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Abstract. Land models require evaluation in order to un-
derstand results and guide future development. Examining
functional relationships between model variables can pro-
vide insight into the ability of models to capture fundamen-
tal processes and aid in minimizing uncertainties or deficien-
cies in model forcing. This study quantifies the proficiency
of land models to appropriately transfer heat from the soil
through a snowpack to the atmosphere during the cooling
season (Northern Hemisphere: October–March). Using the
basic physics of heat diffusion, we investigate the relation-
ship between seasonal amplitudes of soil versus air temper-
atures due to insulation from seasonal snow. Observations
demonstrate the anticipated exponential relationship of at-
tenuated soil temperature amplitude with increasing snow
depth and indicate that the marginal influence of snow insu-
lation diminishes beyond an “effective snow depth” of about
50 cm. A snow and heat transfer metric (SHTM) is devel-
oped to quantify model skill compared to observations. Land
models within the CMIP5 experiment vary widely in SHTM
scores, and deficiencies can often be traced to model struc-
tural weaknesses. The SHTM value for individual models is
stable over 150 years of climate, 1850–2005, indicating that
the metric is insensitive to climate forcing and can be used
to evaluate each model’s representation of the insulation pro-
cess.

1 Introduction

The current generation of land models are typically complex
in nature and simulate a vast array of processes (Clark et al.,
2015; Prentice et al., 2015). Interdependencies within these

models produce external and internal feedbacks that can op-
erate on various temporal and spatial scales. It is therefore
imperative that such models be rigorously evaluated in or-
der to interpret their performance, as well as to guide future
development.

Verifying a model result against observations using statis-
tics such as root mean square error can provide useful in-
formation but alone does not necessarily indicate whether
the model is getting the right answers for the right reason
(Abramowitz et al., 2008; Gupta et al., 2008). For exam-
ple, the impact of the forcing data can play an equal or
greater role in results than some aspects of the model (Mé-
nard et al., 2015). Most global-scale “observationally based”
data sets contain substantial uncertainty, especially in the
relatively sparsely observed high latitudes (Anisimov et al.,
2007; Decker et al., 2012; Slater, 2016; Mudryk et al., 2015),
and coupled Earth system models can produce biased surface
meteorology, particularly in high-latitude winters (Slater and
Lawrence, 2013). It therefore follows that if one is trying to
assess land model structural error (i.e., deficiencies in model
architecture and/or parameterizations) it is preferable to re-
duce ambiguity by minimizing other sources of uncertainty,
e.g., uncertainties in model parameters, initial conditions, or
forcing (in either land-only or coupled simulations).

In high-latitude regions an important process is snow and
soil heat transfer. The temperature and state of the soil,
whether frozen or thawed, play a pivotal role in the timing
and magnitude of energy, mass, and biogeochemical fluxes
between the land and atmosphere (Hobbie et al., 2000; Dutta
et al., 2006; Monson et al., 2006; Lawrence et al., 2012,
2015). Concerns about the potential release of vast carbon
stores currently locked in permafrost soils and its feedback
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on the climate have brought this topic to the fore (Schuur et
al., 2015). Model estimates of Arctic carbon fluxes are highly
variable (Fisher et al., 2014; Koven et al., 2015) in part due to
differences in simulation of soil temperatures and permafrost
conditions. Essentially, we need to ensure soil temperature
and moisture are correctly simulated before confidence in
projected biogeochemical fluxes can be achieved. Addition-
ally, biases in the simulated temperature at the snow–soil in-
terface can adversely affect the snowpack itself though the
impact of these biases on snow metamorphism at the base of
the snowpack.

In cold midlatitude and Arctic regions, snow forms an in-
sulating barrier between the colder atmosphere and underly-
ing soil during winter. The impact of snow on soil tempera-
tures, particularly in permafrost regions, has been well doc-
umented in both observational (Sharratt et al., 1992; Zhang,
2005) and modeling studies (Luetschg et al., 2008; Lawrence
and Slater, 2010; Ekici et al., 2015; Yi et al., 2015). A vari-
ety of structures have been used to represent snow in models
(Slater et al., 2001), with varying levels of simulated insula-
tion (Koven et al., 2013). The aim of this work is to define
a metric that demonstrates processes-level model evaluation
using the heat transfer mechanism from atmosphere to soil
under the conditions of a seasonal snowpack.

