Articles | Volume 12, issue 2
The Cryosphere, 12, 477–489, 2018
https://doi.org/10.5194/tc-12-477-2018
The Cryosphere, 12, 477–489, 2018
https://doi.org/10.5194/tc-12-477-2018
Research article
07 Feb 2018
Research article | 07 Feb 2018

Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

Lin Liu and Kristine M. Larson

Related authors

Retrogressive thaw slumps along the Qinghai-Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-439,https://doi.org/10.5194/essd-2021-439, 2022
Revised manuscript under review for ESSD
Short summary
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021,https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Modelling rock glacier velocity and ice content, Khumbu and Lhotse Valleys, Nepal
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-110,https://doi.org/10.5194/tc-2021-110, 2021
Preprint under review for TC
Short summary
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021,https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada
Jiahua Zhang, Lin Liu, and Yufeng Hu
The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020,https://doi.org/10.5194/tc-14-1875-2020, 2020
Short summary

Related subject area

Frozen Ground
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022,https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Long-term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022,https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-71,https://doi.org/10.5194/tc-2022-71, 2022
Revised manuscript accepted for TC
Short summary
Seismic physics-based characterization of permafrost sites using surface waves
Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby
The Cryosphere, 16, 1157–1180, https://doi.org/10.5194/tc-16-1157-2022,https://doi.org/10.5194/tc-16-1157-2022, 2022
Short summary
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021,https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary

Cited articles

Blewitt, G., Kreemer, C., Hammond, W. C., and Goldfarb, J. M.: Terrestrial reference frame NA12 for crustal deformation studies in North America, J. Geodyn., 72, 11–24, https://doi.org/10.1016/j.jog.2013.08.004, 2013. 
Brown, J. and Sellmann, P. V.: Permafrost and coastal plain history of Arctic Alaska, in: Alaskan Arctic Tundra, edited by: Britton, M. E., Arctic Institute of North America, Washington, D.C., USA, 25, 31–47, 1973. 
Brown, J., Ferrians Jr., O., Heginbottom, J., and Melnikov, E. (Eds.): Circum-Arctic map of permafrost and ground-ice conditions, Circum- Pacific Map Series CP-45, US Geological Survey, Reston, VA, USA, 1997. 
Cox, C. J., Stone, R. S., Douglas, D. C., Stanitski, D. M., Divoky, G. J., Dutton, G. S., Sweeney, C., George, J. C., and Longenecker, D. U.: Drivers and environmental responses to the changing annual snow cycle of northern Alaska, B. Am. Meteorol. Soc., 98, 2559–2577, https://doi.org/10.1175/BAMS-D-16-0201.1, 2017. 
French, H. M.: The Periglacial Environment, third edn., John Wiley & Sons, Ltd, West Sussex, UK, 2007. 
Download
Short summary
We demonstrate the use of reflected GPS signals to measure elevation changes over a permafrost area in northern Alaska. For the first time, we construct a daily-sampled time series of elevation changes over 12 summers. Our results show regular thaw subsidence within each summer and a secular subsidence trend of 0.3 cm per year. This method promises a new way to utilize GPS data in cold regions for studying frozen ground consistently and sustainably over a long time.