Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-477-2018
https://doi.org/10.5194/tc-12-477-2018
Research article
 | 
07 Feb 2018
Research article |  | 07 Feb 2018

Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

Lin Liu and Kristine M. Larson

Related authors

Quantifying Retrogressive Thaw Slump Mass Wasting and Carbon Mobilisation on the Qinghai-Tibet Plateau Using Multi-Modal Remote Sensing
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187,https://doi.org/10.5194/egusphere-2025-2187, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024,https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023,https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022,https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021,https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary

Related subject area

Frozen Ground
High-resolution 4D electrical resistivity tomography and below-ground point sensor monitoring of High Arctic deglaciated sediments capture zero-curtain effects, freeze–thaw transitions, and mid-winter thawing
Mihai O. Cimpoiasu, Oliver Kuras, Harry Harrison, Paul B. Wilkinson, Philip Meldrum, Jonathan E. Chambers, Dane Liljestrand, Carlos Oroza, Steven K. Schmidt, Pacifica Sommers, Lara Vimercati, Trevor P. Irons, Zhou Lyu, Adam Solon, and James A. Bradley
The Cryosphere, 19, 401–421, https://doi.org/10.5194/tc-19-401-2025,https://doi.org/10.5194/tc-19-401-2025, 2025
Short summary
Spectral induced polarization survey for the estimation of hydrogeological parameters in an active rock glacier
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
The Cryosphere, 19, 143–171, https://doi.org/10.5194/tc-19-143-2025,https://doi.org/10.5194/tc-19-143-2025, 2025
Short summary
Quantifying permafrost ground ice contents in the Tien Shan and Pamir (Central Asia): A Petrophysical Joint Inversion approach using the Geometric Mean model
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795,https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Thermal State of Permafrost in the Central Andes (27° S–34° S)
Cassandra E.M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2244,https://doi.org/10.5194/egusphere-2024-2244, 2024
Short summary
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024,https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary

Cited articles

Blewitt, G., Kreemer, C., Hammond, W. C., and Goldfarb, J. M.: Terrestrial reference frame NA12 for crustal deformation studies in North America, J. Geodyn., 72, 11–24, https://doi.org/10.1016/j.jog.2013.08.004, 2013. 
Brown, J. and Sellmann, P. V.: Permafrost and coastal plain history of Arctic Alaska, in: Alaskan Arctic Tundra, edited by: Britton, M. E., Arctic Institute of North America, Washington, D.C., USA, 25, 31–47, 1973. 
Brown, J., Ferrians Jr., O., Heginbottom, J., and Melnikov, E. (Eds.): Circum-Arctic map of permafrost and ground-ice conditions, Circum- Pacific Map Series CP-45, US Geological Survey, Reston, VA, USA, 1997. 
Cox, C. J., Stone, R. S., Douglas, D. C., Stanitski, D. M., Divoky, G. J., Dutton, G. S., Sweeney, C., George, J. C., and Longenecker, D. U.: Drivers and environmental responses to the changing annual snow cycle of northern Alaska, B. Am. Meteorol. Soc., 98, 2559–2577, https://doi.org/10.1175/BAMS-D-16-0201.1, 2017. 
French, H. M.: The Periglacial Environment, third edn., John Wiley & Sons, Ltd, West Sussex, UK, 2007. 
Download
Short summary
We demonstrate the use of reflected GPS signals to measure elevation changes over a permafrost area in northern Alaska. For the first time, we construct a daily-sampled time series of elevation changes over 12 summers. Our results show regular thaw subsidence within each summer and a secular subsidence trend of 0.3 cm per year. This method promises a new way to utilize GPS data in cold regions for studying frozen ground consistently and sustainably over a long time.
Share