Articles | Volume 11, issue 5
https://doi.org/10.5194/tc-11-2149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-2149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013
J. Rachel Carr
CORRESPONDING AUTHOR
School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
Heather Bell
Department of Geography, Durham University, Durham, DH13TQ, UK
Rebecca Killick
Department of Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK
Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 4RQ, UK
Related authors
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819, https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Short summary
We evaluated the sensitivity of model outputs to input parameter uncertainties by performing multiple GLOF simulations using the r.avaflow model. We found out that GLOF modelling outputs are highly sensitive to six parameters: volume of mass movements entering lakes, DEM datasets, origin of mass movements, mesh size, basal frictional angle, and entrainment coefficient. Future modelling should carefully consider the output uncertainty from these sensitive parameters.
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024, https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet is one of the world's largest glaciers and is melting quickly in response to climate change. It contains fast-flowing channels of ice that move ice from Greenland's centre to its coasts and allow Greenland to react quickly to climate warming. As a result, we want to predict how these glaciers will behave in the future, but there are lots of uncertainties. Here we assess the impacts of two main sources of uncertainties in glacier models.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.
Caroline J. Taylor and J. Rachel Carr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-12, https://doi.org/10.5194/tc-2019-12, 2019
Preprint withdrawn
Short summary
Short summary
Supraglacial ponds can greatly enhance local melt rates, growing rapidly to form proglacial lakes, which represent a major hazard. Here, a remote sensing study using 10m resolution satellite imagery (Sentinel-2A) was deployed to quantify the changes of 6,425 supraglacial ponds on 10 glaciers in the Everest region of Nepal, 2015 to 2018. Overall, our results demonstrate rapid pond expansion, subject to spatial and temporal variation, highlighting the need for continued monitoring.
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018, https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Short summary
Floating ice tongues in Greenland buttress inland ice, and their removal could accelerate ice flow. Petermann Glacier recently lost large sections of its ice tongue, but there was little glacier acceleration. Here, we assess the impact of future calving events on ice speeds. We find that removing the lower portions of the ice tongue does not accelerate flow. However, future iceberg calving closer to the grounding line could accelerate ice flow and increase ice discharge and sea level rise.
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary
Short summary
The dynamic behaviour (i.e. acceleration and retreat) of outlet glaciers in northern Greenland remains understudied. Here, we provide a new long-term (68-year) record of terminus change. Overall, recent retreat rates (1995–2015) are higher than the last 47 years. Despite region-wide retreat, we found disparities in dynamic behaviour depending on terminus type; grounded glaciers accelerated and thinned following retreat, while glaciers with floating ice tongues were insensitive to recent retreat.
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
Short summary
An unmanned aerial vehicle (UAV) equipped with a commercial digital camera enabled us to obtain high-resolution digital images of the calving front of Store glacier, Greenland. The three sorties flown enabled key glaciological parameters to be quantified in sufficient detail to reveal that the terminus of Store glacier is a complex system with large variations in crevasse patterns surface velocities, calving processes, surface elevations and front positions at a daily and seasonal timescale.
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819, https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Short summary
We evaluated the sensitivity of model outputs to input parameter uncertainties by performing multiple GLOF simulations using the r.avaflow model. We found out that GLOF modelling outputs are highly sensitive to six parameters: volume of mass movements entering lakes, DEM datasets, origin of mass movements, mesh size, basal frictional angle, and entrainment coefficient. Future modelling should carefully consider the output uncertainty from these sensitive parameters.
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024, https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet is one of the world's largest glaciers and is melting quickly in response to climate change. It contains fast-flowing channels of ice that move ice from Greenland's centre to its coasts and allow Greenland to react quickly to climate warming. As a result, we want to predict how these glaciers will behave in the future, but there are lots of uncertainties. Here we assess the impacts of two main sources of uncertainties in glacier models.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.
Adam J. Hepburn, Tom Holt, Bryn Hubbard, and Felix Ng
Geosci. Instrum. Method. Data Syst., 8, 293–313, https://doi.org/10.5194/gi-8-293-2019, https://doi.org/10.5194/gi-8-293-2019, 2019
Short summary
Short summary
Currently, there exist thousands of unprocessed stereo pairs of satellite imagery which can be used to create models of the surface of Mars. This paper sets out a new open–source and free to use pipeline for creating these models. Our pipeline produces models of comparable quality to the limited number released to date but remains free to use and easily implemented by researchers, who may not necessarily have prior experience of DEM creation.
Caroline J. Taylor and J. Rachel Carr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-12, https://doi.org/10.5194/tc-2019-12, 2019
Preprint withdrawn
Short summary
Short summary
Supraglacial ponds can greatly enhance local melt rates, growing rapidly to form proglacial lakes, which represent a major hazard. Here, a remote sensing study using 10m resolution satellite imagery (Sentinel-2A) was deployed to quantify the changes of 6,425 supraglacial ponds on 10 glaciers in the Everest region of Nepal, 2015 to 2018. Overall, our results demonstrate rapid pond expansion, subject to spatial and temporal variation, highlighting the need for continued monitoring.
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018, https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Short summary
Floating ice tongues in Greenland buttress inland ice, and their removal could accelerate ice flow. Petermann Glacier recently lost large sections of its ice tongue, but there was little glacier acceleration. Here, we assess the impact of future calving events on ice speeds. We find that removing the lower portions of the ice tongue does not accelerate flow. However, future iceberg calving closer to the grounding line could accelerate ice flow and increase ice discharge and sea level rise.
