Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-989-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-989-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Process-level model evaluation: a snow and heat transfer metric
Andrew G. Slater
CORRESPONDING AUTHOR
NSIDC/CIRES, University of Colorado, Boulder, CO 80303, USA
deceased, September 2016
David M. Lawrence
National Center for Atmospheric Research, Boulder, CO 80305, USA
Charles D. Koven
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Related authors
No articles found.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356, https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated zero emissions commitment due to emissions rates exceeding historical levels.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2460, https://doi.org/10.5194/egusphere-2024-2460, 2024
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the CMIP6-LUMIP project. We found that LUC-induced carbon emissions contribute to a BGC warming of 0.20 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasise the need for improved representations of LUC processes.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Kirsten L. Findell, Zun Yin, Eunkyo Seo, Paul A. Dirmeyer, Nathan P. Arnold, Nathaniel Chaney, Megan D. Fowler, Meng Huang, David M. Lawrence, Po-Lun Ma, and Joseph A. Santanello Jr.
Geosci. Model Dev., 17, 1869–1883, https://doi.org/10.5194/gmd-17-1869-2024, https://doi.org/10.5194/gmd-17-1869-2024, 2024
Short summary
Short summary
We outline a request for sub-daily data to accurately capture the process-level connections between land states, surface fluxes, and the boundary layer response. This high-frequency model output will allow for more direct comparison with observational field campaigns on process-relevant timescales, enable demonstration of inter-model spread in land–atmosphere coupling processes, and aid in targeted identification of sources of deficiencies and opportunities for improvement of the models.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Katherine Dagon, Benjamin M. Sanderson, Rosie A. Fisher, and David M. Lawrence
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, https://doi.org/10.5194/ascmo-6-223-2020, 2020
Short summary
Short summary
Uncertainties in land model projections are important to understand in order to build confidence in Earth system modeling. In this paper, we introduce a framework for estimating uncertain land model parameters with machine learning. This method increases the computational efficiency of this process relative to traditional hand tuning approaches and provides objective methods to assess the results. We further identify key processes and parameters that are important for accurate land modeling.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Christian G. Andresen, David M. Lawrence, Cathy J. Wilson, A. David McGuire, Charles Koven, Kevin Schaefer, Elchin Jafarov, Shushi Peng, Xiaodong Chen, Isabelle Gouttevin, Eleanor Burke, Sarah Chadburn, Duoying Ji, Guangsheng Chen, Daniel Hayes, and Wenxin Zhang
The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, https://doi.org/10.5194/tc-14-445-2020, 2020
Short summary
Short summary
Widely-used land models project near-surface drying of the terrestrial Arctic despite increases in the net water balance driven by climate change. Drying was generally associated with increases of active-layer depth and permafrost thaw in a warming climate. However, models lack important mechanisms such as thermokarst and soil subsidence that will change the hydrological regime and add to the large uncertainty in the future Arctic hydrological state and the associated permafrost carbon feedback.
Altug Ekici, Hanna Lee, David M. Lawrence, Sean C. Swenson, and Catherine Prigent
Geosci. Model Dev., 12, 5291–5300, https://doi.org/10.5194/gmd-12-5291-2019, https://doi.org/10.5194/gmd-12-5291-2019, 2019
Short summary
Short summary
Ice-rich permafrost thaw can create expanding thermokarst lakes as well as shrinking large wetlands. Such processes can have major biogeochemical implications and feedbacks to climate systems by altering the pathways and rates of permafrost carbon release. We developed a new model parameterization that allows a direct representation of surface water dynamics with subsidence. Our results show increased surface water fractions around western Siberian plains and northeastern territories of Canada.
Chris D. Jones, Thomas L. Frölicher, Charles Koven, Andrew H. MacDougall, H. Damon Matthews, Kirsten Zickfeld, Joeri Rogelj, Katarzyna B. Tokarska, Nathan P. Gillett, Tatiana Ilyina, Malte Meinshausen, Nadine Mengis, Roland Séférian, Michael Eby, and Friedrich A. Burger
Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019, https://doi.org/10.5194/gmd-12-4375-2019, 2019
Short summary
Short summary
Global warming is simply related to the total emission of CO2 allowing us to define a carbon budget. However, information on the Zero Emissions Commitment is a key missing link to assess remaining carbon budgets to achieve the climate targets of the Paris Agreement. It was therefore decided that a small targeted MIP activity to fill this knowledge gap would be extremely valuable. This article formalises the experimental design alongside the other CMIP6 documentation papers.
Elias C. Massoud, Chonggang Xu, Rosie A. Fisher, Ryan G. Knox, Anthony P. Walker, Shawn P. Serbin, Bradley O. Christoffersen, Jennifer A. Holm, Lara M. Kueppers, Daniel M. Ricciuto, Liang Wei, Daniel J. Johnson, Jeffrey Q. Chambers, Charlie D. Koven, Nate G. McDowell, and Jasper A. Vrugt
Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, https://doi.org/10.5194/gmd-12-4133-2019, 2019
Short summary
Short summary
We conducted a comprehensive sensitivity analysis to understand behaviors of a demographic vegetation model within a land surface model. By running the model 5000 times with changing input parameter values, we found that (1) the photosynthetic capacity controls carbon fluxes, (2) the allometry is important for tree growth, and (3) the targeted carbon storage is important for tree survival. These results can provide guidance on improved model parameterization for a better fit to observations.
Jennifer W. Harden, Jonathan A. O'Donnell, Katherine A. Heckman, Benjamin N. Sulman, Charles D. Koven, Chien-Lu Ping, and Gary J. Michaelson
SOIL Discuss., https://doi.org/10.5194/soil-2018-41, https://doi.org/10.5194/soil-2018-41, 2019
Revised manuscript not accepted
Short summary
Short summary
We examined changes in soil carbon (C) associated with permafrost thaw, warming, and ecosystem shifts using a space-for-time study. Soil C turnover was estimated for soil C fractions using soil C and radiocarbon data. Observations informed a simple model to track soil C change over time. Both losses and gains of soil C occur in the profile due to shifts in C among density-separated fractions. Thawing initially resulted in C gains to mineral soil and eventually C losses as warming persists.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Ashehad A. Ali, Yuanchao Fan, Marife D. Corre, Martyna M. Kotowska, Evelyn Hassler, Fernando E. Moyano, Christian Stiegler, Alexander Röll, Ana Meijide, Andre Ringeler, Christoph Leuschner, Tania June, Suria Tarigan, Holger Kreft, Dirk Hölscher, Chonggang Xu, Charles D. Koven, Rosie Fisher, Edzo Veldkamp, and Alexander Knohl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-236, https://doi.org/10.5194/gmd-2018-236, 2018
Revised manuscript not accepted
Short summary
Short summary
We used carbon-use and water-use related datasets of small-holder rubber plantations from Jambi province, Indonesia to develop and calibrate a rubber plant functional type for the Community Land Model (CLM-rubber). Increased sensitivity of stomata to soil water stress and enhanced respiration costs enabled the model to capture the magnitude of transpiration and leaf area index. Including temporal variations in leaf life span enabled the model to better capture the seasonality of leaf litterfall.