2 Method

The theory of conductive heat flow under periodic forcing
(e.g., the annual cycle) is demonstrated in many texts (Lu-
nardini, 1981; Yershov, 1998).Taking an example of a semi-
infinite medium forced at the surface with a periodic temper-
ature wave with no phase change or mass exchange, we can
compute the amplitude of this periodic wave at soil depth (z)
as

Az = Aoe
−( z

d ), (1)

where Az is the amplitude of the temperature wave at depth
(z); Ao is the surface amplitude; and d is the damping depth,
defined as the depth at which the 1/e of the surface amplitude
occurs. The value of d is a function of the thermal diffusiv-
ity of the medium and the length of time that the forcing is
applied.

The above theory is adapted to the cooling period of the
year, defined here as October to March. A vast portion of
the terrestrial Northern Hemisphere becomes snow covered
during October and remains so beyond March. The actual
land surface temperature is rarely observed in situ, but 2 m
air temperature serves as a sufficient proxy as the two quan-
tities tend to equilibrate towards each other, particularly in
colder months of high-latitude regions with low solar input,
though in situations with strong inversions the temperature
difference between the snow–air interface and 2 m height can
be substantial (this is an acknowledged yet unavoidable lim-
itation). Observations (Sect. 3) show that the coldest air tem-

perature is typically in January or February, while the cold-
est soil temperature at 20 cm depth usually lags by a month.
When data are confined to the annual cooling period, the am-
plitude of air temperature is taken as

Aair =MAX(Tair)−MIN(Tair) . (2)

The soil temperature amplitude (Asoil) can be calculated an-
nually in the same way. To elucidate the process of heat trans-
fer and remove climatically driven factors, for example the
large seasonal cycle associated with deep continental regions
as compared to more moderate coastal locations, a normal-
ized temperature amplitude difference is computed as

Anorm =
Aair−Asoil

Aair
, (3)

which ranges from 0 to 1. Anorm values near 0.0 indicate min-
imal difference in the annual cycle of air and soil tempera-
tures, while a value close to 1.0 suggests soil temperatures
essentially do not change over the cooling period. If we take
Asoil to be Az and Aair as Ao, and then substitute Eq. (3) into
Eq. (1), we arrive at the form where

Anorm = 1.− e−(
z
d ). (4)

Such theory pertains to an idealized case, but in reality the
distance z would be affected by the quantity and temporal se-
quence of snow accumulation, and the damping depth d will
be impacted by snow density, soil inhomogeneity, or phase
change. Therefore, we propose a similar but more flexible
approach:

Anorm = P +Q

1.− e
−

(
Sdepth,eff

R

) . (5)

We introduce an offset, P , because, even if there were abso-
lutely no snow, the thermal properties of the soil, along with
phase change, and imperfect heat transfer between the sur-
face and near-surface air mean that the amplitude of soil tem-
perature at a depth (e.g., 20 cm) will likely be different to that
of the air. A multiplier, Q, is applied to account for the tem-
poral nature of snow accumulation. Our analysis pertains to
locations with seasonal, rather than permanent, snow cover,
so even if 3 m of snow accumulates by the end of March
there is likely to be some cooling in soil temperature from
atmospheric forcing in October. The R parameter is an effec-
tive damping depth of the snow and soil system. The density
and morphology of the snow, along with soil moisture con-
tent and phase change, play a role in determining R. The R

value also tends to govern the marginal influence of addi-
tional snow insulation. To account for seasonal variations in
the linear distance between the soil and the atmosphere (i.e.,
the snow depth z, in Eq. 4), we define an effective snow depth
(Sdepth,eff).
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Sdepth,eff describes the insulation impact of snow and is an
integral value such that the mean snow depth (S) each month
(m; 1–6) is weighted by its duration. The maximum duration
(M = 6) is the total cooling period of 6 months (October–
March). The first snow depth value (S1) is the October mean
snow depth.

Sdepth,eff =

M∑
m=1

(Sm · (M + 1−m))

M∑
m=1

m

(6)

As shown in Fig. 1, a season with an early snowfall will typ-
ically produce a higher effective snow depth than a linearly
increasing snowpack with the same mean value. Similarly,
if shallow snow persists for most of the winter but a large
snowfall occurs in February, the effective snow depth will be
lower than in the linear case.