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary
Short summary
The dynamic behaviour (i.e. acceleration and retreat) of outlet glaciers in northern Greenland remains understudied. Here, we provide a new long-term (68-year) record of terminus change. Overall, recent retreat rates (1995–2015) are higher than the last 47 years. Despite region-wide retreat, we found disparities in dynamic behaviour depending on terminus type; grounded glaciers accelerated and thinned following retreat, while glaciers with floating ice tongues were insensitive to recent retreat.
Tom R. Robinson, Nicholas J. Rosser, Alexander L. Densmore, Jack G. Williams, Mark E. Kincey, Jessica Benjamin, and Heather J. A. Bell
Nat. Hazards Earth Syst. Sci., 17, 1521–1540, https://doi.org/10.5194/nhess-17-1521-2017, https://doi.org/10.5194/nhess-17-1521-2017, 2017
Short summary
Short summary
Current methods to identify landslides after an earthquake are too slow to effectively inform emergency response operations. This study presents an empirical approach for modelling the spatial pattern and landslide density within hours to days of the earthquake. The approach uses small initial samples of landslides to identify locations where as yet unidentified landslides may have occurred. The model requires just 200 initial landslides, provided they have sufficiently wide spatial coverage.
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
Short summary
An unmanned aerial vehicle (UAV) equipped with a commercial digital camera enabled us to obtain high-resolution digital images of the calving front of Store glacier, Greenland. The three sorties flown enabled key glaciological parameters to be quantified in sufficient detail to reveal that the terminus of Store glacier is a complex system with large variations in crevasse patterns surface velocities, calving processes, surface elevations and front positions at a daily and seasonal timescale.
G. P. Petropoulos, H. M. Griffiths, T. N. Carlson, P. Ioannou-Katidis, and T. Holt
Geosci. Model Dev., 7, 1873–1887, https://doi.org/10.5194/gmd-7-1873-2014, https://doi.org/10.5194/gmd-7-1873-2014, 2014
T. O. Holt, N. F. Glasser, D. J. Quincey, and M. R. Siegfried
The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, https://doi.org/10.5194/tc-7-797-2013, 2013
Related subject area
Arctic (e.g. Greenland)
Sea-ice conditions from 1880 to 2017 on the Northeast Greenland continental shelf: a biomarker and observational record comparison
The radiative and geometric properties of melting first-year landfast sea ice in the Arctic
Sensitivity to forecast surface mass balance outweighs sensitivity to basal sliding descriptions for 21st century mass loss from three major Greenland outlet glaciers
Improving short-term sea ice concentration forecasts using deep learning
Validation of pan-Arctic soil temperatures in modern reanalysis and data assimilation systems
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Characterizing Southeast Greenland fjord surface ice and freshwater flux to support biological applications
Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
GREP reanalysis captures the evolution of the Arctic Marginal Ice Zone across timescales
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Characterization of atmospheric methane release in the outer Mackenzie River delta from biogenic and thermogenic sources
Spatially heterogeneous effect of climate warming on the Arctic land ice
Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice
Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation
Patterns of wintertime Arctic sea-ice leads and their relation to winds and ocean currents
A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020
Arctic sea ice radar freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: toward sea ice thickness observation from 1995 to 2021
Improving modelled albedo over the Greenland ice sheet through parameter optimisation and MODIS snow albedo retrievals
Hydraulic suppression of basal glacier melt in sill fjords
Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79° N) Glacier, northeast Greenland
Rapid sea ice changes in the future Barents Sea
Assessment of Arctic seasonal snow cover rates of change
Causes and evolution of winter polynyas north of Greenland
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Observed and predicted trends in Icelandic snow conditions for the period 1930–2100
Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
Snow properties at the forest–tundra ecotone: predominance of water vapor fluxes even in deep, moderately cold snowpacks
Spatial patterns of snow distribution in the sub-Arctic
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula
Snowfall and snow accumulation during the MOSAiC winter and spring seasons
Modelling the mass budget and future evolution of Tunabreen, central Spitsbergen
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models
Perspectives on future sea ice and navigability in the Arctic
Lasting impact of winds on Arctic sea ice through the ocean's memory
Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation
Presentation and evaluation of the Arctic sea ice forecasting system neXtSIM-F
Comment on “Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream” by Smith-Johnsen et al. (2020)
Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier
Combined influence of oceanic and atmospheric circulations on Greenland sea ice concentration
Seasonal changes in sea ice kinematics and deformation in the Pacific sector of the Arctic Ocean in 2018/19
Trends and spatial variation in rain-on-snow events over the Arctic Ocean during the early melt season
Thinning leads to calving-style changes at Bowdoin Glacier, Greenland
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024, https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Short summary
The state of sea ice strongly affects its absorption of solar energy. In May 2019, we flew uncrewed aerial vehicles (UAVs) equipped with sensors designed to quantify the sunlight that is reflected by sea ice at each wavelength over the sea ice of Kotzebue Sound, Alaska. We found that snow patches get darker (up to ~ 20 %) as they get smaller, while bare patches get darker (up to ~ 20 %) as they get larger. We believe that this difference is due to melting around the edges of small features.
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024, https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet is one of the world's largest glaciers and is melting quickly in response to climate change. It contains fast-flowing channels of ice that move ice from Greenland's centre to its coasts and allow Greenland to react quickly to climate warming. As a result, we want to predict how these glaciers will behave in the future, but there are lots of uncertainties. Here we assess the impacts of two main sources of uncertainties in glacier models.
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024, https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Short summary
Sea ice forecasts are operationally produced using physically based models, but these forecasts are often not accurate enough for maritime operations. In this study, we developed a statistical correction technique using machine learning in order to improve the skill of short-term (up to 10 d) sea ice concentration forecasts produced by the TOPAZ4 model. This technique allows for the reduction of errors from the TOPAZ4 sea ice concentration forecasts by 41 % on average.
