Articles | Volume 10, issue 3
https://doi.org/10.5194/tc-10-1201-2016
https://doi.org/10.5194/tc-10-1201-2016
Research article
 | 
03 Jun 2016
Research article |  | 03 Jun 2016

Small-scale variation of snow in a regional permafrost model

Kjersti Gisnås, Sebastian Westermann, Thomas Vikhamar Schuler, Kjetil Melvold, and Bernd Etzelmüller

Related authors

Regional-scale analysis of weather-related rockfall triggering mechanisms in Norway, and its sensitivity to climate change
Rosa M. Palau, Kjersti Gleditsch Gisnås, Anders Solheim, and Graham Lewis Gilbert
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-46,https://doi.org/10.5194/nhess-2024-46, 2024
Revised manuscript has not been submitted
Short summary
A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data
S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller
The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015,https://doi.org/10.5194/tc-9-1303-2015, 2015
Short summary
A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014,https://doi.org/10.5194/tc-8-2063-2014, 2014
Transient thermal modeling of permafrost conditions in Southern Norway
S. Westermann, T. V. Schuler, K. Gisnås, and B. Etzelmüller
The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013,https://doi.org/10.5194/tc-7-719-2013, 2013

Related subject area

Mountain Processes
Quantifying frost-weathering-induced damage in alpine rocks
Till Mayer, Maxim Deprez, Laurenz Schröer, Veerle Cnudde, and Daniel Draebing
The Cryosphere, 18, 2847–2864, https://doi.org/10.5194/tc-18-2847-2024,https://doi.org/10.5194/tc-18-2847-2024, 2024
Short summary
Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024,https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023,https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Improving climate model skill over High Mountain Asia by adapting snow cover parameterization to complex-topography areas
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023,https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Brief communication: How deep is the snow on Mount Everest?
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023,https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary

Cited articles

Aune-Lundberg, L. and Strand, G.-H.: CORINE Land Cover 2006, The Norwegian CLC2006 project, Report from the Norwegian Forest and Landscape Institute 11/10, Norwegian Forest and Landscape Institute, Ås, 14 pp., 2010.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen, N. J., Kerr, T., Hreinsson, E. Ö., and Woods, R. A.: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011WR010745, 2011.
Donald, J. R., Soulis, E. D., Kouwen, N., and Pietroniro, A.: A Land Cover-Based Snow Cover Representation for Distributed Hydrologic Models, Water Resour. Res., 31, 995–1009, 1995.
Dunse, T., Schuler, T. V., Hagen, J. O., Eiken, T., Brandt, O., and Høgda, K. A.: Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR, Ann. Glaciol., 50, 155–162, 2009.
Engeset, R., Tveito, O. E., Alfnes, E., Mengistu, Z., Udnæs, C., Isaksen, K., and Førland, E. J.: Snow map System for Norway, XXIII Nordic Hydrological Conference, 8–12 August, Tallin, Estonia, NHP report, 48, 112–121, 2004.
Download
Short summary
In wind exposed areas snow redistribution results in large spatial variability in ground temperatures. In these areas, the ground temperature of a grid cell must be determined based on the distribution, and not the average, of snow depths. We employ distribution functions of snow in a regional permafrost model, showing highly improved representation of ground temperatures. By including snow distributions, we find the permafrost area to be nearly twice as large as what is modelled without.