Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3361-2018
https://doi.org/10.5194/tc-12-3361-2018
Research article
 | Highlight paper
 | 
24 Oct 2018
Research article | Highlight paper |  | 24 Oct 2018

The internal structure of the Brunt Ice Shelf from ice-penetrating radar analysis and implications for ice shelf fracture

Edward C. King, Jan De Rydt, and G. Hilmar Gudmundsson

Related authors

How dynamic are ice-stream beds?
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018,https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica
Jan De Rydt, G. Hilmar Gudmundsson, Thomas Nagler, Jan Wuite, and Edward C. King
The Cryosphere, 12, 505–520, https://doi.org/10.5194/tc-12-505-2018,https://doi.org/10.5194/tc-12-505-2018, 2018
Short summary
Subglacial landforms beneath Rutford Ice Stream, Antarctica: detailed bed topography from ice-penetrating radar
Edward C. King, Hamish D. Pritchard, and Andrew M. Smith
Earth Syst. Sci. Data, 8, 151–158, https://doi.org/10.5194/essd-8-151-2016,https://doi.org/10.5194/essd-8-151-2016, 2016
Short summary
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
A. M. Brisbourne, A. M. Smith, E. C. King, K. W. Nicholls, P. R. Holland, and K. Makinson
The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014,https://doi.org/10.5194/tc-8-1-2014, 2014
Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013,https://doi.org/10.5194/tc-7-375-2013, 2013

Related subject area

Discipline: Ice sheets | Subject: Antarctic
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024,https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024,https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Melt sensitivity of irreversible retreat of Pine Island Glacier
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024,https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024,https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
The long-term sea-level commitment from Antarctica
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024,https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary

Cited articles

Anderson, R., Jones, D. H., and Gudmundsson, G. H.: Halley Research Station, Antarctica: calving risks and monitoring strategies, Nat. Hazards Earth Syst. Sci., 14, 917–927, https://doi.org/10.5194/nhess-14-917-2014, 2014. 
Bailey, J. T. and Evans, S.: Radio echo-sounding on the Brunt Ice Shelf and in Coats Land, 1965, British Antarctic Survey Bulletin, 19, 1–12, 1968. 
BAS: British Antartic Survey, UK Polar Data Centre, available at: http://www.bas.ac.uk/data/ uk-pdc/, 2018. 
Bingham, A. W. and Drinkwater, M. R.: Recent changes in the microwave scattering properties of the Antarctic ice sheet, IEEE T. Geosci. Remote, 38, 1810–1820, 10.1109/36.851765, 2000. 
Borstad, C., McGrath, D., and Pope, A.: Fracture propagation and stability of ice shelves governed by ice shelf hetereogeneity, Geophys. Res. Lett., 44, 4186–4194, https://doi.org/10.1002/2017GL072648, 2017. 
Download
Short summary
Ice shelves are thick sheets of ice floating on the ocean off the coasts of Antarctica and Greenland. They help regulate the flow of ice off the continent. Ice shelves undergo a natural cycle of seaward flow, fracture, iceberg production and regrowth. The Brunt Ice Shelf recently developed two large cracks. We used ground-penetrating radar to find out how the internal structure of the ice might influence the present crack development and the future stability of the ice shelf.