Tyler C. Herrington, Christopher G. Fletcher, and Heather Kropp
The Cryosphere, 18, 1835–1861, https://doi.org/10.5194/tc-18-1835-2024, https://doi.org/10.5194/tc-18-1835-2024, 2024
Short summary
Short summary
Here we validate soil temperatures from eight reanalysis products across the pan-Arctic and compare their performance to a newly calculated ensemble mean soil temperature product. We find that most product soil temperatures have a relatively large RMSE of 2–9 K. It is found that the ensemble mean product outperforms individual reanalysis products. Therefore, we recommend the ensemble mean soil temperature product for the validation of climate models and for input to hydrological models.
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024, https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Short summary
We retrieved sea ice drift in Fram Strait using the Chinese HaiYang 1D Coastal Zone Imager. The dataset is has hourly and daily intervals for analysis, and validation is performed using a synthetic aperture radar (SAR)-based product and International Arctic Buoy Programme (IABP) buoys. The differences between them are explained by investigating the spatiotemporal variability in sea ice motion. The accuracy of flow direction retrieval for sea ice drift is also related to sea ice displacement.
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024, https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Short summary
In this study, we analysed 14 sea-ice proxy records and compared them with the results from two different climate simulations from the Atlantic sector of the Arctic Ocean over the Common Era (last 2000 years). Both proxy and model approaches demonstrated a long-term sea-ice increase. The good correspondence suggests that the state-of-the-art sea-ice proxies are able to capture large-scale climate drivers. Short-term variability, however, was less coherent due to local-to-regional scale forcings.
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry Stern, and Ian Joughin
EGUsphere, https://doi.org/10.5194/egusphere-2024-184, https://doi.org/10.5194/egusphere-2024-184, 2024
Short summary
Short summary
The complex geomorphology of Southeast Greenland (SEG) creates dynamic fjord habitats for marine top predators, with glacier-derived floating ice, pack and landfast sea ice, and freshwater flux. We investigate the SEG fjord physical environment, with focus on surface ice conditions, to provide a regional characterization to support biological research. As Arctic warming continues, SEG may serve as a long-term refugia for ice-dependent wildlife due to projected regional ice sheet persistence.
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024, https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Short summary
Melt ponds are puddles of meltwater which form on Arctic sea ice in the summer period. They are darker than the ice cover and lead to increased absorption of solar energy. Global climate models need information about the Earth's energy budget. Thus satellite observations are used to monitor the surface fractions of melt ponds, ocean, and sea ice in the entire Arctic. We present a new physically based algorithm that can separate these three surface types with uncertainty below 10 %.
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024, https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary
Short summary
We used satellite images to create sea ice maps of Hornsund fjord, Svalbard, for nine seasons and calculated the percentage of the fjord that was covered by ice. On average, sea ice was present in Hornsund for 158 d per year, but it varied from year to year. April was the "iciest'" month and 2019/2020, 2021/22 and 2014/15 were the "iciest'" seasons. Our data can be used to understand sea ice conditions compared with other fjords of Svalbard and in studies of wave modelling and coastal erosion.
Francesco Cocetta, Lorenzo Zampieri, Julia Selivanova, and Doroteaciro Iovino
EGUsphere, https://doi.org/10.5194/egusphere-2024-413, https://doi.org/10.5194/egusphere-2024-413, 2024
Short summary
Short summary
Arctic sea ice thinning and retreating because of global warming. Thus, the region is transitioning to a new state featuring an expansion of the marginal ice zone, a region where mobile ice interacts with waves from the open ocean. By analyzing 30 years of sea ice reconstructions that combine numerical models and observations, this paper proves that an ensemble of global ocean and sea ice reanalyses is an adequate tool for investigating the changing Arctic sea ice cover.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Damien Maure, Christoph Kittel, Clara Lambin, Alison Delhasse, and Xavier Fettweis
The Cryosphere, 17, 4645–4659, https://doi.org/10.5194/tc-17-4645-2023, https://doi.org/10.5194/tc-17-4645-2023, 2023
Short summary
Short summary
The Arctic is warming faster than the rest of the Earth. Studies have already shown that Greenland and the Canadian Arctic are experiencing a record increase in melting rates, while Svalbard has been relatively less impacted. Looking at those regions but also extending the study to Iceland and the Russian Arctic archipelagoes, we see a heterogeneity in the melting-rate response to the Arctic warming, with the Russian archipelagoes experiencing lower melting rates than other regions.
Geoffrey J. Dawson and Jack C. Landy
The Cryosphere, 17, 4165–4178, https://doi.org/10.5194/tc-17-4165-2023, https://doi.org/10.5194/tc-17-4165-2023, 2023
Short summary
Short summary
In this study, we compared measurements from CryoSat-2 and ICESat-2 over Arctic summer sea ice to understand any possible biases between the two satellites. We found that there is a difference when we measure elevation over summer sea ice using CryoSat-2 and ICESat-2, and this is likely due to surface melt ponds. The differences we found were in good agreement with theoretical predictions, and this work will be valuable for summer sea ice thickness measurements from both altimeters.
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023, https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings point not only to the limitations in models but also to the need for more high-resolution observations to validate and calibrate models.
