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Abstract. Accelerated retreat of Arctic Ocean summertime
sea ice has focused attention on the potential use of the
Northern Sea Route (NSR), for which sea ice thickness (SIT)
information is crucial for safe maritime navigation. This
study evaluated the medium-range (lead time below 10 days)
forecast of SIT distribution in the East Siberian Sea (ESS)
in early summer (June–July) based on the TOPAZ4 ice–
ocean data assimilation system. A comparison of the oper-
ational model SIT data with reliable SIT estimates (hind-
cast, satellite and in situ data) showed that the TOPAZ4
reanalysis qualitatively reproduces the tongue-like distribu-
tion of SIT in ESS in early summer and the seasonal vari-
ations. Pattern correlation analysis of the SIT forecast data
over 3 years (2014–2016) reveals that the early summer SIT
distribution is accurately predicted for a lead time of up to
3 days, but that the prediction accuracy drops abruptly af-
ter the fourth day, which is related to a dynamical process
controlled by synoptic-scale atmospheric fluctuations. For
longer lead times (> 4 days), the thermodynamic melting
process takes over, which contributes to most of the remain-
ing prediction accuracy. In July 2014, during which an ice-
blocking incident occurred, relatively thick SIT (∼ 150 cm)
was simulated over the ESS, which is consistent with the re-
duction in vessel speed. These results suggest that TOPAZ4
sea ice information has great potential for practical applica-
tions in summertime maritime navigation via the NSR.

1 Introduction

During recent decades, sea ice cover in the Northern Hemi-
sphere has shown remarkable reduction, and the largest rates
of decrease of 100 000 km2 decade−1 have been observed in
the western Arctic Ocean in summer (Cavalieri and Parkin-
son, 2008). Sea ice retreat influences the light conditions for
phytoplankton photosynthesis activity (Wassmann, 2011),
and the resultant meltwater influences the marine environ-
ment via ocean acidification (Yamamoto-Kawai et al., 2011).
In winter, shrinkage of the sea ice area in marginal seas such
as the Barents Sea changes the surface boundary conditions
of the atmosphere, influences planetary waves and causes
blocking events, which are one of the possible causes of
the recent severe winters in midlatitude regions (Honda et
al., 2009; Inoue et al., 2012; Mori et al., 2014; Overland et
al., 2015; Petoukhov and Semenov, 2010; Screen, 2017).

In contrast to these climatic consequences and problems
for the marine ecosystem caused by the reduction in sea ice,
the retreat of Arctic sea ice has new opportunities for com-
mercial maritime navigation. It has been reported that ex-
ploitation of shipping routes in the Arctic Ocean, i.e. the
Northern Sea Route (NSR), could reduce the navigational
distance between Europe and Asia by about 40 % in compar-
ison with routes via the Suez Canal (Schøyen and Bråthen,
2011). Melia et al. (2016) discussed the possibility of a viable
trans-Arctic shipping route in the 21st century, based on the
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Coupled Model Intercomparison Project Phase 5 (CMIP5)
global climate model simulation. Currently, the summertime
use of the NSR by commercial vessels such as cargo ships
and tankers has increased (Eguíluz et al., 2016). Therefore,
obtaining precise information on sea ice conditions and eval-
uating the forecast of operational sea ice models have be-
come urgent issues.

Many previous studies have examined the predictability
of summertime sea ice change in the Arctic Ocean in terms
of its coverage (Wang et al., 2013) and motion (Schweiger
and Zhang, 2015). Kimura et al. (2013) reported a positive
correlation in the spatial distribution of summertime sea ice
concentration (SIC) with winter ice divergence/convergence.
Their study indicated that sea ice thickness (SIT) or sea ice
volume before the melt season is a source of predictability
for summertime SIC. Recently, their study was supported by
hindcast experiments undertaken using a climate model, in
which the SIC in the East Siberian Sea (ESS) was shown
to have significant seasonal prediction accuracy (Bushuk et
al., 2017). The significant impacts of SIT conditions on the
seasonal prediction of SIC in the Arctic Ocean have been
highlighted by many studies (Lindsay et al., 2008; Holland
et al., 2011; Blanchard-Wrigglesworth and Bitz, 2014; Col-
low et al., 2015; Melia et al., 2015, 2017; Chen et al., 2017).
Thus, the persistence of SIT or sea ice volume is one of the
key factors determining the accuracy of seasonal predictions
of summertime sea ice area.

Earlier studies have focused primarily on the seasonal to
interannual predictability of SIC or sea ice area in the Arctic
Ocean; thus subseasonal variation in SIT and its predictabil-
ity have not been examined fully for near-term route plan-
ning. Although the summertime sea ice extent has rapidly
decreased on an interannual timescale, a substantial area of
sea ice still remains in critical stretches of the NSR, such as
the ESS in early summer (June–July). Since precise informa-
tion regarding SIT and its near-future condition is crucial for
icebreaker operations (Tan et al., 2013; Pastusiak, 2016), it
is important to clarify the medium-range (3 to 10 days lead
time) predictability of summertime SIT in the Arctic Ocean.

Synoptic-scale fluctuations of cyclone and anticyclone are
greater over the Arctic Ocean and Eurasia in summer than in
winter (Serreze and Barry, 1988; Serreze and Barrett, 2008).
In recent years, there is a risk that an Arctic cyclone be-
comes extremely developed and covers the entire Pacific sec-
tor (Simmonds and Rudeva, 2012; Yamagami et al., 2017).
Because the ESS corresponds to the route of Arctic cyclones
generated over the Eurasian continent (Orsolini and Sorte-
berg, 2009), it is expected that synoptic-scale atmospheric
fluctuations would substantially influence the spatial distri-
butions of SIT and ice motion in the ESS. Ono et al. (2016)
highlighted the importance of atmospheric prediction accu-
racy on medium-range forecasts of sea ice distribution in the
ESS based on a case of an extreme cyclone that occurred
on 6 August 2012. Mohammadi-Aragh et al. (2018) suggest
that the chaotic behaviour of atmospheric prediction accu-

racy controls the short-term predictability of sea ice defor-
mation in the Arctic Ocean. On the other hand, earlier studies
pointed out that the sea ice melting process is important for
the long-term prediction of summertime sea ice extent (e.g.
Bushuk et al., 2017). However, the relative importance of dy-
namical and thermodynamic processes on the medium-range
forecast of summertime sea ice properties has not yet been
well understood.

