Articles | Volume 11, issue 5
The Cryosphere, 11, 2149–2174, 2017
https://doi.org/10.5194/tc-11-2149-2017
The Cryosphere, 11, 2149–2174, 2017
https://doi.org/10.5194/tc-11-2149-2017
Research article
08 Sep 2017
Research article | 08 Sep 2017

Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013

J. Rachel Carr et al.

Related authors

TermPicks: A century of Greenland glacier terminus data for use in machine learning applications
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-311,https://doi.org/10.5194/tc-2021-311, 2021
Revised manuscript accepted for TC
Short summary
Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020,https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Supraglacial pond evolution in the Everest region, central Himalaya, 2015–2018
Caroline J. Taylor and J. Rachel Carr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-12,https://doi.org/10.5194/tc-2019-12, 2019
Preprint withdrawn
Short summary
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018,https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018,https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary

Related subject area

Arctic (e.g. Greenland)
Snowfall and snow accumulation during the MOSAiC winter and spring seasons
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022,https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Modelling the mass budget and future evolution of Tunabreen, central Spitsbergen
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere, 16, 2115–2126, https://doi.org/10.5194/tc-16-2115-2022,https://doi.org/10.5194/tc-16-2115-2022, 2022
Short summary
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022,https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change
Christian J. Taubenberger, Denis Felikson, and Thomas Neumann
The Cryosphere, 16, 1341–1348, https://doi.org/10.5194/tc-16-1341-2022,https://doi.org/10.5194/tc-16-1341-2022, 2022
Short summary
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary

Cited articles

Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Belkin, I. M., Levitus, S., Antonov, J., and Malmberg, S.-A.: “Great salinity anomalies” in the North Atlantic, Prog. Oceanogr., 41, 1–68, 1998.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth Sci. Rev., 82, 143–179, 2007.
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852–863, https://doi.org/10.1093/icesjms/fss056, 2012.
Bindschadler, R., Harrison, W. D., Raymond, C. F., and Crosson, R.: Geometry and dynamics of a surge-type glacier, J. Glaciol., 18, 181–194, 1977.
Download
Short summary
Glaciers on Novaya Zemlya (NVZ) retreated rapidly between 2000 and 2013. This was far faster than the previous 25 years, but retreat then slowed from 2013 onward. This may result from changes in broadscale climatic patterns. Glaciers ending in lakes retreated at a similar rate to those ending in the ocean, and retreat rates were very consistent between glaciers, which contrasts with previous studies.