Sascha Willmes, Günther Heinemann, and Frank Schnaase
The Cryosphere, 17, 3291–3308, https://doi.org/10.5194/tc-17-3291-2023, https://doi.org/10.5194/tc-17-3291-2023, 2023
Short summary
Short summary
Sea ice is an important constituent of the global climate system. We here use satellite data to identify regions in the Arctic where the sea ice breaks up in so-called leads (i.e., linear cracks) regularly during winter. This information is important because leads determine, e.g., how much heat is exchanged between the ocean and the atmosphere. We here provide first insights into the reasons for the observed patterns in sea-ice leads and their relation to ocean currents and winds.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023, https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Nina Raoult, Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, and Vladislav Bastrikov
The Cryosphere, 17, 2705–2724, https://doi.org/10.5194/tc-17-2705-2023, https://doi.org/10.5194/tc-17-2705-2023, 2023
Short summary
Short summary
Greenland ice sheet melting due to global warming could significantly impact global sea-level rise. The ice sheet's albedo, i.e. how reflective the surface is, affects the melting speed. The ORCHIDEE computer model is used to simulate albedo and snowmelt to make predictions. However, the albedo in ORCHIDEE is lower than that observed using satellites. To correct this, we change model parameters (e.g. the rate of snow decay) to reduce the difference between simulated and observed values.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023, https://doi.org/10.5194/tc-17-1445-2023, 2023
Short summary
Short summary
The Barents Sea is the region of most intense winter sea ice loss, and future projections show a continued decline towards ice-free conditions by the end of this century but with large fluctuations. Here we use climate model simulations to look at the occurrence and drivers of rapid ice change events in the Barents Sea that are much stronger than the average ice loss. A better understanding of these events will contribute to improved sea ice predictions in the Barents Sea.
Chris Derksen and Lawrence Mudryk
The Cryosphere, 17, 1431–1443, https://doi.org/10.5194/tc-17-1431-2023, https://doi.org/10.5194/tc-17-1431-2023, 2023
Short summary
Short summary
We examine Arctic snow cover trends through the lens of climate assessments. We determine the sensitivity of change in snow cover extent to year-over-year increases in time series length, reference period, the use of a statistical methodology to improve inter-dataset agreement, version changes in snow products, and snow product ensemble size. By identifying the sensitivity to the range of choices available to investigators, we increase confidence in reported Arctic snow extent changes.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023, https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Short summary
We present upgrades to winter Arctic sea ice thickness estimates from NASA's ICESat-2. Our new thickness results show better agreement with independent data from ESA's CryoSat-2 compared to our first data release, as well as new, very strong comparisons with data collected by moorings in the Beaufort Sea. We analyse three winters of thickness data across the Arctic, including 50 cm thinning of the multiyear ice over this 3-year period.
Darri Eythorsson, Sigurdur M. Gardarsson, Andri Gunnarsson, and Oli Gretar Blondal Sveinsson
The Cryosphere, 17, 51–62, https://doi.org/10.5194/tc-17-51-2023, https://doi.org/10.5194/tc-17-51-2023, 2023
Short summary
Short summary
In this study we researched past and predicted snow conditions in Iceland based on manual snow observations recorded in Iceland and compared these with satellite observations. Future snow conditions were predicted through numerical computer modeling based on climate models. The results showed that average snow depth and snow cover frequency have increased over the historical period but are projected to significantly decrease when projected into the future.
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635, https://doi.org/10.5194/tc-16-4617-2022, https://doi.org/10.5194/tc-16-4617-2022, 2022
Short summary
Short summary
Indicators for the start and end of annual breakup and freeze-up of sea ice at various coastal locations around the Arctic are developed. Relative to broader offshore areas, some of the coastal indicators show an earlier freeze-up and later breakup, especially at locations where landfast ice is prominent. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in synthesized metrics of the coastal breakup/freeze-up indicators.
Georg Lackner, Florent Domine, Daniel F. Nadeau, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 3357–3373, https://doi.org/10.5194/tc-16-3357-2022, https://doi.org/10.5194/tc-16-3357-2022, 2022
Short summary
Short summary
We compared the snowpack at two sites separated by less than 1 km, one in shrub tundra and the other one within the boreal forest. Even though the snowpack was twice as thick at the forested site, we found evidence that the vertical transport of water vapor from the bottom of the snowpack to its surface was important at both sites. The snow model Crocus simulates no water vapor fluxes and consequently failed to correctly simulate the observed density profiles.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022, https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary
Short summary
The timing of Arctic sea ice melt each year is an important metric for assessing how sea ice in climate models compares to satellite observations. Here, we utilize a new tool for creating more direct comparisons between climate model projections and satellite observations of Arctic sea ice, such that the melt onset dates are defined the same way. This tool allows us to identify climate model biases more clearly and gain more information about what the satellites are observing.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere, 16, 2115–2126, https://doi.org/10.5194/tc-16-2115-2022, https://doi.org/10.5194/tc-16-2115-2022, 2022
Short summary
Short summary
Tunabreen is a 26 km long tidewater glacier. It is the most frequently surging glacier in Svalbard, with four documented surges in the past 100 years. We have modelled this glacier to find out how it reacts to future climate change. Careful calibration was done against the observed length record for the past 100 years. For a 50 m increase in the equilibrium line altitude (ELA) the length of the glacier will be shortened by 10 km after about 100 years.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Christian J. Taubenberger, Denis Felikson, and Thomas Neumann
The Cryosphere, 16, 1341–1348, https://doi.org/10.5194/tc-16-1341-2022, https://doi.org/10.5194/tc-16-1341-2022, 2022
Short summary
Short summary
Outlet glaciers are projected to account for half of the total ice loss from the Greenland Ice Sheet over the 21st century. We classify patterns of seasonal dynamic thickness changes of outlet glaciers using new observations from the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Our results reveal seven distinct patterns that differ across glaciers even within the same region. Future work can use our results to improve our understanding of processes that drive seasonal ice sheet changes.