Since 2010, ice–ocean forecasts and a 20-year reanaly-
sis are available for the Arctic Ocean, based on the TOPAZ
ocean data assimilation system (Towards an Operational
Prediction system for the North Atlantic European coastal
Zones) in its fourth version (Sakov et al., 2012). The
Norwegian Meteorological Institute provides 10-day fore-
cast products in daily mean fields, forced at the surface
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) operational atmospheric forecasts (Pers-
son, 2011), updated daily and distributed by the Coperni-
cus Marine Environment Monitoring Services (Simonsen et
al., 2017). The reliability of the corresponding TOPAZ4 re-
analysis data has been evaluated previously through compar-
ison with in situ and satellite SIT data (Xie et al., 2017). They
showed that the SIT in the TOPAZ4 reanalysis data is compa-
rable to observed values over the Beaufort Gyre and central
Arctic Ocean, although the SIT overall shows a negative bias
of several dozen centimetres throughout a year. Thus, it is ex-
pected that the SIT data in the TOPAZ reanalysis data should
also be reliable in the ESS, even in the melting season, and
the forecast SIT data should show the prediction accuracy on
a medium-range timescale.

In this study, we examined the predictability of the early
summer SIT distribution in the ESS on the medium-range
timescale and discussed its underlying physical mechanisms,
based on the TOPAZ4 forecast data set and trivial dynam-
ical and thermodynamical models. Section 2 describes the
data and methods. Section 3 evaluates the reliability of the
SIT data in the TOPAZ4 reanalysis data through comparison
with all available in situ and satellite observations, as well
as operational model analyses, with particular emphasis on
the ESS. In Sect. 4, we examine the predictability of the SIT
distribution in the ESS based on TOPAZ4 forecast data. Sec-
tion 5 examines the relationship between sea ice conditions
and vessel speed during an ice-blocking event that occurred
in July 2014. A discussion and the derived conclusions are
presented in Sect. 6.

2 Data and methods

This study used daily mean sea ice data derived from the
TOPAZ4 Arctic sea ice forecast system data set, in which the
SSM/I SIC data, hydrographic temperature and salinity data,
along-track sea level anomaly and satellite estimates of ice
drift and sea surface temperature were assimilated, but sea
ice thickness was not yet assimilated into this version of the
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reanalysis (Simonsen et al., 2017). The TOPAZ4 system was
designed as a regional ice–ocean coupled system forced with
atmospheric flux data. The ocean model of TOPAZ4 is based
on version 2.2 of the HYCOM model, which uses isopycni-
cal vertical coordinates in the ocean interior and z level co-
ordinates in the near-surface layer. The sea ice model uses
an elastic–viscous–plastic rheology (Hunke and Dukowicz,
1997). The thermodynamic processes are based on a three-
layer thermodynamic model with one snow and two ice lay-
ers (Semtner, 1976) with a modification for subgrid-scale ice
thickness heterogeneities (Fichefet and Maqueda, 1997). The
model domain covers the Arctic Ocean and the North At-
lantic, and the lateral boundaries are relaxed to monthly mean
climatological data. The spatial resolution is 12–16 km with
28 hybrid layers, which constitutes eddy-permitting resolu-
tion in low latitude and midlatitude regions but not in the
Arctic Ocean. In this system, in situ hydrographic obser-
vations are assimilated together with satellite observations
of the ocean such as sea surface temperature and sea level
anomaly. Since this system assimilates the SIC and sea ice
velocity (but the latter only in cold season), one should ex-
pect adequate simulation of SIT through the ridging process
(Stark et al., 2008). It has been reported that the SIT of the
TOPAZ4 reanalysis data has substantial negative bias from
2001 to 2010 due to excessive snowfall, which has been mod-
ified after 2011 (Xie et al., 2017). Therefore, this study used
SIT data from 1 January 2011 to 31 December 2014.

The data assimilation method of TOPAZ4 is a determinis-
tic version of the ensemble Kalman filter (EnKF) (Sakov and
Oke, 2008) with an ensemble of 100 dynamical members.
Since EnKFs have time-dependent state error covariances,
this method is suitable for data assimilation of anisotropic
variables in areas close to the sea ice edge (Lisæter et
al., 2003; Sakov et al., 2012). The TOPAZ4 reanalysis data
were produced with the 6 h forcing from the ERA-Interim
reanalysis (Dee et al., 2011). The surface turbulent heat flux
and momentum flux were both calculated using bulk for-
mula parameterizations (Kara et al., 2000; Large and Pond,
1981), instead of the ERA-Interim fluxes themselves. The
forecast and reanalysis systems have almost the same set-
tings and their results are similar during their overlap period
(not shown).

To evaluate the prediction accuracy of the TOPAZ4 fore-
cast system, we used daily mean sea ice forecast data during
three recent years from 2014 to 2016 (Simonsen et al., 2017).
A probabilistic 10-member ensemble forecast was performed
with the ECMWF medium-range (up to 10 days) atmospheric
forecast data updated daily, out of which only the ensem-
ble average is used. To produce 10 ensemble members in the
TOPAZ4 forecast system, the ECMWF global atmospheric
forecast data as well as several parameters of sea ice model
are perturbed by adding a stochastic forcing term (Evensen,
2003). In this study, we excluded the forecast data in July
2014 because of a real-time forecast production incident (the
forecasts were in free-running mode then) (Harald Engedahl,

personal communication, 2018). Since the forecast data were
only provided weekly before 2016, a total of 150 cases was
assembled during the study period. The skill core was quan-
tified using pattern correlation coefficients (PCCs), which
are used widely in deterministic forecast verification (Bar-
nett and Schlesinger, 1987):

PCC=

N∑
ij=1

(
fij − f ij

)(
aij − aij

)
√

N∑
ij=1

(
fij − f ij

)2√ N∑
ij=1

(
aij − aij

)2 , (1)

where fij and aij are forecast and analysis sea ice variables.
The overbar denotes the average values over the analysed
area (see Fig. 1a); thus the PCC reflects the correlation of ob-
served and signal anomalies relative to their respective spa-
tial means.