Xiyan Xu, William J. Riley, Charles D. Koven, and Gensuo Jia
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-257, https://doi.org/10.5194/bg-2018-257, 2018
Preprint withdrawn
Nicholas C. Parazoo, Charles D. Koven, David M. Lawrence, Vladimir Romanovsky, and Charles E. Miller
The Cryosphere, 12, 123–144, https://doi.org/10.5194/tc-12-123-2018, https://doi.org/10.5194/tc-12-123-2018, 2018
Short summary
Short summary
Carbon models suggest the permafrost carbon feedback (soil carbon emissions from permafrost thaw) acts as a slow, unobservable leak. We investigate if permafrost temperature provides an observable signal to detect feedbacks. We find a slow carbon feedback in warm sub-Arctic permafrost soils, but potentially rapid feedback in cold Arctic permafrost. This is surprising since the cold permafrost region is dominated by tundra and underlain by deep, cold permafrost thought impervious to such changes.
Wei Li, Philippe Ciais, Shushi Peng, Chao Yue, Yilong Wang, Martin Thurner, Sassan S. Saatchi, Almut Arneth, Valerio Avitabile, Nuno Carvalhais, Anna B. Harper, Etsushi Kato, Charles Koven, Yi Y. Liu, Julia E.M.S. Nabel, Yude Pan, Julia Pongratz, Benjamin Poulter, Thomas A. M. Pugh, Maurizio Santoro, Stephen Sitch, Benjamin D. Stocker, Nicolas Viovy, Andy Wiltshire, Rasoul Yousefpour, and Sönke Zaehle
Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-5053-2017, https://doi.org/10.5194/bg-14-5053-2017, 2017
Short summary
Short summary
We used several observation-based biomass datasets to constrain the historical land-use change carbon emissions simulated by models. Compared to the range of the original modeled emissions (from 94 to 273 Pg C), the observationally constrained global cumulative emission estimate is 155 ± 50 Pg C (1σ Gaussian error) from 1901 to 2012. Our approach can also be applied to evaluate the LULCC impact of land-based climate mitigation policies.
Henrique F. Duarte, Brett M. Raczka, Daniel M. Ricciuto, John C. Lin, Charles D. Koven, Peter E. Thornton, David R. Bowling, Chun-Ta Lai, Kenneth J. Bible, and James R. Ehleringer
Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, https://doi.org/10.5194/bg-14-4315-2017, 2017
Short summary
Short summary
We evaluate the Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site that is subjected to water stress each summer. We found that, after calibration, CLM was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress. This study demonstrates that carbon isotopes can expose structural weaknesses in CLM and provide a key constraint that may guide future model development.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Brett Raczka, Henrique F. Duarte, Charles D. Koven, Daniel Ricciuto, Peter E. Thornton, John C. Lin, and David R. Bowling
Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, https://doi.org/10.5194/bg-13-5183-2016, 2016
Short summary
Short summary
We use carbon isotopes of CO2 to improve the performance of a land surface model, a component with earth system climate models. We found that isotope observations can provide important information related to the exchange of carbon and water from vegetation driven by environmental stress from low atmospheric moisture and nitrogen limitation. It follows that isotopes have a unique potential to improve model performance and provide insight into land surface model development.
Fang Zhao, Ning Zeng, Ghassem Asrar, Pierre Friedlingstein, Akihiko Ito, Atul Jain, Eugenia Kalnay, Etsushi Kato, Charles D. Koven, Ben Poulter, Rashid Rafique, Stephen Sitch, Shijie Shu, Beni Stocker, Nicolas Viovy, Andy Wiltshire, and Sonke Zaehle
Biogeosciences, 13, 5121–5137, https://doi.org/10.5194/bg-13-5121-2016, https://doi.org/10.5194/bg-13-5121-2016, 2016
Short summary
Short summary
The increasing seasonality of atmospheric CO2 is strongly linked with enhanced land vegetation activities in the last 5 decades, for which the importance of increasing CO2, climate and land use/cover change was evaluated in single model studies (Zeng et al., 2014; Forkel et al., 2016). Here we examine the relative importance of these factors in multiple models. Our results highlight models can show similar results in some benchmarks with different underlying regional dynamics.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
Chris D. Jones, Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charlie Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and Sönke Zaehle
Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, https://doi.org/10.5194/gmd-9-2853-2016, 2016
Short summary
Short summary
How the carbon cycle interacts with climate will affect future climate change and how society plans emissions reductions to achieve climate targets. The Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) is an endorsed activity of CMIP6 and aims to quantify these interactions and feedbacks in state-of-the-art climate models. This paper lays out the experimental protocol for modelling groups to follow to contribute to C4MIP. It is a contribution to the CMIP6 GMD Special Issue.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
Q. Zhu, W. J. Riley, J. Tang, and C. D. Koven
Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016, https://doi.org/10.5194/bg-13-341-2016, 2016
Short summary
Short summary
Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers based on enzyme kinetics theory. Our model provides an ecologically consistent representation of nutrient competition appropriate for land biogeochemical models integrated in Earth system models.
G. Murray-Tortarolo, P. Friedlingstein, S. Sitch, V. J. Jaramillo, F. Murguía-Flores, A. Anav, Y. Liu, A. Arneth, A. Arvanitis, A. Harper, A. Jain, E. Kato, C. Koven, B. Poulter, B. D. Stocker, A. Wiltshire, S. Zaehle, and N. Zeng
Biogeosciences, 13, 223–238, https://doi.org/10.5194/bg-13-223-2016, https://doi.org/10.5194/bg-13-223-2016, 2016
Short summary
Short summary
We modelled the carbon (C) cycle in Mexico for three different time periods: past (20th century), present (2000-2005) and future (2006-2100). We used different available products to estimate C stocks and fluxes in the country. Contrary to other current estimates, our results showed that Mexico was a C sink and this is likely to continue in the next century (unless the most extreme climate-change scenarios are reached).
