Articles | Volume 12, issue 8
https://doi.org/10.5194/tc-12-2667-2018
https://doi.org/10.5194/tc-12-2667-2018
Research article
 | 
16 Aug 2018
Research article |  | 16 Aug 2018

Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada

Robert G. Way, Antoni G. Lewkowicz, and Yu Zhang

Related authors

Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Yifeng Wang, Robert G. Way, Jordan Beer, Anika Forget, Rosamond Tutton, and Meredith C. Purcell
The Cryosphere, 17, 63–78, https://doi.org/10.5194/tc-17-63-2023,https://doi.org/10.5194/tc-17-63-2023, 2023
Short summary
A low-cost method for monitoring snow characteristics at remote field sites
Rosamond J. Tutton and Robert G. Way
The Cryosphere, 15, 1–15, https://doi.org/10.5194/tc-15-1-2021,https://doi.org/10.5194/tc-15-1-2021, 2021
Short summary
Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada)
Nicholas E. Barrand, Robert G. Way, Trevor Bell, and Martin J. Sharp
The Cryosphere, 11, 157–168, https://doi.org/10.5194/tc-11-157-2017,https://doi.org/10.5194/tc-11-157-2017, 2017
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost degradation of peatlands in northern Sweden
Samuel Valman, Matthias Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabe de la Barreda-Bautista, Andrew Sowter, and Sofie Sjogersten
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-138,https://doi.org/10.5194/tc-2023-138, 2023
Revised manuscript accepted for TC
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Post-Little Ice Age rock wall permafrost evolution in Norway
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023,https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary

Cited articles

Allard, M. and Rousseau, L.: The internal structure of a palsa and peat plateau in the Riviere Boniface region, Québec: Inferences on the formation of ice segregation mounds, Geogr. Phys. Quatern., 53, 373–387, 1999. 
Allard, M., Sarrazin, D., and L'Hérault, E.: Borehole monitoring temperatures in northeastern Canada v. 1.2 (1988–2014), Scientific data, Centre D'Étude Nordiques, https://doi.org/10.5885/45291SL-34F28A9491014AFD, 2014. 
An, W. and Allard, M.: A mathematical approach to modelling palsa formation: Insights on processes and growth conditions, Cold Reg. Sci. Technol., 23, 231–244, 1995. 
Atkinson, D. E. and Gajewski, K.: High-resolution estimation of summer surface air temperature in the Canadian Arctic Archipelago, J. Climate, 15, 3601–3614, 2002. 
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017. 
Download
Short summary
Isolated patches of permafrost in southeast Labrador are among the southernmost lowland permafrost features in Canada. Local characteristics at six sites were investigated from Cartwright, NL (~ 54° N) to Blanc-Sablon, QC (~ 51° N). Annual ground temperatures varied from −0.7 °C to −2.3 °C with permafrost thicknesses of 1.7–12 m. Ground temperatures modelled for two sites showed permafrost disappearing at the southern site by 2060 and persistence beyond 2100 at the northern site only for RCP2.6.