To evaluate the reliability of the SIT values in the TOPAZ4
reanalysis data in early summer, we mainly used the Pan-
Arctic Ice Ocean Modeling and Assimilation System (PI-
OMAS) outputs, which are derived from the coupled ice–
ocean modelling and assimilation system based on the Par-
allel Ocean Program (POP) and the thickness and enthalpy
distribution (TED) sea ice model, forced with NCEP–NCAR
reanalysis data (Zhang and Rothrock, 2003). In this data set,
SIC and sea surface temperature are assimilated by adoptive
nudging, and many studies (Schweiger et al., 2011; Lindsay
and Zhang, 2006; Stroeve et al., 2014) have compared PI-
OMAS output with observed SIT data and found it to be the
most reliable estimate of observed SIT in the Arctic Ocean
(Laxon et al., 2013; Wang et al., 2016).

To evaluate the SIT distribution in the ESS, we used
the merged product of CryoSat-2 (CS2) and the Soil Mois-
ture and Ocean Salinity (SMOS) SIT products (hereafter,
CS2SMOS) as alternative SIT data from 2011 to 2014
(Ricker et al., 2017). They were provided by the online sea-
ice data platform “http://www.meereisportal.de/” (for details,
see Acknowledgements) (Grosfeld et al., 2016). These data
are interpolated to 25 km resolution based on optimal inter-
polation and they are available from October to April. In gen-
eral, CS2 data have large uncertainty in the estimation of SIT
of < 1 m, while the SMOS relative uncertainties are lowest
for very thin ice. Thus, the merged product is – to date –
considered the best estimate of the satellite-based SIT dis-
tribution in and around the ESS, although it was reported
that there is potential negative bias in mixed first-year and
multi-year ice regions such as the Beaufort Sea (Ricker et
al., 2017).

For the melting season (May–July), there is no reliable
estimate of SIT distribution in the ESS. We therefore used
only in situ SIT data of autonomous ice mass balance (IMB)
buoys obtained near the ESS (Perovich et al., 2013). From
2011 to 2014, a total of four buoys are available in a single
year including the melting season (the period for each buoy is
listed in Table 1). To compare the two-dimensional SIT data
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Figure 1. Spatial distribution of climatological monthly mean
of SIT (centimetres) in July during 2011–2014: (a) PIOMAS,
(b) TOPAZ4 reanalysis and (c) their difference (centimetres). The
boundaries of the ESS and Arctic marginal seas are indicated in
panel (a) by thick and thin lines. In panel (a), the trajectories of
IMB buoys for 2011K, 2012I, 2012J and 2014B (see Table 1 for the
details of each buoy data) are shown by black, red, blue and green
dots.

with IMB buoy data, we regridded the gridded SIT data along
the IMB buoy trajectories. This comparison method is almost
identical to that adopted by Sato and Inoue (2018), who com-
pared IMB buoy data with SIT data of the NCEP–CFSR re-
analysis. Before comparing the gridded SIT data with IMB
buoy data in each grid point, we reconstructed these SIT data
on a 0.25◦ latitude–longitude grid by applying a bilinear in-
terpolation. The temporal and horizontal resolutions of the
observed and simulated SIT data are summarized in Table 1.

To examine the source of medium-range predictability
in the SIT distribution, we also used ECMWF atmospheric
forecast data on a 1.25◦ latitude–longitude grid from 2013 to
2016, derived from the THORPEX Interactive Grand Global
Ensemble through its data portal (http://tigge.ecmwf.int).
This data set is very similar to the atmospheric forecast data
used in the TOPAZ4 operational forecast system (Simonsen
et al., 2017). To examine the atmospheric forecast, we used
51 ensemble daily means of zonal and meridional wind speed
at 10 m height on the same days as the TOPAZ4 forecast data
at lead times of 0–10 days.

To evaluate the influence of sea ice conditions on vessel
speed in the ESS including the Laptev and Kara seas, we
used the vessel speed data derived from automatic identifi-
cation system (AIS) from two tankers during their passage
through the ESS on 4–26 July 2014, which were provided
by Shipfinder (http://jp.shipfinder.com/). The temporal reso-
lution is about 2 to 3 h, depending on the timing and relative
location of the satellite track and the ground-based receiver
station of the AIS signal. Their ice classes correspond to IA
Super in the Finnish–Swedish ice class rules, and these ves-
sels are capable of navigating sea ice regions in which SIT is
up to 50–90 cm. Both tankers were likely to be hindered con-
siderably by ice conditions, even when escorted by Russian
nuclear-powered icebreakers; thus these AIS data are con-
sidered suitable for a case study on the influence of SIT on
icebreaker speed.

3 Comparisons between TOPAZ4 and other available
SIT data

Figure 1a shows the spatial distribution of PIOMAS SIT in
July in the Arctic marginal seas of the Laptev Sea, ESS and
Chukchi Sea. The PIOMAS shows the tongue-like distribu-
tion of SIT, characterized by relatively thick ice (> 1.0 m),
extending from the North Pole to the ESS. Since in this re-
gion, sea ice motion tends to converge during winter (Kimura
et al., 2013), the sea ice is likely to increase in thickness
by ridging and rafting and thus remains until early the next
summer. These features are qualitatively simulated in the
TOPAZ4 reanalysis data (Fig. 1b). The PCC of the clima-
tological SIT between TOPAZ4 and PIOMAS in the Arctic
marginal seas (70–80◦ N, 120◦ E–160◦W, shown in Fig. 1a)
is larger than 0.9 from March to July. The PCCs of the clima-
tological SIT between TOPAZ4 and CS2SMOS from March
to April are 0.86 and 0.82, which are comparable to those of
PIOMAS (Table 2).

From the difference map of the climatological SIT be-
tween TOPAZ4 reanalysis data and PIOMAS output, the
TOPAZ4 SIT is thicker near the coast with∼ 50 cm (Fig. 1c),
although the SIT in the offshore region is underestimated.
These positive and negative biases compensate each other
and thus the mean bias of the TOPAZ4 SIT is 21 cm in July,
which is smaller than in winter (Table 3). The seasonal reduc-
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Table 1. List of observed and simulated sea ice thickness data sets.

