Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-857-2017
https://doi.org/10.5194/tc-11-857-2017
Research article
 | 
03 Apr 2017
Research article |  | 03 Apr 2017

Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods

Haruko M. Wainwright, Anna K. Liljedahl, Baptiste Dafflon, Craig Ulrich, John E. Peterson, Alessio Gusmeroli, and Susan S. Hubbard

Related authors

On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022,https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022,https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022,https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
A hybrid data–model approach to map soil thickness in mountain hillslopes
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021,https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018,https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary

Related subject area

Arctic (e.g. Greenland)
Validation of pan-Arctic soil temperatures in modern reanalysis and data assimilation systems
Tyler C. Herrington, Christopher G. Fletcher, and Heather Kropp
The Cryosphere, 18, 1835–1861, https://doi.org/10.5194/tc-18-1835-2024,https://doi.org/10.5194/tc-18-1835-2024, 2024
Short summary
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024,https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024,https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024,https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024,https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary

Cited articles

Anderson, B. T., McNamara, J. P., Marshall, H. P., and Flores, A. N.: Insights into the physical processes controlling correlations between snow distribution and terrain properties, Water Resour. Res., 50, 4545–4563, 2014.
Anderson, K. and Gaston, K. J.: Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Front. Ecol. Environ., 11, 138–146, 2013.
Annan, A. P.: Ground penetrating radar, in near surface geophysics, in: Investigations in Geophysics, edited by: Butler, D. K., Society of Exploration Geophysicists, Tulsa, OK, USA, 13, 357–438, 2005.
Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, 1993.
Berezovskaya, S. and Kane, D. L.: Measuring snow water equivalent for hydrological applications: part 1, accuracy of observations, in: 16th International Northern Research Basins Symposium and Workshop Petrozavodsk, Russia, 27 August–2 September 2007, available at: http://resources.krc.karelia.ru/krc/doc/publ2007/SYMPOSIUM_029-35.pdf (last access: 12 March 2017), 2007.
Download
Short summary
Snow has a profound impact on permafrost and ecosystem functioning in the Arctic tundra. This paper aims to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. In addition, we develop a Bayesian geostatistical method to integrate multiscale observational platforms (a snow probe, ground penetrating radar, unmanned aerial system and airborne lidar) for estimating snow depth in high resolution over a large area.