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022, https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Short summary
A record minimum July sea ice extent, since 1979, was observed in 2020. Our results reveal that an anomalously high advection of energy and water vapor prevailed during spring (April to June) 2020 over regions with noticeable sea ice retreat. The large-scale atmospheric circulation and cyclones act in concert to trigger the exceptionally warm and moist flow. The convergence of the transport changed the atmospheric characteristics and the surface energy budget, thus causing a severe sea ice melt.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Fredrik Boberg, Ruth Mottram, Nicolaj Hansen, Shuting Yang, and Peter L. Langen
The Cryosphere, 16, 17–33, https://doi.org/10.5194/tc-16-17-2022, https://doi.org/10.5194/tc-16-17-2022, 2022
Short summary
Short summary
Using the regional climate model HIRHAM5, we compare two versions (v2 and v3) of the global climate model EC-Earth for the Greenland and Antarctica ice sheets. We are interested in the surface mass balance of the ice sheets due to its importance when making estimates of future sea level rise. We find that the end-of-century change in the surface mass balance for Antarctica is 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3), and for Greenland it is −290 Gt yr−1 (v2) and −1640 Gt yr−1 (v3).
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021, https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Short summary
Sea ice is retreating with rapid warming in the Arctic. It will continue and approach the worst predicted pathway released by the IPCC. The irreversible tipping point might show around 2060 when the oldest ice will have completely disappeared. It has a huge impact on human production. Ordinary merchant ships will be able to pass the Northeast Passage and Northwest Passage by the midcentury, and the opening time will advance to the next 10 years for icebreakers with moderate ice strengthening.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Timothy Williams, Anton Korosov, Pierre Rampal, and Einar Ólason
The Cryosphere, 15, 3207–3227, https://doi.org/10.5194/tc-15-3207-2021, https://doi.org/10.5194/tc-15-3207-2021, 2021
Short summary
Short summary
neXtSIM (neXt-generation Sea Ice Model) includes a novel and extremely realistic way of modelling sea ice dynamics – i.e. how the sea ice moves and deforms in response to the drag from winds and ocean currents. It has been developed over the last few years for a variety of applications, but this paper represents its first demonstration in a forecast context. We present results for the time period from November 2018 to June 2020 and show that it agrees well with satellite observations.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Sourav Chatterjee, Roshin P. Raj, Laurent Bertino, Sebastian H. Mernild, Meethale Puthukkottu Subeesh, Nuncio Murukesh, and Muthalagu Ravichandran
The Cryosphere, 15, 1307–1319, https://doi.org/10.5194/tc-15-1307-2021, https://doi.org/10.5194/tc-15-1307-2021, 2021
Short summary
Short summary
Sea ice in the Greenland Sea (GS) is important for its climatic (fresh water), economical (shipping), and ecological contribution (light availability). The study proposes a mechanism through which sea ice concentration in GS is partly governed by the atmospheric and ocean circulation in the region. The mechanism proposed in this study can be useful for assessing the sea ice variability and its future projection in the GS.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Guangyu Zuo, Dawei Gui, Qiongqiong Cai, H. Jakob Belter, and Wangxiao Yang
The Cryosphere, 15, 1321–1341, https://doi.org/10.5194/tc-15-1321-2021, https://doi.org/10.5194/tc-15-1321-2021, 2021
Short summary
Short summary
Quantification of ice deformation is useful for understanding of the role of ice dynamics in climate change. Using data of 32 buoys, we characterized spatiotemporal variations in ice kinematics and deformation in the Pacific sector of Arctic Ocean for autumn–winter 2018/19. Sea ice in the south and west has stronger mobility than in the east and north, which weakens from autumn to winter. An enhanced Arctic dipole and weakened Beaufort Gyre in winter lead to an obvious turning of ice drifting.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Qiang Wang, Shifeng Pan, Jie Su, Xiaojun Yuan, Minghu Ding, Feng Zhang, Kai Xue, Peter A. Bieniek, and Hajo Eicken
The Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021, https://doi.org/10.5194/tc-15-883-2021, 2021
Short summary
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Cited articles
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Belkin, I. M., Levitus, S., Antonov, J., and Malmberg, S.-A.: “Great salinity anomalies” in the North Atlantic, Prog. Oceanogr., 41, 1–68, 1998.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth Sci. Rev., 82, 143–179, 2007.
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852–863, https://doi.org/10.1093/icesjms/fss056, 2012.
Bindschadler, R., Harrison, W. D., Raymond, C. F., and Crosson, R.: Geometry and dynamics of a surge-type glacier, J. Glaciol., 18, 181–194, 1977.
Blaszczyk, M., Jania, J. A., and Hagen, J. M.: Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes, Pol. Polar Res., 30, 85–142, 2009.
Carr, J. R., Stokes, C. R., and Vieli, A.: Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: Twenty years of rapid change, Prog. Phys. Geog., 37, 435–466, 2013a.
Carr, J. R., Vieli, A., and Stokes, C. R.: Climatic, oceanic and topographic controls on marine-terminating outlet glacier behavior in north-west Greenland at seasonal to interannual timescales, J. Geophys. Res., 118, 1210–1226, 2013b.
Carr, J. R., Stokes, C., and Vieli, A.: Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions, J. Glaciol., 60, 155–170, 2014.
Carr, J. R., Vieli, A., Stokes, C., Jamieson, S., Palmer, S., Christoffersen, P., Dowdeswell, J., Nick, F., Blankenship, D., and Young, D.: Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland, J. Glaciol., 61, 137–150, 2015.