Data sources Period Spatial resolution Time step

TOPAZ4
Reanalysis 2011–2014 12.5 km Daily

Forecast 2014–2016 12.5 km Daily

CS2SMOS 2011–2014 (October–April) ∼ 25 km 7 days

IMB

2011K 1 September 2011 to 14 May 2012

Pointwise Hourly2012I 14 August 2012 to 21 December 2012

2012J 25 August 2012 to 3 August 2013

2014B 26 March to 29 July 2014

PIOMAS 2011–2014 ∼ 0.8◦ Daily

Table 2. Pattern correlations of monthly mean climatologies of SIT
in TOPAZ4 with those in PIOMAS and CS2SMOS over the Arctic
marginal seas (Laptev, East Siberian and Chukchi seas).

Mar Apr May Jun Jul

PIOMAS 0.92 0.93 0.93 0.92 0.92
CS2SMOS 0.86 0.82 – – –

tion in the SIT bias in TOPAZ4 is also found in the compari-
son between the TOPAZ4 and CS2SMOS (Table 3). In fact, a
similar positive bias emerges in comparison with the climato-
logical SIT in CS2SMOS in April (Fig. 2). It should be noted
that a larger positive bias in TOPAZ4 is located solely in the
region of the Beaufort Gyre, with about 50 cm excess thick-
ness (Figs. 1c and 2c). In this region, both SIT data sets show
some negative bias relative to the independent SIT estimates
derived from US submarine data (Schweiger et al., 2011) and
airborne electromagnetic induction (EM) thickness measure-
ments (Ricker et al., 2017). This positive bias may be partly
related to the underestimation of PIOMAS and CS2SMOS
SITs.

Figure 3 shows the time series of daily mean SIT derived
from PIOMAS and TOPAZ4 reanalysis and 7-day mean SIT
derived from CS2SMOS, averaged over the ESS (70–80◦ N,
150–180◦ E, shown in Fig. 1a). The TOPAZ4 SIT data are
reasonably similar to the seasonal cycle of PIOMAS and
CS2SMOS data with maxima in April–May and minima in
October–November. In particular, the TOPAZ4 SIT is within
the standard deviation of the PIOMAS SIT anomaly in each
grid relative to the area-averaged value in early summer
(June–July). The monthly mean biases of TOPAZ4 SIT data
relative to PIOMAS in June and July are smaller than those
from March to May (Table 3). It should be noted that the
TOPAZ4 SIT data in 2011 are strongly underestimated in
early summer. This might be related to the persistence of the
negative bias until 2010 (Xie et al., 2017).

Table 3. Monthly mean biases of TOPAZ4 SIT in the ESS relative
to the CS2SMOS and PIOMAS SIT data.

SIT bias (cm) Mar Apr May Jun Jul

CS2SMOS −23 < 1 – – –
PIOMAS −65 −63 −56 −23 21

In the freezing season, the TOPAZ4 SIT in the ESS tends
to be thinner than the PIOMAS SIT and seems comparable
to the CS2SMOS SIT. The monthly mean biases of TOPAZ4
SIT relative to CS2SMOS SIT are−23 and< 1 cm in March
and April, respectively (Table 3). However, we should pay
attention to the possibility that the CS2SMOS SIT may be
underestimated in this region, because the CS2SMOS greatly
depends on the reliability of two merged SIT data, which are
CryoSat-2 and SMOS SIT products (Ricker et al., 2017). To
check the possibility that the CS2SMOS SIT has a negative
bias in this area, we briefly examined the ice type data which
were used for the determination of merged SIT products. In
the period from 2011 to 2013, the uncertainty of CS2SMOS
SIT is out of range for that of PIOMAS, but the CS2SMOS
SIT is comparable to that for PIOMAS in 2014 when the sea
ice is classified as multi-year ice (Fig. 3). This result implies
that the CS2SMOS SIT is underestimated in the ESS due to
the large fraction of SMOS SIT products, even in the sea ice
thicker than 1 m.

Finally, we compared the SIT data in TOPAZ4 with the in
situ observations available in and around the ESS. Although
the locations of these buoy data are not fully delimited in the
ESS focused on in this study, these data seem to be appropri-
ate for our purpose, because the range of the climatological
SIT in these region is similar to that in the ESS (Fig. 1a). The
direct comparison between the TOPAZ4 and IMB shows that
the mean bias and root mean square error of TOPAZ4 are
8.3 and 30 cm (Fig. 4). In particular, the TOPAZ4 SIT data
correspond well to IMB buoy data in 2014, which is near
the ESS in July (Fig. 1a and Table 1). These results support
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Figure 2. Spatial distribution of climatological monthly mean
of SIT (centimetres) in April during 2011–2014: (a) CS2SMOS,
(b) TOPAZ4 reanalysis and (c) their difference (centimetres).

the reliability of TOPAZ4 SIT data in the ESS in early sum-
mer. Thus, at least the overall spatial distribution of SIT in
the ESS is qualitatively simulated in the TOPAZ4 and the in-
herent negative bias is suppressed in early summer, which is
partly related to the compensation by the positive bias near
the shelf region of the ESS.

Years

ESS (70°–80° N, 150°–180° E)

Figure 3. Time series of daily mean SIT (centimetres) averaged
over the ESS (rectangular region denoted by black line in Fig. 1a)
derived from CS2SMOS (black), TOPAZ4 reanalysis (red) and PI-
OMAS (blue) from January 2011 to August 2014. For CS2SMOS
data, 7-day mean values are shown. The standard deviations of area-
averaged data are shown by vertical lines. The ice types (2: first-year
ice, 3: multi-year ice) used for the choice of satellite SIT retrievals
in CS2SMOS are shown by green bar. The scale for the ice type is
located on the right vertical axis.
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Figure 4. The comparisons of the daily mean SITs derived from
IMB buoy data with the corresponding SIT in TOPAZ4 reanalysis
data from 2011 to 2014 in and around the ESS. The SIT data are
resampled every 7 days. The regression lines for the IMB buoy data
and the reference unit line are shown by solid and dashed lines.
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Years

Figure 5. Spatial distribution of (a) monthly mean (colours) cli-
matological SIT (m) in the TOPAZ4 reanalysis and (b) the rms
variability of daily mean SIT (colours) in July during 2011–2014.
The monthly mean of climatological SIC (white contours) in July
is indicated in panel (a). The rectangular region enclosing the ESS
(70–80◦ N, 150–180◦ E) is shown in panel (b). (c) Time series of
monthly mean SIT (grey shading) and rms of TOPAZ4 reanalysis
(black line) averaged over the ESS. The scale of the rms is indi-
cated on the right axis.