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
R. A. Fisher, S. Muszala, M. Verteinstein, P. Lawrence, C. Xu, N. G. McDowell, R. G. Knox, C. Koven, J. Holm, B. M. Rogers, A. Spessa, D. Lawrence, and G. Bonan
Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, https://doi.org/10.5194/gmd-8-3593-2015, 2015
Short summary
Short summary
Predicting the distribution of vegetation under novel climates is important, both to understand how climate change will impact ecosystem services, but also to understand how vegetation changes might affect the carbon, energy and water cycles. Historically, predictions have been heavily dependent upon observations of existing vegetation boundaries. In this paper, we attempt to predict ecosystem boundaries from the ``bottom up'', and illustrate the complexities and promise of this approach.
C. D. Koven, J. Q. Chambers, K. Georgiou, R. Knox, R. Negron-Juarez, W. J. Riley, V. K. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones
Biogeosciences, 12, 5211–5228, https://doi.org/10.5194/bg-12-5211-2015, https://doi.org/10.5194/bg-12-5211-2015, 2015
Short summary
Short summary
Terrestrial carbon feedbacks are a large uncertainty in climate change. We separate modeled feedback responses into those governed by changed carbon inputs (productivity) and changed outputs (turnover). The disaggregated responses show that both are important in controlling inter-model uncertainty. Interactions between productivity and turnover are also important, and research must focus on these interactions for more accurate projections of carbon cycle feedbacks.
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015, https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
Short summary
We used outputs from nine models to better understand land-atmosphere CO2 exchanges across Northern Eurasia over the period 1960-1990. Model estimates were assessed against independent ground and satellite measurements. We find that the models show a weakening of the CO2 sink over time; the models tend to overestimate respiration, causing an underestimate in NEP; the model range in regional NEP is twice the multimodel mean. Residence time for soil carbon decreased, amid a gain in carbon storage.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C.-L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O'Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry
Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, https://doi.org/10.5194/bg-11-6573-2014, 2014
Short summary
Short summary
This study provides an updated estimate of organic carbon stored in the northern permafrost region. The study includes estimates for carbon in soils (0 to 3 m depth) and deeper sediments in river deltas and the Yedoma region. We find that field data is still scarce from many regions. Total estimated carbon storage is ~1300 Pg with an uncertainty range of between 1100 and 1500 Pg. Around 800 Pg carbon is perennially frozen, equivalent to all carbon dioxide currently in the Earth's atmosphere.
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
C. D. Koven, W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson
Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-7109-2013, https://doi.org/10.5194/bg-10-7109-2013, 2013
J. F. Tjiputra, C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze
Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, https://doi.org/10.5194/gmd-6-301-2013, 2013
J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin
Geosci. Model Dev., 6, 127–140, https://doi.org/10.5194/gmd-6-127-2013, https://doi.org/10.5194/gmd-6-127-2013, 2013
Related subject area
Snow Physics
Multiscale modeling of heat and mass transfer in dry snow: influence of the condensation coefficient and comparison with experiments
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Spatial variation in the specific surface area of surface snow measured along the traverse route from the coast to Dome Fuji, Antarctica, during austral summer
Greenland's firn responds more to warming than to cooling
Microstructure-based simulations of the viscous densification of snow and firn
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
A microstructure-based parameterization of the effective anisotropic elasticity tensor of snow, firn, and bubbly ice
Spatial distribution of vertical density and microstructure profiles in near-surface firn around Dome Fuji, Antarctica
Seismic attenuation in Antarctic firn
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Heterogeneous grain growth and vertical mass transfer within a snow layer under a temperature gradient
Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube
Wind conditions for snow cornice formation in a wind tunnel
Stochastic analysis of micro-cone penetration tests in snow
A generalized photon-tracking approach to simulate spectral snow albedo and transmittance using X-ray microtomography and geometric optics
Grain-size evolution controls the accumulation dependence of modelled firn thickness
Coherent backscatter enhancement in bistatic Ku- and X-band radar observations of dry snow
Effect of snowfall on changes in relative seismic velocity measured by ambient noise correlation
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Recent observations of superimposed ice and snow ice on sea ice in the northwestern Weddell Sea
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
Macroscopic water vapor diffusion is not enhanced in snow
Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
A model for French-press experiments of dry snow compaction
Identification of blowing snow particles in images from a Multi-Angle Snowflake Camera
Modeling snow slab avalanches caused by weak-layer failure – Part 1: Slabs on compliant and collapsible weak layers
Modeling snow slab avalanches caused by weak-layer failure – Part 2: Coupled mixed-mode criterion for skier-triggered anticracks
Modeling the evolution of the structural anisotropy of snow
Motion of dust particles in dry snow under temperature gradient metamorphism
Influence of light-absorbing particles on snow spectral irradiance profiles
Thermal conductivity of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements
Saharan dust events in the European Alps: role in snowmelt and geochemical characterization
On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow
The influence of layering and barometric pumping on firn air transport in a 2-D model
Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica
The significance of vertical moisture diffusion on drifting snow sublimation near snow surface
Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica
A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow
Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions
A multiphysical ensemble system of numerical snow modelling
Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms
Relating optical and microwave grain metrics of snow: the relevance of grain shape
Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow
Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series
Sensitivity of snow density and specific surface area measured by microtomography to different image processing algorithms
Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample
Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 18, 4285–4313, https://doi.org/10.5194/tc-18-4285-2024, https://doi.org/10.5194/tc-18-4285-2024, 2024
Short summary
Short summary
Four different macroscopic heat and mass transfer models have been derived for a large range of condensation coefficient values by an upscaling method. A comprehensive evaluation of the models is presented based on experimental datasets and numerical examples. The models reproduce the trend of experimental temperature and density profiles but underestimate the magnitude of the processes. Possible causes of these discrepancies and potential improvements for the models are suggested.
