Articles | Volume 9, issue 6
The Cryosphere, 9, 2043–2055, 2015
https://doi.org/10.5194/tc-9-2043-2015
The Cryosphere, 9, 2043–2055, 2015
https://doi.org/10.5194/tc-9-2043-2015
Research article
 | Highlight paper
09 Nov 2015
Research article  | Highlight paper | 09 Nov 2015

Reducing uncertainties in projections of Antarctic ice mass loss

G. Durand and F. Pattyn

Related authors

Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
The stability of present-day Antarctic grounding lines – Part A: No indication of marine ice sheet instability in the current geometry
Benoît Urruty, Emily A. Hill, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gael Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-104,https://doi.org/10.5194/tc-2022-104, 2022
Preprint under review for TC
Short summary
The stability of present-day Antarctic grounding lines – Part B: Possible commitment of regional collapse under current climate
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gael Durand, Fabien Gillet-Chaulet, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-105,https://doi.org/10.5194/tc-2022-105, 2022
Preprint under review for TC
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3)
Lionel Favier, Nicolas C. Jourdain, Adrian Jenkins, Nacho Merino, Gaël Durand, Olivier Gagliardini, Fabien Gillet-Chaulet, and Pierre Mathiot
Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019,https://doi.org/10.5194/gmd-12-2255-2019, 2019
Short summary

Related subject area

Numerical Modelling
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing
Elise Kazmierczak, Sainan Sun, Violaine Coulon, and Frank Pattyn
The Cryosphere, 16, 4537–4552, https://doi.org/10.5194/tc-16-4537-2022,https://doi.org/10.5194/tc-16-4537-2022, 2022
Short summary
Thermal regime of the Grigoriev ice cap and the Sary-Tor glacier in the inner Tien Shan, Kyrgyzstan
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 16, 4513–4535, https://doi.org/10.5194/tc-16-4513-2022,https://doi.org/10.5194/tc-16-4513-2022, 2022
Short summary
Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study
Nicolas Guillaume Alexandre Mokus and Fabien Montiel
The Cryosphere, 16, 4447–4472, https://doi.org/10.5194/tc-16-4447-2022,https://doi.org/10.5194/tc-16-4447-2022, 2022
Short summary
Exploring the capabilities of electrical resistivity tomography to study subsea permafrost
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022,https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary

Cited articles

Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A., and LeBrocq, A. M.: Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet, Science, 324, 901–903, https://doi.org/10.1126/science.1169335, 2009.
Baral, D. R., Hutter, K., and Greve, R.: Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: a critical review and new developments, Appl. Mech. Rev., 54, 215–256, 2001.
Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, 1995.
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., and Unnikrishnan, A.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1137–1216, 2013.
Download
Short summary
Projections of Antarctic dynamics and contribution to sea-level rise are evaluated in the light of intercomparison exercises dedicated to evaluate models' ability of representing coastal changes. Uncertainties in projections can be substantially decreased if a selection of models is made and models that are unqualified for the representation of coastal dynamics are excluded.