4 Medium-range forecast of SIT distribution in the
ESS

In this section, we evaluate the prediction accuracy of SIT
based on the PCCs between the analysis and predicted data
in the ESS. However, before this evaluation, we examine the
mean fields and the variability of the SIT and SIC distribu-
tions in early summer. Figure 5a presents the spatial distribu-
tions of the climatological SIT and SIC in July, which show
that relatively thick sea ice (∼ 1 m) covers 50–70 % of the
ESS. Along the zone of the sea ice edge, the temporal stan-
dard deviation of the daily mean SIT anomaly is relatively
large with a maximum value of 0.6 m in the coastal region

Figure 6. The prediction accuracy (PCC) of the SIT forecast in the
ESS (70–80◦ N, 150–180◦ E) in each month obtained from (a) an
operational forecast model and (b) persistency of the initial value,
averaged from 2014 to 2016. The standard deviations of the PCCs
are shown with white contours. In panel (c), the fraction of variance
explained by operational forecast relative to the persistency (%) is
shown by the contour (the region where the fraction is larger than
10 % is shaded).

(Fig. 5b), and the area-averaged value is at maximum in July–
August (Fig. 5c). Since the SIT reduction rate in the ESS is
strongest in these months (Fig. 5c) and the storm activity is
prevalent for periods of several days (Orsolini and Sorteberg,
2009), it is likely that dynamical and thermodynamically in-
duced SIT variations are large. Note that the rms of the SIC
anomaly averaged over the ESS also shows a similar sea-
sonal cycle (not shown). Thus, it is meaningful to examine
the medium-range predictability of early summer SIT distri-
bution in the ESS.

Figure 6a shows the seasonal dependency of PCC between
the predicted and analysed SIT at lead times of 0–9 days. We
found that the overall prediction accuracy is relatively low
in the warm season (June–September), with a larger spread
compared with the cold season (October–May). This result
is roughly consistent with the larger variance in the SIT
anomaly in the warm season in the ESS (Fig. 5c). A large
portion of the prediction accuracy at lead times of 0–3 days
can be explained by the persistency effect based on the initial
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Figure 7. PCCs between forecast and analysis (a) SIT, (b) zonal
and meridional ice speed, and (c) zonal and meridional surface wind
speed from operational TOPAZ4 data in early summer (June–July)
averaged over 2014–2016. Error bar indicates the standard deviation
of the PCCs.

SIT (Fig. 6b). The contribution of the operational model on
the forecast is less than 5 % at shorter timescales (< 3 days)
(Fig. 6c), but the contribution of the operational model grad-
ually increases at longer lead times except in May and Oc-
tober. In July, the contribution of the operational model on
the prediction accuracy reaches ∼ 15 % at 7-day lead times.
These results indicate that the operational model substan-
tially improves the medium-range prediction accuracy of the
SIT distribution in summer.

Figure 7a shows the PCC of SIT distribution averaged in
early summer (June–July). The SIT distribution is predicted
accurately for a lead time of up to 3 days (Fig. 7a); how-
ever, the prediction accuracy decreases abruptly at a lead
time of 4 days, in which the standard deviation is also rel-
atively large. Such an abrupt reduction in the prediction ac-
curacy and the enhanced standard deviation are also found
in May and September, although the absolute values of the
reduction rates are smaller than in July. Since the influence

of sea ice melt is small in these months (Fig. 5c), the abrupt
reduction in early summer SIT prediction accuracy might be
attributable to dynamical advection of sea ice.

To examine the influence of dynamical processes on the
prediction accuracy of early summer SIT distribution, we
consider the prediction accuracy of sea ice velocities and
surface wind velocities. The prediction accuracy of sea ice
velocity stays on a high level (> 0.8) with small spread for
a lead time of up to 3 days, but decreases down to 0.6–0.7
for a lead time of 4 days (Fig. 7b). The early summer pre-
diction accuracy of surface wind speed also shows the same
abrupt decrease at a lead time of 4 days, and the rate of de-
crease in prediction accuracy is larger in meridional direction
(Fig. 7c). Since the SIT distribution has a tongue-like distri-
bution (Fig. 5a), it is suggested that the meridional compo-
nent of SIT advection is sensitive to the sea ice transport in
ice edges, which influences the SIT distribution in the ESS.
These results confirm that the prediction accuracy of the sea
ice velocities are strongly related to those of surface wind
speeds in the ESS.

Figure 8 shows the temporal evolutions of SIT and ice ve-
locity for analysis and a forecast bulletin starting from 2 July
2015, which is a typical case of the abrupt decrease in the
prediction accuracy of SIT as well as sea ice velocities for
a lead time of 4 days (Fig. 8; lower panel). For lead times
of +0 (2 July) to +2 days (4 July), the spatial distributions
of SIT and ice velocity are predicted accurately with only
small differences between them (Fig. 8c). At a lead time of
+4 days (6 July), the analysed sea ice velocity is directed
northwestward in the ESS, which is related to the cyclonic
circulation over the Novosibirsk Islands; however, the pre-
dicted sea ice velocity is directed southwestward. At a lead
time of +6 days, the predicted and analysed sea ice veloci-
ties are largely unrelated. The resultant onshore anomaly of
sea ice velocity leads to positive and negative anomalies in
SIT in the coastal and offshore regions, respectively. We also
examined the time evolutions of the surface wind velocities
in the atmospheric forecast data and found them very similar
to the sea ice velocity fields (not shown). These results indi-
cate that the abrupt reduction in the prediction accuracy of
early summer SIT in the ESS is related to a deficiency in the
prediction of Arctic cyclone formation.