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024, https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Short summary
The topmost layer of a snowpack forms the interface to the atmosphere and is critical for the reflectance of solar radiation and avalanche formation. The effect of wind on the surface snow microstructure during precipitation events is poorly understood and quantified. We performed controlled lab experiments in a ring wind tunnel to systematically quantify the snow microstructure for different wind speeds, temperatures and precipitation intensities and to identify the relevant processes.
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024, https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
Short summary
We measured the snow specific surface area (SSA) at ~2150 surfaces between the coast near Syowa Station and Dome Fuji, East Antarctica, in summer 2021–2022. The observed SSA shows no elevation dependence between 15 and 500 km from the coast and increases toward the dome area beyond the range. SSA varies depending on surface morphologies and meteorological events. The spatial variation of SSA can be explained by snow metamorphism, snowfall frequency, and wind-driven inhibition of snow deposition.
Megan Thompson-Munson, Jennifer E. Kay, and Bradley R. Markle
The Cryosphere, 18, 3333–3350, https://doi.org/10.5194/tc-18-3333-2024, https://doi.org/10.5194/tc-18-3333-2024, 2024
Short summary
Short summary
The upper layers of the Greenland Ice Sheet are absorbent and can store meltwater that would otherwise flow into the ocean and raise sea level. The amount of meltwater that the ice sheet can store changes when the air temperature changes. We use a model to show that warming and cooling have opposite but unequal effects. Warming has a stronger effect than cooling, which highlights the vulnerability of the Greenland Ice Sheet to modern climate change.
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024, https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary
Short summary
Understanding the settling of snow under its own weight has applications from avalanche forecasts to ice core interpretations. We study how this settling can be modeled using 3D images of the internal structure of snow and ice deformation mechanics. We found that classical ice mechanics, as used, for instance, in glacier flow, explain the compaction of dense polar snow but not that of lighter seasonal snow. How, exactly, the ice deforms during light snow compaction thus remains an open question.
Anna Braun, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1653–1668, https://doi.org/10.5194/tc-18-1653-2024, https://doi.org/10.5194/tc-18-1653-2024, 2024
Short summary
Short summary
The specific surface of snow dictates key physical properties and continuously evolves in natural snowpacks. This is referred to as metamorphism. This work develops a rigorous physical model for this evolution, which is able to reproduce X-ray tomography measurements without using unphysical tuning parameters. Our results emphasize that snow crystal growth at the micrometer scale ultimately controls the pace of metamorphism.
Kavitha Sundu, Johannes Freitag, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1579–1596, https://doi.org/10.5194/tc-18-1579-2024, https://doi.org/10.5194/tc-18-1579-2024, 2024
Short summary
Short summary
Ice crystals often show a rod-like, vertical orientation in snow and firn; they are said to be anisotropic. The stiffness in the vertical direction therefore differs from the horizontal, which, for example, impacts the propagation of seismic waves. To quantify this anisotropy, we conducted finite-element simulations of 391 snow, firn, and ice core microstructures obtained from X-ray tomography. We then derived a parameterization that may be employed for advanced seismic studies in polar regions.
Ryo Inoue, Shuji Fujita, Kenji Kawamura, Ikumi Oyabu, Fumio Nakazawa, Hideaki Motoyama, and Teruo Aoki
The Cryosphere, 18, 425–449, https://doi.org/10.5194/tc-18-425-2024, https://doi.org/10.5194/tc-18-425-2024, 2024
Short summary
Short summary
We measured the density, microstructural anisotropy, and specific surface area (SSA) of six firn cores collected within 60 km of Dome Fuji, Antarctica. We found a lack of significant density increase, development of vertically elongated microstructures, and a rapid decrease in SSA in the top few meters due to the metamorphism driven by water vapor transport under a temperature gradient. We highlight the significant spatial variability in the properties, which depends on the accumulation rate.
Stefano Picotti, José M. Carcione, and Mauro Pavan
The Cryosphere, 18, 169–186, https://doi.org/10.5194/tc-18-169-2024, https://doi.org/10.5194/tc-18-169-2024, 2024
Short summary
Short summary
A physical explanation of the seismic attenuation in the polar snow and ice masses is essential to gaining insight into the ice sheet and deeper geological formations. We estimate the P- and S-wave attenuation profiles of the Whillans Ice Stream from the spectral analysis of three-component active-source seismic data. The firn and ice quality factors are then modeled using a rock-physics theory that combines White's mesoscopic attenuation theory of interlayer flow with that of Biot/squirt flow.
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023, https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
Short summary
Snow acts as an insulating blanket on Arctic sea ice, keeping the underlying ice "warm", relative to the atmosphere. Knowing the snow's thermal conductivity is essential for understanding winter ice growth. During the MOSAiC expedition, we measured the thermal conductivity of snow. We found spatial and vertical variability to overpower any temporal variability or dependency on underlying ice type and the thermal resistance to be directly influenced by snow height.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 17, 3553–3573, https://doi.org/10.5194/tc-17-3553-2023, https://doi.org/10.5194/tc-17-3553-2023, 2023
Short summary
Short summary
This study presents two new experiments of temperature gradient metamorphism in a snow layer using tomographic time series and focusing on the vertical extent. The results highlight two little known phenomena: the development of morphological vertical heterogeneities from an initial uniform layer, which is attributed to the temperature range and the vapor pressure distribution, and the quantification of the mass loss at the base caused by the vertical vapor fluxes and the dry lower boundary.
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023, https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary
Short summary
The grain size of snow determines how light is reflected and other physical properties. The IceCube measures snow grain size at the specific near-infrared wavelength of 1320 nm. In our study, the preparation of snow samples for the IceCube creates a thin layer of small particles. Comparisons of the grain size with computed tomography, particle counting and numerical simulation confirm the aforementioned observation. We conclude that measurements at this wavelength underestimate the grain size.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Pyei Phyo Lin, Isabel Peinke, Pascal Hagenmuller, Matthias Wächter, M. Reza Rahimi Tabar, and Joachim Peinke
The Cryosphere, 16, 4811–4822, https://doi.org/10.5194/tc-16-4811-2022, https://doi.org/10.5194/tc-16-4811-2022, 2022
Short summary
Short summary
Characterization of layers of snowpack with highly resolved micro-cone penetration tests leads to detailed fluctuating signals. We used advanced stochastic analysis to differentiate snow types by interpreting the signals as a mixture of continuous and discontinuous random fluctuations. These two types of fluctuation seem to correspond to different mechanisms of drag force generation during the experiments. The proposed methodology provides new insights into the characterization of snow layers.
