Articles | Volume 9, issue 4
https://doi.org/10.5194/tc-9-1601-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-9-1601-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimation and calibration of the water isotope differential diffusion length in ice core records
G. van der Wel
CORRESPONDING AUTHOR
Climate and Environmental Physics, University of Bern, Bern, Switzerland
H. Fischer
Climate and Environmental Physics, University of Bern, Bern, Switzerland
H. Oerter
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
H. A. J. Meijer
Center for Isotope Research, University of Groningen, Groningen, the Netherlands
Related authors
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015, https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
Short summary
We performed 2H isotope diffusion measurements in the upper 3 metres of firn at Summit, Greenland, by following over a 4-year period isotope-enriched snow that we deposited.
We found that the diffusion process was much less rapid than in the most commonly used model. We discuss several aspects of the diffusion process that are still poorly constrained and might lead to this discrepancy. Quantitative knowledge of diffusion is necessary for use of the diffusion process itself as a climate proxy.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Boehmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-74, https://doi.org/10.5194/cp-2024-74, 2024
Preprint under review for CP
Short summary
Short summary
The strong ecosystem response to the Last Interglacial warming, reflected in the high diversity of proxies, shows the sensitivity of permafrost regions to rising temperatures. In particular, the development of thermokarst landscapes created a mosaic of terrestrial, wetland, and aquatic habitats, fostering an increase in biodiversity. This biodiversity is evident in the rich variety of terrestrial insects, vegetation, and aquatic invertebrates preserved in these deposits.
Lydia Stolpmann, Ingmar Nitze, Ingeborg Bussmann, Benjamin M. Jones, Josefine Lenz, Hanno Meyer, Juliane Wolter, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2822, https://doi.org/10.5194/egusphere-2024-2822, 2024
Short summary
Short summary
We combine hydrochemical and lake change data to show consequences of permafrost thaw induced lake changes on hydrochemistry, which are relevant for the global carbon cycle. We found higher methane concentrations in lakes that do not freeze to the ground and show that lagoons have lower methane concentrations than lakes. Our detailed lake sampling approach show higher concentrations in Dissolved Organic Carbon in areas of higher erosion rates, that might increase under the climate warming.
Pharahilda M. Steur, Hubertus A. Scheeren, Gerbrand Koren, Getachew A. Adnew, Wouter Peters, and Harro A. J. Meijer
Atmos. Chem. Phys., 24, 11005–11027, https://doi.org/10.5194/acp-24-11005-2024, https://doi.org/10.5194/acp-24-11005-2024, 2024
Short summary
Short summary
We present records of the triple oxygen isotope signature (Δ(17O)) of atmospheric CO2 obtained with laser absorption spectroscopy from two mid-latitude stations. Significant interannual variability is observed in both records. A model sensitivity study suggests that stratosphere–troposphere exchange, which carries high-Δ(17O) CO2 from the stratosphere into the troposphere, causes most of the variability. This makes Δ(17O) a potential tracer for stratospheric intrusions into the troposphere.
Gilles Reverdin, Claire Waelbroeck, Antje Voelker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3009, https://doi.org/10.5194/egusphere-2024-3009, 2024
Short summary
Short summary
Water isotopes in the ocean trace the freshwater exchanges between the ocean, the atmosphere and the cryosphere, and are used to investigate processes of the hydrological cycle. We illustrate offsets in seawater isotopic composition between different data sets that are larger than the expected variability that one often wants to explore. This highlights the need to share seawater isotopic composition samples dedicated to specific intercomparison of data produced in the different laboratories.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms–Dick, Luidmila A. Pestryakova, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2470, https://doi.org/10.5194/egusphere-2024-2470, 2024
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study offers a unique 220-year sediment record from a remote Siberian boreal lake, revealing the impacts of climate warming and pollution. Multi-proxy analyses, including diatom taxonomy, silicon isotopes, carbon and nitrogen proxies, reveal complex biogeochemical interactions, highlighting the need for further research to mitigate anthropogenic effects on these vital water resources.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Michaela Mühl, Jochen Schmitt, Barbara Seth, James E. Lee, Jon S. Edwards, Edward J. Brook, Thomas Blunier, and Hubertus Fischer
Clim. Past, 19, 999–1025, https://doi.org/10.5194/cp-19-999-2023, https://doi.org/10.5194/cp-19-999-2023, 2023