Further, we examine diagnostically the ice drift speed and
direction based on a classical free-drift theory (Leppäranta,
2005), using the sea ice speed of TOPAZ4 reanalysis data
and ERA-Interim atmospheric wind data in July 2011–2014.
The general solution of sea ice speed (u) can be described as
complex numbers:

u= αe−iθUa+Uwg, (2)

where Ua and Uwg are the wind speed and geostrophic wa-
ter velocities. The terms α and θ are the wind factor and the
deviation angle of ice motion from the surface wind, where
a positive angle is in anticlockwise direction. If we neglect

The Cryosphere, 12, 2005–2020, 2018 www.the-cryosphere.net/12/2005/2018/



T. Nakanowatari et al.: Medium-range predictability of TOPAZ4 sea ice thickness 2013

(a) (b) (c)

Figure 8. Temporal evolution of SIT (centimetres; colours) and ice velocity (m s−1; vectors) distribution for the (a) analysis, (b) forecast
and (c) the difference between the forecast and analysis at increasing lead times from +0 days to +6 days initialized on 2 July 2015. The
corresponding PCCs for the SIT (black), zonal (red) and meridional ice speeds (blue) in the ESS (right-lower panel of the time evolution) are
shown in the lower panel. The scale for the PCCs of the zonal and meridional ice speeds is indicated on the right axis.

the geostrophic water velocity Uwg, the wind factor and de-
viation angle can be obtained in the following form:

α4
+ 2sinθwRNaα3

+R2Na2α2
−Na4

= 0, (3)

θ = arctan
(

tanθw+
RNa
α cosθw

)
− θa, (4)

where θw and θa are the boundary layer turning angles of wa-
ter and air. The turning angle θ is the angle between the vec-
tors of the ice–water stress and the sea ice motion, which is a
consequence of the viscous effect within the ocean boundary
layer. The Nansen number Na is defined by

√
ρaCa/ρwCw,

where ρa and ρw represent the densities of air and water, and

Ca and Cw are air and water drag coefficients. The Rossby
number R is defined by (ρhicef )/(ρwCwNa |Ua|), where ρ
is the ice density, f is the Coriolis parameter, and |Ua| is the
speed of the surface wind. To calculate the wind factor α and
the deviation angle θ under a given surface wind speed, we
used constant parameters ofCa = 1.2×10−3,Cw = 5×10−3,
ρa = 1.3 kg m−3, ρw = 1026 kg m−3, ρ = 910 kg m−3, f =
1.3×10−4 s−1 and θw = 20◦, which are values typical of the
Arctic Ocean (McPhee, 2012). The value of α was calculated
numerically from a fourth-order polynomial (Eq. 3).

On a first order approximation, the daily mean sea ice
speed is linearly proportional to the surface wind speed (10 m
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Figure 9. (a) Relationship between 10 m wind speed (m s−1) in
the ERA-Interim reanalysis data and sea ice speed (m s−1) in the
TOPAZ4 reanalysis averaged over a part of the ESS (72–76◦ N,
150–170◦ E) during 1–31 July 2011–2014. Broken and solid lines
indicate the regression line of ice speed on 10 m wind speed (y =
0.0224x−0.0112) and the theoretical ice speed estimated based on
classical free-drift theory. (b) Angle (degrees) of sea ice velocity
relative to surface wind vectors averaged over the ESS. Positive val-
ues indicate that sea ice drift is to the right of the wind direction.
Solid curve indicates the wind–ice velocity angle estimated based
on classical free-drift theory.

height) averaged over a part of the ESS (Fig. 9a). The cor-
relation between them is 0.96, which is significant at the
99 % confidence level, based on the Monte Carlo simula-
tion (Kaplan and Glass, 1995). The regression coefficient of
ice speed for the 10 m wind speed is 0.022, which is consis-
tent with the well-known 2 % relationship between the speed
of ice and the surface wind speed (Thorndike and Colony,
1982). The number of days of the TOPAZ4 ice speed data
within ±20 % of the theoretical value is 79, which account
for 63 % of the total analysed period. Note that the observed
regression coefficient is somewhat larger than the theoreti-
cal value (0.018) averaged over the range of surface wind
speed of 2–10 m s−1 calculated from Eq. (2). Since the clas-
sical free-drift theory (Leppäranta, 2005) neglects both the
Ekman layer velocity and the ocean geostrophic velocity, the
absence of an ice–ocean boundary layer is likely to underesti-
mate the wind-induced ice velocity (Park and Stewart, 2016).
The deviation angle of sea ice motion in TOPAZ4 is esti-
mated as 20–40◦ under the wind condition > 5 m s−1, but it

gradually increases to 40–70◦ under weaker wind conditions
of < 5 m s−1 (Fig. 9b). The decrease in the deviation angle
as the surface wind strengthens is also consistent with ear-
lier studies (Thorndike and Colony, 1982). These observed
deviation angles are comparable with their theoretical val-
ues calculated using Eq. (4). The finding that the estimated
values of the wind factor and the deviation angle are approx-
imately within the range of typical surface wind parameters
(i.e. 2 % for the wind factor and 30◦ for the deviation angle)
in the Arctic Ocean confirms that sea ice velocity in the ESS
is controlled predominantly by wind stress drag; thus the in-
fluence of ocean currents is not essential.

It is interesting that the prediction accuracy of SIT in early
summer remains at ∼ 0.9 for the PCC core at lead times of
more than 4 days (Fig. 7a), despite the poorer prediction ac-
curacy of sea ice velocity (Fig. 7b). This suggests that the SIT
prediction accuracy after a lead time of 4 days is not strongly
attributed to the dynamical process but rather the thermody-
namic process (i.e. the melting process of sea ice). To evalu-
ate the effect of sea ice melting on SIT prediction accuracy,
we roughly estimated the thermodynamic SIT change based
on a simple sea ice melting model, as follows:

hp (t)= ha (t0)+1t × dh/dt, (5)

where hp is the predicted thermodynamic SIT change, ha is
the initial condition, which is derived from the analysis SIT,
and dh/dt is the rate of reduction in SIT due to sea ice melt-
ing. It is known that the summertime surface heat flux in the
Pacific sector of the Arctic Ocean is dominated by the short-
wave radiation flux (Perovich et al., 2007; Steele et al., 2008).
Recently, the seasonal evolution of sea ice retreat in early
summer has been found to be explained well by a simplified
ice–ocean coupled model, in which shortwave radiation is as-
sumed constant (Kashiwase et al., 2017). Therefore, for the
melting rate of the SIT in each year, we used the reduction
rate of SIT calculated from the climatological analysis SIT
data during 2013–2016, which is likely to reflect the typi-
cal thermodynamic melting rate in recent years and the SIT
change due to transient sea ice advection seems to be negli-
gible. Here, we also evaluate the prediction accuracy of the
persistency in the initial SIT in the ESS (first term of the RHS
in Eq. 5).