Theodore Letcher, Julie Parno, Zoe Courville, Lauren Farnsworth, and Jason Olivier
The Cryosphere, 16, 4343–4361, https://doi.org/10.5194/tc-16-4343-2022, https://doi.org/10.5194/tc-16-4343-2022, 2022
Short summary
Short summary
We present a radiative transfer model that uses ray tracing to determine optical properties from computer-generated 3D renderings of snow resolved at the microscale and to simulate snow spectral reflection and transmission for visible and near-infrared light. We expand ray-tracing techniques applied to sub-1 cm3 snow samples to model an entire snowpack column. The model is able to reproduce known snow surface optical properties, and simulations compare well against field observations.
Jonathan Kingslake, Robert Skarbek, Elizabeth Case, and Christine McCarthy
The Cryosphere, 16, 3413–3430, https://doi.org/10.5194/tc-16-3413-2022, https://doi.org/10.5194/tc-16-3413-2022, 2022
Short summary
Short summary
Firn is snow that has persisted for at least 1 full year on the surface of a glacier or ice sheet. It is an intermediate substance between snow and glacial ice. Firn compacts into glacial ice due to the weight of overlying snow and firn. The rate at which it compacts and the rate at which it is buried control how thick the firn layer is. We explore how this thickness depends on the rate of snow fall and how this dependence is controlled by the size of snow grains at the ice sheet surface.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021, https://doi.org/10.5194/tc-15-4381-2021, 2021
Short summary
Short summary
In this study on temperature gradient metamorphism in snow, we investigate the hypothesis that there exists a favourable crystal orientation relative to the temperature gradient. We measured crystallographic orientations of the grains and their microstructural evolution during metamorphism using in situ time-lapse diffraction contrast tomography. Faceted crystals appear during the evolution, and we observe higher sublimation–deposition rates for grains with their c axis in the horizontal plane.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Short summary
The role of snow microstructure in snow optical properties is only partially understood despite the importance of snow optical properties for the Earth system. We present a dataset combining bidirectional reflectance measurements and 3D images of snow. We show that the snow reflectance is adequately simulated using the distribution of the ice chord lengths in the snow microstructure and that the impact of the morphological type of snow is especially important when ice is highly absorptive.
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021, https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary
Short summary
The thermal conductivity of snow is an important physical property governing the thermal regime of a snowpack and its substrate. We show that it strongly depends on the kinetics of water vapor sublimation and that previous experimental data suggest a rather fast kinetics. In such a case, neglecting water vapor leads to an underestimation of thermal conductivity by up to 50 % for light snow. Moreover, the diffusivity of water vapor in snow is then directly related to the thermal conductivity.
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021, https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over north China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glaciers.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 389–406, https://doi.org/10.5194/tc-15-389-2021, https://doi.org/10.5194/tc-15-389-2021, 2021
Short summary
Short summary
There has been a long controversy to determine whether the effective diffusion coefficient of water vapor in snow is superior to that in free air. Using theory and numerical modeling, we show that while water vapor diffuses more than inert gases thanks to its interaction with the ice, the effective diffusion coefficient of water vapor in snow remains inferior to that in free air. This suggests that other transport mechanisms are responsible for the large vapor fluxes observed in some snowpacks.
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, https://doi.org/10.5194/tc-14-1651-2020, 2020
Short summary
Short summary
The effect of surface roughness on snow albedo is often overlooked,
although a small change in albedo may strongly affect the surface energy
budget. By carving artificial roughness in an initially smooth snowpack,
we highlight albedo reductions of 0.03–0.04 at 700 nm and 0.06–0.10 at 1000 nm. A model using photon transport is developed to compute albedo considering roughness and applied to understand the impact of roughness as a function of snow properties and illumination conditions.
Colin R. Meyer, Kaitlin M. Keegan, Ian Baker, and Robert L. Hawley
The Cryosphere, 14, 1449–1458, https://doi.org/10.5194/tc-14-1449-2020, https://doi.org/10.5194/tc-14-1449-2020, 2020
Short summary
Short summary
We describe snow compaction laboratory data with a new mathematical model. Using a compression device that is similar to a French press with snow instead of coffee grounds, Wang and Baker (2013) compacted numerous snow samples of different densities at a constant velocity to determine the force required for snow compaction. Our mathematical model for compaction includes airflow through snow and predicts the required force, in agreement with the experimental data.
Mathieu Schaer, Christophe Praz, and Alexis Berne
The Cryosphere, 14, 367–384, https://doi.org/10.5194/tc-14-367-2020, https://doi.org/10.5194/tc-14-367-2020, 2020
Short summary
Short summary
Wind and precipitation often occur together, making the distinction between particles coming from the atmosphere and those blown by the wind difficult. This is however a crucial task to accurately close the surface mass balance. We propose an algorithm based on Gaussian mixture models to separate blowing snow and precipitation in images collected by a Multi-Angle Snowflake Camera (MASC). The algorithm is trained and (positively) evaluated using data collected in the Swiss Alps and in Antarctica.
Philipp L. Rosendahl and Philipp Weißgraeber
The Cryosphere, 14, 115–130, https://doi.org/10.5194/tc-14-115-2020, https://doi.org/10.5194/tc-14-115-2020, 2020
Short summary
Short summary
Dry-snow slab avalanche release is preceded by a fracture process within the snowpack. Recognizing weak layer collapse as an integral part of the fracture process is crucial and explains phenomena such as whumpf sounds and remote triggering of avalanches from low-angle terrain. In this first part of the two-part work we propose a novel closed-form analytical model for a snowpack that provides a highly efficient and precise analysis of the mechanical response of a loaded snowpack.
Philipp L. Rosendahl and Philipp Weißgraeber
The Cryosphere, 14, 131–145, https://doi.org/10.5194/tc-14-131-2020, https://doi.org/10.5194/tc-14-131-2020, 2020
Short summary
Short summary
Dry-snow slab avalanche release is preceded by a fracture process within the snowpack. Recognizing weak layer collapse as an integral part of the fracture process is crucial and explains phenomena such as whumpf sounds and remote triggering of avalanches from low-angle terrain. In this second part of the two-part work we propose a novel mixed-mode coupled stress and energy failure criterion for nucleation of weak layer failure due to external loading of the snowpack.
