, D. J.: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada, Geophys. Res. Lett., 36, L01401, https://doi.org/10.1029/2008GL035822, 2009.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, EOS T. Am. Geophys. Un., 38, 913–920, https://doi.org/10.1029/TR038i006p00913, 1957.
Subin, Z. M., Koven, C. D., Riley, W. J., Torn, M. S., Lawrence, D. M., and Swenson, S. C.: Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions, J. Clim., 26, 3139–3158, https://doi.org/10.1175/JCLI-D-12-00305.1, 2013.
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94, 16287–16301, https://doi.org/10.1029/JD094iD13p16287, 1989.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing Permafrost – A Review, Vadose Zone J., 15, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402, https://doi.org/10.1029/2007GL030216, 2007.
Wang, L., Koike, T., Yang, K., Jin, R., and Li, H.: Frozen soil parameterization in a distributed biosphere hydrological model, Hydrol. Earth Syst. Sci., 14, 557–571, https://doi.org/10.5194/hess-14-557-2010, 2010.
Wang, Q., Zhang, T., Wu, J., Peng, X., Zhong, X., Mu, C., Wang, K., Wu, Q., and Cheng, G.: Investigation of permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains, J. Glaciol. Geocryol., 35, 19–29, 2013 (in Chinese).
Wang, Q., Zhang, T., Peng, X., Cao, B., and Wu, Q.: Changes of soil thermal regimes in the Heihe River Basin over Western China, Arct. Antarct. Alp. Res., 47, 231–241, https://doi.org/10.1657/AAAR00C-14-012, 2015a.
Wang, Y., Yang, D., Lei, H., and Yang, H.: Impact of cryosphere hydrological processes on the river runoff in the upper reaches of Heihe River, J. Hydraul. Eng., 46, 1064–1071, 2015b (in Chinese).
Wang, Y., Yang, H., Yang, D., Qin, Y., Gao, B., and Cong, Z. T.: Spatial interpolation of daily precipitation in a high mountainous watershed based on gauge observations and a regional climate model simulation, J. Hydrometeorol.,18, 845–862, https://doi.org/10.1175/JHM-D-16-0089.1, 2017.
Woo, M. K.: Permafrost Hydrology, Springer-Verlag, Berlin Heidelberg, 5–6, 2012.
Woo, M.-K., Kane, D. L., Carey, S. K., and Yang, D.: Progress in permafrost hydrology in the new millennium, Permafrost Periglac., 19, 237–254, https://doi.org/10.1002/ppp.613, 2008.
Wu, B. F., Yan, N. N., Xiong, J., Bastiaanssen, W., Zhu, W. W., and Stein, A.: Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China, J. Hydrol., 436, 67–80, https://doi.org/10.1016/j.jhydrol.2012.02.043, 2012.
Wu, B. F.: Monthly Evapotranspiration Datasets (2000–2012) with 1 km Spatial Resolution over the Heihe River Basin, Heihe Plan Science Data Center at Lanzhou, China, https://doi.org/10.3972/heihe.115.2013.db, 2013.
Wu, M., Jansson, P. E., Tan, X., Wu, J., and Huang, J.: Constraining parameter uncertainty in simulations of water and heat dynamics in seasonally frozen soil using limited observed data, Water, 8, 64, https://doi.org/10.3390/w8020064, 2016.
Wu, Q., Zhang, T., and Liu, Y.: Permafrost temperatures and thickness on the Qinghai-Tibet Plateau, Global Planet. Change, 72, 32–38, https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Wu, T., Li, S., Cheng, G., and Nan, Z.: Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau, Cold Reg. Sci. Technol., 41, 211–219, https://doi.org/10.1016/j.coldregions.2004.10.006, 2005.
Yang, D. W., Herath, S., and Musiake, K.: Development of a geomorphology-based hydrological model for large catchments, Ann. J. Hydraul. Eng., 42, 169–174, https://doi.org/10.2208/prohe.42.169, 1998.
Yang, D. W., Herath, S., and Musiake, K.: A hillslope-based hydrological model using catchment area and width functions, Hydrol. Sci. J., 47, 49–65, https://doi.org/10.1080/02626660209492907, 2002.
Yang, D. W., Gao, B., Jiao, Y., Lei, H. M., Zhang, Y. L., Yang, H. B., and Cong, Z. T.: A distributed scheme developed for eco-hydrological modeling in the upper Heihe River, China Earth Sci., 58, 36–45, https://doi.org/10.1007/s11430-014-5029-7, 2015.
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G.: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth Sci. Rev., 103, 31–44, https://doi.org/10.1016/j.earscirev.2010.07.002, 2010.
Ye, B., Yang, D., Zhang, Z., and Kane, D. L.: Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia, J. Geophys. Res., 114, D07102, https://doi.org/10.1029/2008JD010537, 2009.
Zhao, L., Ping, C. L., Yang, D. Q., Cheng, G. D., Ding, Y. J., and Liu, S. Y.: Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China, Global Planet. Change, 43, 19–31, https://doi.org/10.1016/j.gloplacha.2004.02.003, 2004.
Zhang, Y. L., Cheng, G. D., Li, X., Han, X. J., Wang, L., Li, H. Y., Chang, X. L., and Flerchinger, G. N.: Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed, Hydrol. Process., 27, 3762–3776, https://doi.org/10.1002/hyp.9514, 2013.
Zhang, Y., Ohata, T., and Kadota, T.: Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau, J. Hydrol., 283, 41–56, https://doi.org/10.1016/S0022-1694(03)00240-3, 2003.
Zhang, Y., Wang, X., Fraser, R., Olthof, I., Chen, W., Mclennan, D., Ponomarenko, S., and Wu, W.: Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain, The Cryosphere, 7, 1121–1137, https://doi.org/10.5194/tc-7-1121-2013, 2013.
Zhou, J. H. and Zheng, Y. R.: Vegetation Map of the upper Heihe basin, Version 2.0, Heihe Plan Science Data Center at Lanzhou, China, available at: http://westdc.westgis.ac.cn/ (last access: 4 Dec 2017), 2014.
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
This study developed a distributed hydrological model coupled with cryospherical processes and...