Chizov, O. P., Koryakin, V. S., Davidovich, N. V., Kanevsky, Z. M., Singer, E. M., Bazheva, V. Y., Bazhev, A. B., and Khmelevskoy, I. F.: Glaciation of the Novaya Zemlya, in: Glaciology IX section of IGY Program 18, 338 pp., Nauka, Moscow, Russia, 1968 (in Russian, with English summary).
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972, 2008.
Copland, L., Sharp, M. J., and Dowdeswell, J. A.: The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic, Ann. Glaciol., 36, 73–81, 2003.
Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., and Zhang, R.: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere, Nat. Geosci., 9, 509–512, 2016.
Dowdeswell, J. and Williams, M.: Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery, J. Glaciol., 43, 489–494, 1997.
Dowdeswell, J., Benham, T. J., Strozzi, T., and Hagen, J. M.: Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard, J. Geophys. Res., 113, F03022, https://doi.org/10.1029/2007JF000905, 2008.
Dowdeswell, J. A., Hamilton, G. S., and Hagen, J. O.: The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions, J. Glaciol., 37, 388–400, 1991.
Drinkwater, K., Colbourne, E., Loeng, H., Sundby, S., and Kristiansen, T.: Comparison of the atmospheric forcing and oceanographic responses between the Labrador Sea and the Norwegian and Barents seas, Prog. Oceanogr., 114, 11–25, 2013.
Dunse, T., Schellenberger, T., Hagen, J. O., Kääb, A., Schuler, T. V., and Reijmer, C. H.: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt, The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, 2015.
Echelmeyer, K. A., Harrison, W. D., Larsen, C., and Mitchell, J. E.: The role of the margins in the dynamics of an active ice stream, J. Glaciol., 40, 527–538, 1994.
Eckley, I., Fearnhead, P., and Killick, R.: Analysis of Changepoint Models, in: Bayesian Time Series Models, edited by: Barber, D., Cemgil, T., and Chiappa, S., Cambridge University Press, Cambridge, UK, 2011.
Eisen, O., Harrison, W. D., Raymond, C. F., Echelmeyer, K. A., Bender, G. A., and Gorda, J. L. D.: Variegated Glacier, Alaska, USA: a century of surges, J. Glaciol., 51, 399–406, 2005.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Gardner, A., Moholdt, G., Wouters, B., Wolken, G. J., Burgess, D. O., Sharp, M. J., Cogley, J. G., Braun, C., and Labine, C.: Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago, Nature, 473, 357–360, 2011.
Gardner, A., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F.: A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009, Science, 340, 852–857, 2013.
Grant, K. L., Stokes, C. R., and Evans, I. S.: Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic, J. Glaciol., 55, 960–972, 2009.
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Atmospheric Blocking and Atlantic Multidecadal Ocean Variability, Science, 334, 655–659, 2011.
Hanna, E., Mernild, S. H., Cappelen, J., and Steffen, K.: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records, Environ. Res. Lett., 7, 045404, https://doi.org/10.1088/1748-9326/7/4/045404, 2012.
Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K., and Huybrechts, P.: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff, Int. J. Climatol., 33, 862–880, 2013.
Higgins, R., Leetmaa, A., Xue, Y., and Barnston, A.: Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature, J. Climate, 13, 3994–4017, 2000.
Holliday, N. P., Hughes, S. L., Bacon, S., Beszczynska-Möller, A., Hansen, B., Lavin, A., Loeng, H., Mork, K. A., Østerhus, S., Sherwin, T., and Walczowski, W.: Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas, Geophys. Res. Lett., 35, L03614, https://doi.org/10.1029/2007GL032675, 2008.
Howat, I. M. and Eddy, A.: Multi-decadal retreat of Greenland's marine-terminating glaciers, J. Glaciol., 57, 389–396, 2011.
Howat, I. M., Joughin, I., and Scambos, T. A.: Rapid changes in ice discharge from Greenland outlet glaciers, Science, 315, 1559–1561, 2007.
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E., and Scambos, T.: Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006; Ice dynamics and coupling to climate, J. Glaciol., 54, 1–14, 2008.
Hughes, T.: The Jakobshavns effect, Geophys. Res. Lett., 13, 46–48, 1986.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional temepratures and precipitation, Science, 269, 676–679, 1995.
Hurrell, J. W., Kushnir, Y., Visbeck, M. M., and Ottersen, G. G.: An Overview of the North Atlantic Oscillation, in: The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophysical Monograph Series, edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G. G., and Visbeck, M. M., Washington, D.C., USA, 2003.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA., 2013.
Jensen, T. S., Box, J. E., and Hvidberg, C. S.: A sensitivity study of annual area change for Greenland ice sheet marine terminating outlet glaciers: 1999–2013, J. Glaciol., 62, 72–81, 2016.
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a warming world, Nat. Geosci., 4, 506–513, 2011.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610, 2004.
Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., Stern, H., and Truffer., M.: Continued evolution of Jakobshavn Isbrae following its rapid speedup, J. Geophys. Res., 113, F04006, https://doi.org/10.1029/2008JF001023, 2008.
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of the basal water conduit system, J. Geophys. Res., 92, 9083–9100, 1987.
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M., and Pfeffer, T.: Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska, Science, 227, 469–479, 1985.
Killick, R. and Eckley, I. A.: Changepoint: An R Package for Changepoint Analysis, J. Stat. Softw., 58, 1–19, 2015.
Killick, R., Fearnhead, P., and Eckley, I.: Optimal Detection of Changepoints With a Linear Computational Cost, J. Am. Stat. Assoc., 107, 1590–1598, 2012.