Silvan Leinss, Henning Löwe, Martin Proksch, and Anna Kontu
The Cryosphere, 14, 51–75, https://doi.org/10.5194/tc-14-51-2020, https://doi.org/10.5194/tc-14-51-2020, 2020
Short summary
Short summary
The anisotropy of the snow microstructure, given by horizontally aligned ice crystals and vertically interlinked crystal chains, is a key quantity to understand mechanical, dielectric, and thermodynamical properties of snow. We present a model which describes the temporal evolution of the anisotropy. The model is driven by snow temperature, temperature gradient, and the strain rate. The model is calibrated by polarimetric radar data (CPD) and validated by computer tomographic 3-D snow images.
Pascal Hagenmuller, Frederic Flin, Marie Dumont, François Tuzet, Isabel Peinke, Philippe Lapalus, Anne Dufour, Jacques Roulle, Laurent Pézard, Didier Voisin, Edward Ando, Sabine Rolland du Roscoat, and Pascal Charrier
The Cryosphere, 13, 2345–2359, https://doi.org/10.5194/tc-13-2345-2019, https://doi.org/10.5194/tc-13-2345-2019, 2019
Short summary
Short summary
Light–absorbing particles (LAPs, e.g. dust or black carbon) in snow are a potent climate forcing agent. Their presence darkens the snow surface and leads to higher solar energy absorption. Several studies have quantified this radiative impact by assuming that LAPs were motionless in dry snow, without any clear evidence of this assumption. Using time–lapse X–ray tomography, we show that temperature gradient metamorphism of snow induces downward motion of LAPs, leading to self–cleaning of snow.
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019, https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Short summary
Here we present a novel method to estimate the impurity content (e.g. black carbon or mineral dust) in Alpine snow based on measurements of light extinction profiles. This method is proposed as an alternative to chemical measurements, allowing rapid retrievals of vertical concentrations of impurities in the snowpack. In addition, the results provide a better understanding of the impact of impurities on visible light extinction in snow.
Sergey Marchenko, Gong Cheng, Per Lötstedt, Veijo Pohjola, Rickard Pettersson, Ward van Pelt, and Carleen Reijmer
The Cryosphere, 13, 1843–1859, https://doi.org/10.5194/tc-13-1843-2019, https://doi.org/10.5194/tc-13-1843-2019, 2019
Short summary
Short summary
Thermal conductivity (k) of firn at Lomonosovfonna, Svalbard, is estimated using measured temperature evolution and density. The optimized k values (0.2–1.6 W (m K)−1) increase downwards and over time and are most sensitive to systematic errors in measured temperature values and their depths, particularly in the lower part of the profile. Compared to the density-based parameterizations, derived k values are consistently larger, suggesting a faster conductive heat exchange in firn.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.
Benjamin Birner, Christo Buizert, Till J. W. Wagner, and Jeffrey P. Severinghaus
The Cryosphere, 12, 2021–2037, https://doi.org/10.5194/tc-12-2021-2018, https://doi.org/10.5194/tc-12-2021-2018, 2018
Short summary
Short summary
Ancient air enclosed in bubbles of the Antarctic ice sheet is a key source of information about the Earth's past climate. However, a range of physical processes in the snow layer atop an ice sheet may change the trapped air's chemical composition before it is occluded in the ice. We developed the first detailed 2-D computer simulation of these processes and found a new method to improve the reconstruction of past climate from air in ice cores bubbles.
John M. Fegyveresi, Richard B. Alley, Atsuhiro Muto, Anaïs J. Orsi, and Matthew K. Spencer
The Cryosphere, 12, 325–341, https://doi.org/10.5194/tc-12-325-2018, https://doi.org/10.5194/tc-12-325-2018, 2018
Short summary
Short summary
Observations at the WAIS Divide site in West Antarctica show that near-surface snow is strongly altered by weather-related processes, such as strong winds and temperature fluctuations, producing features that are recognizable within the WDC06A ice core. Specifically, over 10 000 prominent crusts were observed in the upper 560 m of the core. We show that these crusts develop more often in summers, during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine.
Ning Huang and Guanglei Shi
The Cryosphere, 11, 3011–3021, https://doi.org/10.5194/tc-11-3011-2017, https://doi.org/10.5194/tc-11-3011-2017, 2017
Short summary
Short summary
Snow is an important part of the cryosphere, and blowing snow sublimation is an important method to change the snow distribution. However, in the previous studies blowing snow sublimation near surface was ignored. Herein, we built a blowing snow sublimation model to study the sublimation in near-surface region. The results showed that the mass of snow sublimation near surface accounted for even more than half of the total. Therefore, blowing snow sublimation near surface cannot be neglected.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 11, 2727–2741, https://doi.org/10.5194/tc-11-2727-2017, https://doi.org/10.5194/tc-11-2727-2017, 2017
Short summary
Short summary
The optical size of snow grains (ropt) affects the reflectivity of snow surfaces and thus the local surface energy budget in particular in polar regions. The temporal evolution of ropt retrieved from ground-based, airborne, and spaceborne remote sensing could reproduce optical in situ measurements for a 2-month period in central Antarctica (2013/14). The presented validation study provided a unique testbed for retrievals of ropt under Antarctic conditions where in situ data are scarce.
Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin
The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, https://doi.org/10.5194/tc-11-2633-2017, 2017
Short summary
Short summary
Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.
Pirmin Philipp Ebner, Hans Christian Steen-Larsen, Barbara Stenni, Martin Schneebeli, and Aldo Steinfeld
The Cryosphere, 11, 1733–1743, https://doi.org/10.5194/tc-11-1733-2017, https://doi.org/10.5194/tc-11-1733-2017, 2017
Short summary
Short summary
Stable water isotopes (δ18O) obtained from snow and ice samples from polar regions are used to reconstruct past climate variability. We present an experimental study on the effect on the snow isotopic composition by airflow through a snowpack in controlled laboratory conditions. The disequilibrium between snow and vapor isotopes changed the isotopic content of the snow. These measurements suggest that metamorphism and its history affect the snow isotopic composition.
Matthieu Lafaysse, Bertrand Cluzet, Marie Dumont, Yves Lejeune, Vincent Vionnet, and Samuel Morin
The Cryosphere, 11, 1173–1198, https://doi.org/10.5194/tc-11-1173-2017, https://doi.org/10.5194/tc-11-1173-2017, 2017
Short summary
Short summary
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC by implementing new representations of different physical processes in a coupled multilayer ground/snowpack model. This system is a promising tool to integrate snow modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack modelling applications.
