Articles | Volume 11, issue 2
The Cryosphere, 11, 857–875, 2017
https://doi.org/10.5194/tc-11-857-2017
The Cryosphere, 11, 857–875, 2017
https://doi.org/10.5194/tc-11-857-2017

Research article 03 Apr 2017

Research article | 03 Apr 2017

Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods

Haruko M. Wainwright et al.

Related authors

On the similarity of hillslope hydrologic function: a process-based approach
Fadji Zaouna Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-520,https://doi.org/10.5194/hess-2021-520, 2021
Preprint under review for HESS
Short summary
A hybrid data–model approach to map soil thickness in mountain hillslopes
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021,https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Reactive Transport Modeling for Supporting Climate Resilience at Groundwater Contamination Sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-338,https://doi.org/10.5194/hess-2021-338, 2021
Revised manuscript accepted for HESS
Short summary
Watershed zonation approach for tractably quantifying above-and-belowground watershed heterogeneity and functions
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle Newcomer, Baptiste Dafflon, Erica Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-228,https://doi.org/10.5194/hess-2021-228, 2021
Revised manuscript accepted for HESS
Short summary
Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018,https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary

Related subject area

Arctic (e.g. Greenland)
Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models
Fredrik Boberg, Ruth Mottram, Nicolaj Hansen, Shuting Yang, and Peter L. Langen
The Cryosphere, 16, 17–33, https://doi.org/10.5194/tc-16-17-2022,https://doi.org/10.5194/tc-16-17-2022, 2022
Short summary
Perspectives on future sea ice and navigability in the Arctic
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021,https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Lasting impact of winds on Arctic sea ice through the ocean's memory
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021,https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021,https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Presentation and evaluation of the Arctic sea ice forecasting system neXtSIM-F
Timothy Williams, Anton Korosov, Pierre Rampal, and Einar Ólason
The Cryosphere, 15, 3207–3227, https://doi.org/10.5194/tc-15-3207-2021,https://doi.org/10.5194/tc-15-3207-2021, 2021
Short summary

Cited articles

Anderson, B. T., McNamara, J. P., Marshall, H. P., and Flores, A. N.: Insights into the physical processes controlling correlations between snow distribution and terrain properties, Water Resour. Res., 50, 4545–4563, 2014.
Anderson, K. and Gaston, K. J.: Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Front. Ecol. Environ., 11, 138–146, 2013.
Annan, A. P.: Ground penetrating radar, in near surface geophysics, in: Investigations in Geophysics, edited by: Butler, D. K., Society of Exploration Geophysicists, Tulsa, OK, USA, 13, 357–438, 2005.
Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, 1993.
Berezovskaya, S. and Kane, D. L.: Measuring snow water equivalent for hydrological applications: part 1, accuracy of observations, in: 16th International Northern Research Basins Symposium and Workshop Petrozavodsk, Russia, 27 August–2 September 2007, available at: http://resources.krc.karelia.ru/krc/doc/publ2007/SYMPOSIUM_029-35.pdf (last access: 12 March 2017), 2007.
Download
Short summary
Snow has a profound impact on permafrost and ecosystem functioning in the Arctic tundra. This paper aims to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. In addition, we develop a Bayesian geostatistical method to integrate multiscale observational platforms (a snow probe, ground penetrating radar, unmanned aerial system and airborne lidar) for estimating snow depth in high resolution over a large area.