Given inputs of Anorm and Sdepth,eff (from observations or
models), we can efficiently compute the values of the three
parameters P , Q, and R using a nonlinear fitting method
(e.g., the Levenberg–Marquardt (LM) algorithm; Press et al.,
2007). The relationship between Anorm and Sdepth,eff informs
us about the heat transfer mechanism between the atmo-
sphere and the subsurface. To alleviate the problem of over-
fitting, the curve is fit using data that are sampled evenly
across a range of effective snow depths with up to 35 data
points per 5 cm of Sdepth,eff up to 50 cm (with the final cate-
gory being 45 cm or beyond). This sampling was performed
100 times, with the median of fit values taken; if the LM algo-
rithm does not converge for a given sample, another sample is
taken. Sampling also ensures that a wide variety of climatic
regimes are used for characterizing the functional relation-
ship seen in observations or a model.

3 Data

Assessing the relation between Anorm and Sdepth,eff requires
three pieces of data: screen level air temperature, 20 cm soil
temperature (as this is the most commonly observed depth),
and snow depth. An analysis constraint is the need to use
monthly mean values, as this is the most common output
from large-scale land models.

A large network of hydrometeorological stations in
Russia (and the former Soviet Union) provide the
three required variables as follows: air temperature
was acquired from the National Climatic Data Center
(NCDC) Global Summary of the Day (https://data.noaa.gov/
dataset/global-surface-summary-of-the-day-gsod), provided
the snow depths were measured at stations (as opposed to lo-
cal transects), and information on soil temperatures is avail-
able in Sherstyukov and Sherstyukov (2015). Data in the
USA are from the Natural Resources Conservation Service
as part of the SNOTEL and SCAN networks (http://www.

Figure 1. Effective snow depth (Sdepth,eff, dashed lines) of three
different snow regimes that have equal mean values over the period
October–March. Earlier snowfall receives greater weighting as it
represents greater insulation; data in green thus have the greatest
effective depth.

wcc.nrcs.usda.gov/). In Canada, Alberta’s AgroClimate In-
formation Service (ACIS; http://agriculture.alberta.ca/acis/)
collates and distributes station data within the province.

For a given season, we use only sites with complete,
quality-controlled records from October to March; 2049 ob-
served site years are available. It is also recognized that the
data have inherent limitations; for example it is unknown
whether snow depths are measured at precisely the same lo-
cation as the soil temperature measurements. Many measure-
ments have been made on soils that have been historically al-
tered; however our use of shallow (20 cm) soil temperatures
and focus on the winter period aim to minimizes possible ar-
tifacts due to disturbance.

Snow heat transfer in 13 models that participated in the
CMIP5 experiment (Taylor et al., 2012; http://cmip-pcmdi.
llnl.gov/cmip5/) is evaluated using the historical (1850–
2005) simulations. Soil columns within the various land
models have different depths and layer thicknesses (Slater
and Lawrence, 2013; their Fig. 2), so a spline interpolation of
each monthly mean temperature profile was used to estimate
a 20 cm value. Further details of the land models are available
in Koven et al. (2013) and Slater and Lawrence (2013).

All data are restricted to those instances where, during the
cooling period (October–March), mean Tair is below −1 ◦C,
mean Tsoil is below 2.5 ◦C, Aair is greater than 10 ◦C, and
Sdepth,eff is greater than 1 cm and less than 150 cm. Observed
locations fitting the above data criteria are shown in Fig. 2.
Model data meet the same criteria, but our intention is to test
the ubiquitous physics of a process; thus model data are not
restricted to the same locations as the observations, and an or-
der of magnitude more (or greater) grid cells from the models
are available for sampling.
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Locations with observed air and 20 cm soil temperature plus snow depth

Figure 2. Locations with colocated observations of air temperature,
20 cm soil temperature, and snow depth.

4 Results and discussion

The observations show the expected exponential shape and
fit the underlying theory (5) well despite significant scatter
in the data (Fig. 3). The scatter likely arises from several
sources, including (1) the range of climate conditions and
snow regimes (Sturm et al., 1995) that occur across the land-
scape, including the timing of snowfall and the pattern of
snow metamorphism; (2) the properties and moisture content
of the soil; and (3) uncertainties in the measurements them-
selves and the measurement locations of the observed data. It
is not possible to distinguish which of these sources of uncer-
tainty dominates the scatter seen in Fig. 3, and it remains pos-
sible that snowpack dynamics in regions outside the sampled
data would generate slightly different relationships, though
the shape of the curve would not likely change. Grey shading
in Fig. 3 shows the span of median scatter of all 100 fits to
the observations, with the black curve being the median fit
value.