Figure 10 shows the prediction accuracy of early summer
SIT distribution in the ESS based on simple sea ice melt-
ing and persistency models. The prediction accuracy of the
simple melting model, which is lower than the full physics
model, is very similar to that of the persistency model up to
3 days. However, the prediction accuracy of the simple melt-
ing model is comparable with that of the full physics model
after a lead time of 4 days, which is higher than that of per-
sistency. Figure 11 shows the temporal evolutions of the SIT
difference between the forecast and analysis data in each pre-
diction model in the period 2–9 July 2015. From the lower
panel of Fig. 11, we found that the prediction accuracy of the
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Figure 10. The PCCs between forecast and analysis SIT from the
full physics model (black), persistency (red) and a simple melting
model (blue) in early summer (June–July) averaged from 2014 to
2016. Error bar indicates the standard deviation of the PCCs.

full physics model is higher than the simple melting and per-
sistency models for lead times of 0–5 days but comparable
with the prediction accuracy of the simple melting model at
longer lead times (> 6 days). In the SIT difference map of the
full-physics model minus the operational analysis, a positive
anomaly (i.e. overestimation of SIT) is evident along the sea
ice edge at a lead time of 4 days and then gradually increases
to a lead time of 8 days. For the case of the simple melt-
ing model, a similar positive anomaly emerges at a lead time
of 4 days, but the positive anomaly appears stationary along
the coastal region, in contrast to the full physics model. The
persistency model overestimates SIT over the entire region
during the prediction. These results support the idea that the
melting process is important in the prediction of early sum-
mer SIT over longer timescales.

5 Case study of ice-blocked incident in the ESS in July
2014

From the perspective of operational application of the
TOPAZ4 sea ice data on the maritime navigation of the
NSR, we briefly examine the relationship between the sea
ice conditions and AIS vessel speed data for the case of
an ice-blocking incident involving two vessels based on the
TOPAZ4 reanalysis data. Figure 12 shows the vessel tracks
during 4–30 July 2014, when the two vessels became blocked
in the ESS for about 1 week. During this period, SIT in ex-
cess of 100 cm is found in the ESS with a maximum thick-
ness of 150 cm. A joint statistical analysis of the daily mean
SIT in the TOPAZ4 reanalysis and the vessel speed along
the route indicates that vessel speed is significantly anticor-
related with SIT (−0.56) during the entire passage (Fig. 13a),
which is significant at the 99 % confidence level based on a
Monte Carlo technique (Kaplan and Glass, 1995). We also

examined the corresponding SIC data in TOPAZ4 reanalysis
data, but the correlation between the vessel speed and SIC
is −0.41 (Fig. 13b), which is insignificant at the 99 % con-
fidence level. The scatter plots for SIC indicate that the SIC
value is partly insensitive to the vessel speed higher than 5 kn.
Thus, these results suggest that the vessel speed was influ-
enced by sea ice stress due to SIT and indirectly supports the
reliability of the daily mean SIT of the TOPAZ4 reanalysis
data in the ESS in early summer.

6 Summary and discussion

In this study, the medium-range forecast of early summer
SIT distribution in the ESS was evaluated using the TOPAZ4
data assimilation system. Comparisons between the opera-
tional model, observations and TOPAZ4 reanalysis SIT data
showed that the TOPAZ4 reanalysis qualitatively reproduces
the tongue-like distribution of SIT in the ESS in early sum-
mer and its seasonal variation (maximum in April–May and
minimum in October–November), including the rates of ad-
vance and melting of sea ice in the ESS). Although in this
region, the inherent negative bias of SIT in TOPAZ4 is rela-
tively large in March–May, the bias is reduced in early sum-
mer (June–July) within ∼ ± 20 cm due to the excess of SIT
along the coastal region in the ESS. The TOPAZ4 SIT data
also correspond well to IMB buoy data in and around the ESS
with a mean bias of ∼ 9 cm and a root mean square error of
∼ 30 cm. Thus, the TOPAZ4 SIT data could be considered
to be reliable estimates for the ESS even in the absence of
satellite observations in summer.

For the positive bias of the SIT in TOPAZ4 along the
coastal region of the ESS, there is a possibility that the SIT
estimates (PIOMAS and CS2SMOS) used for the compari-
son are themselves underestimated. Schweiger et al. (2011)
pointed out that the SIT of PIOMAS is underestimated by
−17 cm in the basin area of the Arctic Ocean, including the
Beaufort Sea where the heavily deformed sea ice formation
occurs. Also, it was reported that the CS2SMOS SIT data
tend to underestimate SIT in regions where multi-year ice
and first-year ice are formed, due to the relative accuracy of
CryoSat-2 and SMOS and the merging algorithm (Ricker et
al., 2017). Since in the ESS, sea ice motion strongly con-
verges during winter (Kimura et al., 2013), there is a pos-
sibility that the sea ice in the ESS is also heavily deformed
in sea ice thicker than 1 m along the coastal region. In fact,
our analysis based on the AIS data suggests that SIT in ex-
cess of 100 cm is found near the coast of the ESS. Thus, for
a precise evaluation of the SIT distribution in the ESS, the
further improvement in ice-type as well as denser in situ SIT
measurements are needed.