Killick, R., Beaulieu, C., and Taylor, S.: EnvCpt: Detection of Structural Changes in Climate and Environment Time Series, R package version 0.1.1, available at: https://www.rdocumentation.org/packages/EnvCpt/versions/0.1.1, 2016.
Korablev, A., Smirnov, A., Baranova, O. K., Seidov, D., Parsons, A. R.: Climatological Atlas of the Nordic Seas and Northern North Atlantic (NODC Accession 0118478), Version 3.3, National Oceanographic Data Center, NOAA, Dataset, https://doi.org/10.7289/V54B2Z78, 2014.
Koryakin, V. S.: Glaciers of the New Earth in the XX century and global warming, Nature, 1, 42–48, 2013.
Kotlyakov, V. M., Glazovskii, A. F., and Frolov, I. E.: Glaciation in the Arctic, Her. Russ. Acad. Sci.+, 80, 155–164, 2010.
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035, 2009.
Lenaerts, J. T. M., van Angelen, J. H., van den Broeke, M. R., Gardner, A. S., Wouters, B., and van Meijgaard, E.: Irreversible mass loss of Canadian Arctic Archipelago glaciers, Geophys. Res. Lett., 40, 870–874, 2013.
Loeng, H.: Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10, 5–18, 1991.
Matsuo, K. and Heki, K.: Current ice loss in small glacier systems of the Arctic Islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry, Terr. Atmos. Ocean. Sci., 24, 657–670, 2013.
McFadden, E. M., Howat, I. M., Joughin, I., Smith, B., and Ahn, Y.: Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009), J. Geophys. Res., 116, F02022, https://doi.org/10.1029/2010JF001757, 2011.
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert, L.: A high-resolution record of Greenland mass balance, Geophys. Res. Lett., 43, 7002–7010, 2016.
McNabb, R. W. and Hock, R.: Alaska tidewater glacier terminus positions, 1948–2012, J. Geophys. Res.-Earth, 119, 153–167, 2014.
Meier, M. and Post, A.: What are glacier surges?, Can. J. Earth Sci., 6, 807–817, 1969.
Meier, M. F. and Post, A.: Fast tidewater glaciers, J. Geophys. Res., 92, 9051–9058, 1987.
Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'Neel, S., Pfeffer, W. T., Anderson, R. S., Anderson, S. P., and Glazovsky, A. F.: Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century, Science, 317, 1064–1067, 2007.
Melkonian, A. K., Willis, M. J., Pritchard, M. E., and Stewart, A. J.: Recent changes in glacier velocities and thinning at Novaya Zemlya, Remote Sens. Environ., 174, 244–257, 2016.
Mernild, S. H., Hanna, E., Yde, J. C., Cappelen, J., and Malmros, J. K.: Coastal Greenland air temperature extremes and trends 1890–2010: annual and monthly analysis, Int. J. Climatol., 34, 1472–1487, https://doi.org/10.1002/joc.3777, 2013.
Miles, B. W. J., Stokes, C. R., Vieli, A., and Cox, N. J.: Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica, Nature, 500, 563–566, 2013.
Moholdt, G., Hagen, J. O., Eiken, T., and Schuler, T. V.: Geometric changes and mass balance of the Austfonna ice cap, Svalbard, The Cryosphere, 4, 21–34, https://doi.org/10.5194/tc-4-21-2010, 2010a.
Moholdt, G., Nuth, C., Hagen, J. O., and Kohler, J.: Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry, Remote Sens. Environ., 114, 2756–2767, 2010b.
Moholdt, G., Wouters, B., and Gardner, A. S.: Recent mass changes of glaciers in the Russian High Arctic, Geophys. Res. Lett., 39, L10502, https://doi.org/10.1029/2012GL051466, 2012.
Moon, T. and Joughin, I.: Changes in ice-front position on Greenland's outlet glaciers from 1992 to 2007, J. Geophys. Res., 113, F02022, https://doi.org/10.1029/2007JF000927, 2008.
Moon, T., Joughin, I., Smith, B. E., and Howat, I. M.: 21st-Century evolution of Greenland outlet glacier velocities, Science, 336, 576–578, 2012.
Moon, T., Joughin, I., and Smith, B. E.: Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland, J. Geophys. Res.-Earth, 120, 818–833, 2015.
Murray, T., Strozzi, T., Luckman, A., Jiskoot, H., and Christakos, P.: Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions, J. Geophys. Res.-Sol. Ea., 108, 2237, https://doi.org/10.1029/2002JB001906, 2003.
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2, 110–114, 2009.
Nuth, C., Kohler, J., Aas, H. F., Brandt, O., and Hagen, J. O.: Glacier geometry and elevation changes on Svalbard (1936–90): a baseline dataset, Ann. Glaciol., 46, 106–116, 2007.
Nuth, C., Moholdt, G., Kohler, J., Hagen, J. O., and Kääb, A.: Svalbard glacier elevation changes and contribution to sea level rise, J. Geophys. Res., 115, F01008, https://doi.org/10.1029/2008JF001223, 2010.
Osborn, T. J.: Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index, Weather, 66, 19–21, 2011.
Oziel, L., Sirven, J., and Gascard, J.-C.: The Barents Sea frontal zones and water masses variability (1980–2011), Ocean Sci., 12, 169–184, https://doi.org/10.5194/os-12-169-2016, 2016.
Park, D.-S. R., Lee, S., and Feldstein, S. B.: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean, J. Climate, 28, 4027–4033, 2015.
Pavlov, V. K. and Pfirman, S. L.: Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution, Deep-Sea Res. Pt. II, 42, 1369–1390, 1995.