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, https://doi.org/10.5194/tc-10-3043-2016, 2016
Short summary
Short summary
The first implementation of particle tracking velocimetry in outdoor alpine blowing snow has both provided new insight on intermittent snow particle transport initiation and entrainment in the dense near-surface "creep" layer whilst also confirming some wind tunnel observations. Environmental PTV has shown to be a viable avenue for furthering our understanding of the coupling of the atmospheric boundary layer turbulence and blowing snow transport.
Quirine Krol and Henning Löwe
The Cryosphere, 10, 2847–2863, https://doi.org/10.5194/tc-10-2847-2016, https://doi.org/10.5194/tc-10-2847-2016, 2016
Short summary
Short summary
Optical and microwave modelling of snow involve different metrics of "grain size" and existing, empirical relations between them are subject to considerable scatter. We introduce two objectively defined metrics of grain shape, derived from micro-computed tomography images, that lead to improved statistical models between the different grain metrics. Our results allow to assess the relevance of grain shape in both fields on common grounds.
Ghislain Picard, Quentin Libois, and Laurent Arnaud
The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, https://doi.org/10.5194/tc-10-2655-2016, 2016
Short summary
Short summary
The absorption of visible light in ice is very weak but its precise value is unknown. By measuring the profile of light intensity in snow, Warren and Brand (2006) deduced that light is attenuated by a factor 2 per kilometer in pure ice at a wavelength of 400 nm. We replicated their experiment on a large number of samples and found that ice absorption is at least 10 times stronger. The paper explores various potential physical and statistical biases that could impact the experiment.
Silvan Leinss, Henning Löwe, Martin Proksch, Juha Lemmetyinen, Andreas Wiesmann, and Irena Hajnsek
The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016, https://doi.org/10.5194/tc-10-1771-2016, 2016
Short summary
Short summary
Four years of anisotropy measurements of seasonal snow are presented in the paper. The anisotropy was measured every 4 h with a ground-based polarimetric radar. An electromagnetic model has been developed to measured the anisotropy with radar instruments from ground and from space. The anisotropic permittivity was derived with Maxwell–Garnett-type mixing formulas which are shown to be equivalent to series expansions of the permittivity tensor based on spatial correlation function of snow.
Pascal Hagenmuller, Margret Matzl, Guillaume Chambon, and Martin Schneebeli
The Cryosphere, 10, 1039–1054, https://doi.org/10.5194/tc-10-1039-2016, https://doi.org/10.5194/tc-10-1039-2016, 2016
Short summary
Short summary
The paper focuses on the characterization of snow microstructure with X-ray microtomography, a technique that is progressively becoming the standard for snow characterization. In particular, it rigorously investigates how the image processing algorithms affect the subsequent microstructure characterization in terms of density and specific surface area. From this analysis, practical recommendations concerning the processing X-ray tomographic images of snow are provided.
Pirmin Philipp Ebner, Martin Schneebeli, and Aldo Steinfeld
The Cryosphere, 10, 791–797, https://doi.org/10.5194/tc-10-791-2016, https://doi.org/10.5194/tc-10-791-2016, 2016
Short summary
Short summary
Changes of the porous ice structure were observed in a snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible, leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.
R. Pirazzini, P. Räisänen, T. Vihma, M. Johansson, and E.-M. Tastula
The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015, https://doi.org/10.5194/tc-9-2357-2015, 2015
Short summary
Short summary
We illustrate a method to measure the size distribution of a snow particle metric from macro photos of snow particles. This snow particle metric corresponds well to the optically equivalent effective radius. Our results evidence the impact of grain shape on albedo, indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of surface roughness on the shortwave infrared albedo.
Cited articles
Abramowitz, G., Leuning, R., Clark, M., and Pitman, A.: Evaluating the Performance of Land Surface Models, J. Clim., 21, 5468–5481, https://doi.org/10.1175/2008JCLI2378.1, 2008.
Anisimov, O. A., Lobanov, V. A., Reneva, S. A., Shiklomanov, N. I., Zhang, T., and Nelson, F. E.: Uncertainties in gridded air temperature fields and effects on predictive active layer modeling, J. Geophys. Res.-Earth Surf., 112, F02S14, https://doi.org/10.1029/2006JF000593, 2007.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Brown, R. and Brasnett, B.: Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data. ©Environment Canada, 2010, Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2010.
Chadburn, S. E., Burke, E. J., Essery, R. L. H., Boike, J., Langer, M., Heikenfeld, M., Cox, P. M., and Friedlingstein, P.: Impact of model developments on present and future simulations of permafrost in a global land-surface model, The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015, 2015.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.: Improving the representation of hydrologic processes in Earth System Models, Water Resour. Res., 51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015.
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and Bosilovich, M. G.: Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations, J. Clim., 25, 1916–1944, https://doi.org/10.1175/JCLI-D-11-00004.1, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., and Bechtold, P.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dutta, K., Schuur, E. A. G., Neff, J. C., and Zimov, S. A.: Potential carbon release from permafrost soils of Northeastern Siberia, Glob. Change Biol., 12, 2336–2351, https://doi.org/10.1111/j.1365-2486.2006.01259.x, 2006.
Ekici, A., Chadburn, S., Chaudhary, N., Hajdu, L. H., Marmy, A., Peng, S., Boike, J., Burke, E., Friend, A. D., Hauck, C., Krinner, G., Langer, M., Miller, P. A., and Beer, C.: Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes, The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, 2015.
Essery, R. L. H., Best, M. J., and Cox, P. M.: MOSES 2.2 Technical Documentation, Hadley Centre technical note 30, 2001.
Fisher, J. B., Sikka, M., Oechel, W. C., Huntzinger, D. N., Melton, J. R., Koven, C. D., Ahlström, A., Arain, M. A., Baker, I., Chen, J. M., Ciais, P., Davidson, C., Dietze, M., El-Masri, B., Hayes, D., Huntingford, C., Jain, A. K., Levy, P. E., Lomas, M. R., Poulter, B., Price, D., Sahoo, A. K., Schaefer, K., Tian, H., Tomelleri, E., Verbeeck, H., Viovy, N., Wania, R., Zeng, N., and Miller, C. E.: Carbon cycle uncertainty in the Alaskan Arctic, Biogeosciences, 11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, 2014.