The prediction accuracy of the SIT distribution in the
TOPAZ4 forecast system was examined in the ESS using a
pattern correlation analysis. Although the prediction accu-
racy was relatively low in early summer (June–July), with a
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(a) (b) (c)

Figure 11. Temporal evolution of SIT differences (centimetres; colours) between the forecast and analysis data at lead times increasing from
+2 to+8 days, initialized on 2 July 2015. In each panel, the sea ice edge of the analysis, defined by 30 % SIC, is shown. Corresponding PCCs
for the full physics model (black), a simple melting model (red) and persistency (blue) in the ESS (right-lower panel of the time evolution)
are shown in the lower panel.

large spread, the SIT distribution was predicted accurately
for a lead time of up to 3 days, and the prediction accu-
racy drops abruptly after the fourth day. A similar change in
prediction accuracy was also found for sea ice velocity and
surface wind speed over the ESS. Diagnostic analysis of the
sea ice velocity variability revealed that the early summer ice
speed and direction over the EES could be explained well by
the free-drift mechanism with a wind factor of 2.2 % and a
deviation angle of 30–50◦. Their results suggested that the
large reduction in prediction accuracy could be attributed to
the process of dynamical advection of sea ice; thus the pre-
diction of early summer SIT distribution will depend on the

precise prediction of the surface wind. Our comprehensive
analysis supports an earlier study that suggested the dynami-
cal processes have an essential role in the prediction accuracy
of sea ice distribution on short timescales (Ono et al., 2016).

The time evolution of SIT and the related ice velocity re-
lates the large difference between the forecast and analysis
data at a lead time of 4 days to the low forecasts for an
Arctic cyclone event. Jung and Matsueda (2016) highlighted
that large-scale atmospheric fluctuations in the Arctic region
in winter are predicted accurately for lead times of up to
5 days in the operational forecast system, which is very sim-
ilar to the prediction accuracy in midlatitude regions. How-
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Figure 12. Trajectory of the two tankers over the ESS based on
AIS data. The routes cross the ESS from the Laptev Sea on 4 July
2014 to the port of Yamal on 31 July 2014 via the port of Pevek on
20 July 2014. The forward route is highlighted by green circles. The
SIT (centimetres; colours) and SIC (%; contours) averaged over the
period of the forward route are shown.

ever, Yamagami et al. (2018) reported that the prediction of
Arctic cyclones generated in summer is limited to 4 days,
which is shorter than is the case for the midlatitudes (Froude,
2010). As this area is located near the transit zone of summer-
time storm tracks generated over Eurasia (Serreze and Barry,
1988), the predictability of Arctic cyclones could be an im-
portant factor in the determination of the lead time of sur-
face wind speed and thus of the SIT distribution in the ESS.
The low prediction accuracy of the meridional wind and ice
speed suggested that the meridional component of sea ice ad-
vection contributes substantially to the SIT distribution in the
ESS. Since it was reported that additional radiosonde obser-
vations over the Arctic Ocean have considerable impact on
the prediction accuracy in synoptic-scale fluctuations (Inoue
et al., 2015; Yamazaki et al., 2015), additional radiosonde
observations acquired over the Arctic Ocean could lead to a
further extension of the lead time for medium-range forecast
of SIT distribution.

Based on sensitivity experiments using a simple melt-
ing and a persistency model, it was found that the longer
timescale prediction of SIT in early summer could be at-
tributed to the thermodynamic melting process. As the short-
wave radiation flux is maximum in early summer (June–
July), the change in SIT due to the advection in relation
to synoptic-scale atmospheric fluctuations is likely to be
smaller than the thermodynamic SIT reduction along the
sea ice edge. Although the recognition of the importance
of the thermodynamic melting process on sea ice prediction
on seasonal timescales has been pointed out by earlier stud-
ies (Kimura et al., 2013; Bushuk et al., 2017; Kashiwase et
al., 2017), our study clarified that the influence has a sub-
stantial role on the medium-range forecast of early summer
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Figure 13. Scatter plots of hourly vessel speeds (knots) and (a) daily
mean SIT (centimetres) and (b) SIC (%) in TOPAZ4 reanalysis
from 4–30 July 2014. In each panel, the regression line of vessel
speed for each variable is shown by a broken line.

SIT distribution. Thus, the influence of sea ice advection on
early summer sea ice prediction is limited to a lead time of
4–5 days, but is dominated by the thermodynamic melting
process at a later stage of the lead times. In other words, the
SIT prediction accuracy in early summer is not necessarily
worse at the longer timescale. It is noteworthy that the dy-
namical process is not unimportant for long-term prediction
in the SIT distribution in early summer, because the predic-
tion accuracy at a lead time of 3 days is important as the ini-
tial conditions for the melting process dominated for a lead
time of more than 4 days. Thus, it is concluded that the at-
mospheric prediction accuracy for a lead time of up to 3 days
contributes to the short and medium-range estimates of the
SIT distribution in early summer.

In view of the operational application of the TOPAZ4 sea
ice data to the navigation in NSR, this study found that dur-
ing an ice-blocking event that affected two tankers in the ESS
in July 2014, significant SIT (∼ 150 cm) was simulated over
the ESS by TOPAZ4. Given that the SIT is found to be un-
derestimated by 20 cm in TOPAZ4, the true SIT is expected
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to be above 150 cm. Statistical analysis suggested that vessel
speed was significantly anticorrelated with the daily mean
SIT variations (−0.56) rather than the SIC (−0.41). This re-
sult demonstrated the reliability of the early summer SIT dis-
tribution in the TOPAZ4 reanalysis data and its high potential
for operational use in support of maritime navigation of the
NSR. However, this result was only based on a case study
of two ships in July 2014. To clarify the determinant factor
on vessel speed, comprehensive statistical analysis will be
needed based on the speed data of different types of vessel.

Future projections for storm track activity (intensity and
number) under the scenario of Arctic climate change have
been addressed by several researchers. For example, based
on control experiments using climate models, Bengtsson et
al. (2006) found that summertime storm activity is expected
to increase. Orsolini and Sorteberg (2009) found that the
number of storms, particularly along the Eurasian Arctic
coast, could increase in the future because of the local en-
hancement of the meridional temperature gradient between
the Arctic Ocean and the warmed Eurasian continent. Nishii
et al. (2015) supported their findings based on analyses us-
ing the CMIP3 and CMIP5 global climate model simula-
tions, although they highlighted that the CMIP projections
had considerable uncertainty. Thus, further investigations of
the formation and the development mechanisms of summer-
time Arctic cyclones are needed for the improvement of the
prediction accuracy of atmospheric wind conditions, which
are responsible for the forecast of early summer sea ice dis-
tribution over 4 days.

Data availability. TOPAZ4 reanalysis and forecast data sets are
available for download at http://marine.copernicus.eu/ (last ac-
cess: 29 December 2016). The PIOMAS SIT data are available
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