Pfirman, S. L., Bauch, D., and Gammelsrød, T.: The Northern Barents Sea: Water Mass Distribution and Modification, The Polar Oceans and Their Role in Shaping the Global Environment Geophysical Monograph, 85, 77–94, 1994.
Politova, N. V., Shevchenko, V. P., and Zernova, V. V.: Distribution, Composition, and Vertical Fluxes of Particulate Matter in Bays of Novaya Zemlya Archipelago, Vaigach Island at the End of Summer, Adv. Meteorol., 15, 259316, https://doi.org/10.1155/2012/259316, 2012.
Porter, D. F., Tinto, K. J., Boghosian, A., Cochran, J. R., Bell, R. E., Manizade, S. S., and Sonntag, J. G.: Bathymetric control of tidewater glacier mass loss in northwest Greenland, Earth Planet. Sc. Lett., 401, 40–46, 2014.
Price, S., Payne, A. J., Howat, I. M., and Smith, B.: Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade, P. Natl. Acad. Sci. USA, 108, 8978–8983, 2011.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, 461, 971–975, 2009.
Przybylak, R. and Wyszyński, P.: Air temperature in Novaya Zemlya Archipelago and Vaygach Island from 1832 to 1920 in the light of early instrumental data, Int. J. Climatol., 37, 3491–3508, https://doi.org/10.1002/joc.4934, 2016.
Radić, V. and Hock, R.: Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4, 91–94, 2011.
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G.: Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models, Clim. Dynam., 42, 37–58, 2014.
Raymond, C. F.: How do glaciers surge? A review, J. Geophys. Res., 92, 9121–9134, 1987.
Raymond, C. F.: Shear margins in glaciers and ice sheets, J. Glaciol., 42, 90–102, 1996.
Rignot, E., Fenty, I., Xu, Y., Cai, C., Velicogna, I., Cofaigh, C. Ó., Dowdeswell, J. A., Weinrebe, W., Catania, G., and Duncan, D.: Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland, Geophys. Res. Lett., 43, 2667–2674, 2016.
Sakakibara, D. and Sugiyama, S.: Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Ice field from 1984 to 2011, J. Geophys. Res., 119, 2541–2554, 2014.
Schoof, C.: Ice sheet grounding line dynamics: steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Seale, A., Christoffersen, P., Mugford, R., and O'Leary, M.: Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers, J. Geophys. Res., 116, F03013, https://doi.org/10.1029/2010JF001847, 2011.
Sevestre, H. and Benn, D. I.: Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging, J. Glaciol., 61, 646–662, 2015.
Sevestre, H., Benn, D. I., Hulton, N. R. J., and Bælum, K.: Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging, J. Geophys. Res.-Earth, 120, 2220–2236, 2015.
Sharov, A. I.: Studying changes of ice coasts in the European Arctic, Geo-Mar. Lett., 25, 153–166, 2005.
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189, 2012.
Shumsky, P. L.: Modern glaciation of the Soviet Arctic, Sovremennoe oledenenie Sovetskoy Arktiki, Moscow – Leningrad, Russia, 1949 (in Russian).
Sole, A., Payne, T., Bamber, J., Nienow, P., and Krabill, W.: Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: is land-terminating ice thinning at anomalously high rates?, The Cryosphere, 2, 205–218, https://doi.org/10.5194/tc-2-205-2008, 2008.
Sutherland, D. A., Straneo, F., Stenson, G. B., Davidson, F., Hammill, M. O., and Rosing-Asvid, A.: Atlantic water variability on the SE Greenland shelf and its relationship to SST and bathymetry, J. Geophys. Res.-Oceans, 118, 847–855, https://doi.org/10.1029/2012JC008354, 2013.
Sutton, R. T. and Hodson, D. L.: Atlantic Ocean forcing of North American and European summer climate, Science, 309, 115–118, 2005.
Trüssel, B. L., Motyka, R. J., Truffer, M., and Larsen, C. F.: Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA, J. Glaciol., 59, 149–161, 2013.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning Recent Greenland Mass Loss, Science, 326, 984–986, 2009.
van der Veen, C. J.: Fracture mechanics approach to penetration of bottom crevasses on glaciers, Cold Reg. Sci. Technol., 27, 213–223, 1998a.
van der Veen, C. J.: Fracture mechanics approach to penetration of surface crevasses on glaciers, Cold Reg. Sci. Technol., 27, 31–47, 1998b.
Willis, M. J., Melkonian, A. K., and Pritchard, M. E.: Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic, J. Geophys. Res.-Earth, 120, 2040–2055, 2015.
Zeeberg, J. and Forman, S. L.: Changes in glacier extent on north Novaya Zemlya in the Twentieth Century, The Holocene, 11, 161–175, 2001.
Zhao, M., Ramage, J., Semmens, K., and Obleitner, F.: Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent, Environ. Res. Lett., 9, 045009, https://doi.org/10.1088/1748-9326/9/4/045009, 2014.
Zhou, S., Miller, A., Wang, J., and Angell, J.: Trends of NAO and AO and their associations with stratospheric processes, Geophys. Res. Lett., 28, 4107–4110, 2001.
Short summary
Glaciers on Novaya Zemlya (NVZ) retreated rapidly between 2000 and 2013. This was far faster than the previous 25 years, but retreat then slowed from 2013 onward. This may result from changes in broadscale climatic patterns. Glaciers ending in lakes retreated at a similar rate to those ending in the ocean, and retreat rates were very consistent between glaciers, which contrasts with previous studies.
Glaciers on Novaya Zemlya (NVZ) retreated rapidly between 2000 and 2013. This was far faster...