Foster, D. and Davy, R.: Global Snow Depth Climatology, US Air Force Enviro. Tech. Appl. Cent., Scott Air Force Base, Illinois, USA, 1988.
Gupta, H. V., Wagener, T., and Liu, Y.:Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrol. Process., 22, 3802–3813, https://doi.org/10.1002/hyp.6989, 2008.
Hobbie, S. E., Schimel, J. P., Trumbore, S. E., and Randerson, J. R.: Controls over carbon storage and turnover in high-latitude soils, Glob. Change Biol., 6, 196–210, https://doi.org/10.1046/j.1365-2486.2000.06021.x, 2000.
Kobayashi, S., Yukinari, O. T. A., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Koven, C., Riley, W., and Stern, A.: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models, J. Clim., 126, 1877–1900, https://doi.org/10.1175/JCLI-D-12-00228.1, 2013.
Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and Turetsky, M.: A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback., Philos. Transact. A Math. Phys. Eng. Sci., 373, https://doi.org/10.1098/rsta.2014.0423, 2015.
Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into a global climate model, Clim. Dyn., 30, 145–160, https://doi.org/10.1007/s00382-007-0278-1, 2008.
Lawrence, D. M. and Slater, A. G.: The contribution of snow condition trends to future ground climate, Clim. Dyn., 34, 969–981, https://doi.org/10.1007/s00382-009-0537-4, 2010.
Lawrence, D. M., Slater, A. G., and Swenson, S. C.: Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4, J. Clim., 25, 2207–2225, https://doi.org/10.1175/JCLI-D-11-00334.1, 2012.
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A. G.: Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions, Environ. Res. Lett., 10, 94011, https://doi.org/10.1088/1748-9326/10/9/094011, 2015.
Luetschg, M., Lehning, M., and Haeberli, W.: A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps, J. Glaciol., 54, 696–704, https://doi.org/10.3189/002214308786570881, 2008.
Lunardini, V. J.: Heat Transfer in Cold Climates, Van Nostrand Reinhold, New York, 1981.
Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher, R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D., Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M., Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I. C., Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J. Y., Zaehle, S., and Zhou, X. H.: A framework for benchmarking land models, Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012, 2012.
Ménard, C. B., Ikonen, J., Rautiainen, K., Aurela, M., Arslan, A. N., and Pulliainen, J.: Effects of Meteorological and Ancillary Data, Temporal Averaging, and Evaluation Methods on Model Performance and Uncertainty in a Land Surface Model, J. Hydrometeorol., 16, 2559–2576, https://doi.org/10.1175/JHM-D-15-0013.1, 2015.
Monson, R. K., Lipson, D. L., Burns, S. P., Turnipseed, A. A., Delany, A. C., Williams, M. W., and Schmidt, S. K.: Winter forest soil respiration controlled by climate and microbial community composition, Nature, 439, 711–714, https://doi.org/10.1038/nature04555, 2006.
Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010, J. Climate, 28, 8037–8051, 2015.
Prentice, I. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Reliable, robust and realistic: the three R's of next-generation land-surface modelling, Atmos. Chem. Phys., 15, 5987–6005, https://doi.org/10.5194/acp-15-5987-2015, 2015.
Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 2007.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Schuur, E., McGuire, A., Schaedel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., and Vonk, J.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sharratt, B., Baker, D., Wall, D., Skaggs, R., and Ruschy, D.:Snow Depth Required for Near Steady-State Soil Temperatures, Agric. For. Meteorol., 57, 243–251, https://doi.org/10.1016/0168-1923(92)90121-J, 1992.
Sherstyukov, A. B. and Sherstyukov, B. G.: Spatial features and new trends in thermal conditions of soil and depth of its seasonal thawing in the permafrost zone, Russ. Meteorol. Hydrol., 40, 73–78, https://doi.org/10.3103/S1068373915020016, 2015.
Slater, A. G.: Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products, J. Hydrometeorol., 17, 401–420, https://doi.org/10.1175/JHM-D-15-0087.1, 2016.
Slater, A. G. and Lawrence, D. M.: Diagnosing Present and Future Permafrost from Climate Models, J. Climate, 26, 5608–5623, https://doi.org/10.1175/JCLI-D-12-00341.1, 2013.
Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J., Henderson-Sellers, A. A., Robock, A. A., Vinnikov, K., Entin, J. J., Mitchell, K. K., Chen, F. F., Boone, A. A., Etchevers, P. P., Habets, F. F., Noilhan, J. J., Braden, H. H., Cox, P. M., de Rosnay, P. P., Dickinson, R. E., Yang, Z. L., Dai, Y. J., Zeng, Q. Q., Duan, Q. Q., Koren, V. V., Schaake, S. S., Gedney, N. N., Gusev, Y. M., Nasonova, O. N., Kim, J. J., Kowalczyk, E. A., Shmakin, A. B., Smirnova, T. G., Verseghy, D. D., Wetzel, P. P., and Xue, Y. Y.: The representation of snow in land surface schemes: Results from PILPS 2(d), J. Hydrometeorol., 2, 7–25, https://doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2, 2001.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover classification system for local to global applications, J. Clim., 8, 1261–1283, https://doi.org/10.1175/1520-0442(1995)008, 1995.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Karna, J.-P., Koskinen, J., and Bojkov, B.: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ., 115, 3517–3529, https://doi.org/10.1016/j.rse.2011.08.014, 2011.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview Of CMIP5 And The Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Yershov, E.: General Geocryology, Cambridge University Press, 1998.
Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M., and Euskirchen, E. S.: The role of snow cover affecting boreal-arctic soil freeze-thaw and carbon dynamics, Biogeosciences, 12, 5811–5829, https://doi.org/10.5194/bg-12-5811-2015, 2015.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, 1–23, https://doi.org/10.1029/2004RG000157, 2005.
Short summary
This work defines a metric for evaluation of a specific model snow process, namely, heat transfer through snow into soil. Heat transfer through snow regulates the difference in air temperature versus soil temperature. Accurate representation of the snow heat transfer process is critically important for accurate representation of the current and future state of permafrost. Utilizing this metric, we can clearly identify models that can and cannot reasonably represent snow heat transfer.
This work defines a metric for evaluation of a specific model snow process, namely, heat...