The observational results demonstrate that the marginal
influence of snow insulation relative to the annual cycle
of air temperature diminishes beyond a Sdepth,eff of about
25 cm. This phenomenon of insulation saturation has been
previously noted in observations and models (Zhang, 2005;
Lawrence and Slater, 2010).

Results from models are calculated the same as observa-
tions, with the median curve for each model shown on the
same plot (Fig. 4). The difference amongst model curves
is considerable. Several models produce an exponential-like
curve (e.g., CCSM4, GISS, MRI, NorESM), suggesting that

Observations
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Figure 3. Observed relation between Anorm and effective mean
snow depth (Sdepth,eff) along with the resulting exponential fit
(dashed line). The grey shading shows the median fit plus/minus
the mean scatter (Oerr) of all fits.

they generally reflect the character of the observed relation-
ship. Many models, however, do not reproduce the observed
relationship. Models such as CanESM, GFDL, Hadley mod-
els, MIROC, and MPI are more linear in their form. This
group of more poorly performing models all show Anorm val-
ues of less than 0.45 at Sdepth,eff of 20 cm (compared to a me-
dian observed value of 0.65 at 20 cm depth). A low Anorm
value is produced when soil temperatures more closely track
the changes in air temperature rather than being modulated
by snow cover.

Note that the impact of heat transfer from the soil sur-
face to 20 cm depth can be inferred from the Anorm values
at Sdepth,eff = 0 cm (Anorm typically between 0.05 and 0.30
at Sdepth,eff = 0 cm). Many models exhibit a lower normal-
ized temperature difference value at Sdepth,eff = 0 cm, which
suggests that these models are transferring heat through the
upper soil too efficiently. The potential sources of a soil heat
transfer bias are myriad and could be due to biases/errors
in soil texture, soil moisture, soil water phase, soil thick-
ness, and vegetation. Most of these models, apart from CLM
(Lawrence and Slater, 2008), do not represent the highly in-
sulative soil organic matter, so this is a potential explanation
of the common biases at Sdepth,eff = 0 cm.

Incorrect snow heat transfer curves are symptomatic of
model deficiencies. As an example, the land scheme in the
Hadley Centre models used here (MOSES2.2; Essery et al.,
2001) applies a composite snow model where the top soil
layer and snowpack share the same temperature (Slater et
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All models 1986–2005
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Figure 4. Model fits to Eq. (5), showing large differences in how
heat is transferred though the snowpack to the soil. Data from the
CMIP5 comparison period 1986–2005 are used. The dashed black
line is the observational fit, with grey shading representing the ob-
servational scatter as in Fig. 3.

al., 2001); hence insulation is not properly accounted for and
cold temperatures easily penetrate into the soil. Conversely,
the better-performing models feature multi-layer snowpacks
that are more apt at emulating the nonlinear temperature pro-
file of the snowpack. Note that the Hadley Centre model de-
velopers have addressed this limitation by implementing a
multi-layer snow model (Best et al., 2011; Chadburn et al.,
2015).

Despite the application of a different coupled model
component (e.g., atmosphere or ocean models) and differ-
ent initial conditions, both of which will influence terres-
trial surface climate, the two Hadley Centre climate models
(HadGEM2-CC and HadGEM2-ES, both utilizing MOSES
as their land model) produce essentially the same snow insu-
lation curve. Similarly, CCSM4 and NorESM reproduce es-
sentially the same curve, which is expected since both mod-
els utilize CLM4 as their land model. The fact that snow
insulation curves are essentially the same for a particular
land model, even when driven with different climatic forc-
ings from their parent climate model, suggests that the form
of the curve does indeed capture the functional land model
behavior.

The steep gradient of Anorm at shallower Sdepth,eff is an im-
portant feature to capture as over 85 % of seasonally snow-
covered land is estimated to have a Sdepth,eff less than 30 cm.
Reliable observed data of hemispheric-scale snow depths
or mass is not yet available, but the prevalence of shallow

snow can be seen in estimated climatological Sdepth,eff de-
rived from numerous reanalysis (ERA-Interim (Dee et al.,
2011), MERRA (Rienecker et al., 2011), CFSR (Saha et al.,
2010), JRA-55 (Kobayashi et al., 2015), some of which as-
similate snow depths) products such as GlobSnow (Takala et
al., 2011) and station interpolations (Foster and Davy, 1988;
Brown and Brasnett, 2010) (Fig. 5).

