Articles | Volume 12, issue 6
The Cryosphere, 12, 2005–2020, 2018
The Cryosphere, 12, 2005–2020, 2018

Research article 15 Jun 2018

Research article | 15 Jun 2018

Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system

Takuya Nakanowatari et al.

Related authors

Improved BEC SMOS Arctic Sea Surface Salinity product v3.1
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data Discuss.,,, 2021
Preprint under review for ESSD
Short summary
Freshwater in the Arctic Ocean 2010–2019
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102,,, 2021
Short summary
Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987,,, 2021
Short summary
Sea-level variability and change along the Norwegian coast between 2003 and 2018 from satellite altimetry, tide gauges and hydrography
Fabio Mangini, Léon Chafik, Antonio Bonaduce, Laurent Bertino, and Jan Even Øie Nilsen
Ocean Sci. Discuss.,,, 2021
Revised manuscript under review for OS
Short summary
Combined influence of oceanic and atmospheric circulations on Greenland sea ice concentration
Sourav Chatterjee, Roshin P. Raj, Laurent Bertino, Sebastian H. Mernild, Meethale Puthukkottu Subeesh, Nuncio Murukesh, and Muthalagu Ravichandran
The Cryosphere, 15, 1307–1319,,, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
Edge displacement scores
Arne Melsom
The Cryosphere, 15, 3785–3796,,, 2021
Short summary
Toward a method for downscaling sea ice pressure for navigation purposes
Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante
The Cryosphere, 14, 3465–3478,,, 2020
Short summary
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386,,, 2020
Short summary
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407,,, 2020
Short summary
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113,,, 2020
Short summary

Cited articles

Barnett, T. P. and Schlesinger, M. E.: Detecting changes in global climate induced by greenhouse gases, J. Geophys. Res., 92, 14772–14780,, 1987.
Bengtsson, L., Hodges, K. I., and Roeckner, E.: Storm Tracks and Climate Change, J. Climate, 19, 3518–3543,, 2006.
Blanchard-Wrigglesworth, E. and Bitz, C. M.: Characteristics of Arctic Sea-Ice Thickness Variability in GCMs, J. Climate 27, 8244–8258, 2014.
Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., and Yang, X.: Skillful regional prediction of Arctic sea ice onseasonal timescales, Geophys. Res. Lett. 44, 4953–4964,, 2017.
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2006, J. Geophys. Res., 113, C07003,, 2008.
Short summary
Medium-range predictability of early summer sea ice thickness in the East Siberian Sea was examined, based on TOPAZ4 forecast data. Statistical examination indicates that the estimate drops abruptly at 4 days, which is related to dynamical process controlled by synoptic-scale atmospheric fluctuations such as an Arctic cyclone. For longer lead times (> 4 days), the thermodynamic melting process takes over, which represents most of the remaining prediction.