A model diagnostic: the snow and heat transfer metric
(SHTM)

A land model should be able to capture the exponential re-
lationship between Anorm and Sdepth,eff, and it is useful to
summarize the ability of a given model to do so as a com-
pact metric. Here, we develop a snow and heat transfer met-
ric (SHTM) that could be used within a broader land model
analysis system such as the International Land Model Bench-
marking project (ILAMB; http://www.ilamb.org; Luo et al.,
2012). The metric is designed to have a value from 0 to 1 and
describes the departure of a model’s snow insulation curve
from the observed curve. As the marginal influence of snow
insulation decreases after a Sdepth,eff value of about 25 cm
and most of the seasonal snow regions have a Sdepth,eff below
30 cm (Fig. 5), the SHTM value is only calculated over the
range of 0 to 30 cm. For each 1 cm of Sdepth,eff, up to 30 cm,
twice the difference in Anorm between the model and obser-
vational curves is obtained; a root mean square error of these
values is then computed and subtracted from 1. The SHTM
value is thus

SHTM= 1.−

√[
2 · (Model Anorm,i −Observed Anorm,i)

]2
.

(7)

The closer SHTM is to 1, the better the model is at repro-
ducing the observed snow insulation curve; a lower limit
of 0 is placed on the SHTM. An important feature of the
SHTM is that it effectively isolates analysis of the snow in-
sulation process and therefore should be robust across differ-
ent climate forcing. We test that hypothesis here by calcu-
lating the SHTM for ten 15-year periods from 1850 to 2000
for each model. The mean 2 m air temperature over the ter-
restrial Northern Hemisphere north of 55◦ N for the cooling
period (October–March) was computed for each 15-year pe-
riod for each model. As a measure of changing climates, the
minimum and maximum of these 15-year averages was dif-
ferenced per model, resulting in a span of 1.25 to 4.15 ◦C,
with a mean of 2.15 ◦C. Despite these climatic changes, the
SHTM maintains a fairly constant value for each land model.
Over the 150 years, all models return a SHTM standard de-
viation of less than 0.021, which is substantially less than
the typical SHTM difference between models and indicates
a general invariance to climate variability (Fig. 6).

Due to scatter in the data (both modeled and observed
data), the SHTM can only be used as a broader indicator of
model skill. Based on the standard deviation of scores and
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Figure 5. Cumulative distribution curves for climatological effec-
tive snow depths (Sdepth,eff) as a percentage of all seasonally snow-
covered area in the Northern Hemisphere (NH). The observed and
model climatologies span a minimum of 10 years in the last quarter
of the 20th century. The bold lines show the median values of the
curves for both observations and models; shading shows the total
range of curves. Note that the absolute snow-covered area can be
quite different amongst models and observational estimates.

observational uncertainty, SHTM values within 0.05 of each
other may not be significantly different, and incremental im-
provements to the snow insulation schemes may not neces-
sarily result in meaningful changes in the SHTM score. Ad-
ditionally, the SHTM does not evaluate the ability of models
to simulate snow accumulation or ablation; additional data
sets and metrics are needed to assess these processes.

5 Conclusions

Model evaluation is an important aspect of the overall mod-
eling process: e.g., development, application, and/or predic-
tion. Land, hydrology, and ecology models can range in com-
plexity from simpler, more conceptually based, formulations
through to highly explicit representations that incorporate a
multitude of processes. Regardless of their complexity, it is
important that the underlying physical processes are repre-
sented correctly.

Deriving the relationship between a normalized tempera-
ture amplitude difference between air and soil, Anorm, and
the seasonal effective snow depth, Sdepth,eff, we have shown
that observations are consistent with heat transfer theory.
Analysis of observed results suggests that the marginal im-
pact of snow insulation diminishes beyond a Sdepth,eff of
about 25 cm. Structural weaknesses in several models have
been exposed by examining their ability to represent the
atmosphere–land heat transfer process in the presence of
snow. To quantitatively compare model performance, a snow
and heat transfer metric was designed. The SHTM value per
model changed little when calculated for different periods
over 150 years of climate change, suggesting it can fairly un-
ambiguously provide an indication of whether model struc-

SHTM over time (1850–2000), per model
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Figure 6. Mean value of the snow and heat transfer metric (SHTM)
for each model. Values closer to 1.0 indicate better agreement with
observations. SHTM values are relatively stable over 150 years of
climate for each model.

tural/parameter deficiencies exist by negating other areas of
uncertainty, such as the model forcing data. The SHTM is a
useful model diagnostic that can be added to existing land
model analysis/benchmarking systems.
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