Short summary
Short summary
Our ice core measurements show that methane, ethane, and propane concentrations are significantly elevated above their past atmospheric background for Greenland ice samples containing mineral dust. The underlying co-production process happens during the classical discrete wet extraction of air from the ice sample and affects previous reconstructions of the inter-polar difference of methane as well as methane stable isotope records derived from dust-rich Greenland ice.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Auke M. van der Woude, Remco de Kok, Naomi Smith, Ingrid T. Luijkx, Santiago Botía, Ute Karstens, Linda M. J. Kooijmans, Gerbrand Koren, Harro A. J. Meijer, Gert-Jan Steeneveld, Ida Storm, Ingrid Super, Hubertus A. Scheeren, Alex Vermeulen, and Wouter Peters
Earth Syst. Sci. Data, 15, 579–605, https://doi.org/10.5194/essd-15-579-2023, https://doi.org/10.5194/essd-15-579-2023, 2023
Short summary
Short summary
To monitor the progress towards the CO2 emission goals set out in the Paris Agreement, the European Union requires an independent validation of emitted CO2. For this validation, atmospheric measurements of CO2 can be used, together with first-guess estimates of CO2 emissions and uptake. To quickly inform end users, it is imperative that this happens in near real-time. To aid these efforts, we create estimates of European CO2 exchange at high resolution in near real time.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss
The Cryosphere, 16, 3601–3617, https://doi.org/10.5194/tc-16-3601-2022, https://doi.org/10.5194/tc-16-3601-2022, 2022
Short summary
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Linh N. T. Nguyen, Harro A. J. Meijer, Charlotte van Leeuwen, Bert A. M. Kers, Hubertus A. Scheeren, Anna E. Jones, Neil Brough, Thomas Barningham, Penelope A. Pickers, Andrew C. Manning, and Ingrid T. Luijkx
Earth Syst. Sci. Data, 14, 991–1014, https://doi.org/10.5194/essd-14-991-2022, https://doi.org/10.5194/essd-14-991-2022, 2022
Short summary
Short summary
We present 20-year flask sample records of atmospheric CO2, O2, and APO from the stations Lutjewad (the Netherlands), Mace Head (Ireland), and Halley (Antarctica). Data from Lutjewad and Mace Head show similar long-term trends and seasonal cycles, agreeing with measurements from another station (Weybourne, UK). Measurements from Halley agree partly with those conducted by other institutes. From our 2002–2018 Lutjewad and Mace Head records, we find good agreement for global ocean carbon uptake.
Michael Fritz, Sebastian Wetterich, Joel McAlister, and Hanno Meyer
Earth Syst. Sci. Data, 14, 57–63, https://doi.org/10.5194/essd-14-57-2022, https://doi.org/10.5194/essd-14-57-2022, 2022
Short summary
Short summary
From 2015 to 2018 we collected rain and snow samples in Inuvik, Canada. We measured the stable water isotope composition of oxygen (δ18O) and hydrogen (δ2H) with a mass spectrometer. This data will be of interest for other scientists who work in the Arctic. They will be able to compare our modern data with their own isotope data in old ice, for example in glaciers, and in permafrost. This will help to correctly interpret the climate signals of the environmental history of the Earth.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Johannes Sutter, Hubertus Fischer, and Olaf Eisen
The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, https://doi.org/10.5194/tc-15-3839-2021, 2021
Short summary
Short summary
Projections of global sea-level changes in a warming world require ice-sheet models. We expand the calibration of these models by making use of the internal architecture of the Antarctic ice sheet, which is formed by its evolution over many millennia. We propose that using our novel approach to constrain ice sheet models, we will be able to both sharpen our understanding of past and future sea-level changes and identify weaknesses in the parameterisation of current continental-scale models.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Pharahilda M. Steur, Hubertus A. Scheeren, Dave D. Nelson, J. Barry McManus, and Harro A. J. Meijer
Atmos. Meas. Tech., 14, 4279–4304, https://doi.org/10.5194/amt-14-4279-2021, https://doi.org/10.5194/amt-14-4279-2021, 2021
Short summary
Short summary
For understanding the sources and sinks of atmospheric CO2, measurement of stable isotopes has proven to be highly valuable. We present a new method using laser absorption spectroscopy to simultaneously conduct measurements of three CO2 isotopes, directly on dry-air samples. This new method reduces sample preparation time significantly, compared to the conventional method in which measurements are conducted on pure CO2, and avoids measurement biases introduced by CO2 extraction.
Marcel Haeberli, Daniel Baggenstos, Jochen Schmitt, Markus Grimmer, Adrien Michel, Thomas Kellerhals, and Hubertus Fischer
Clim. Past, 17, 843–867, https://doi.org/10.5194/cp-17-843-2021, https://doi.org/10.5194/cp-17-843-2021, 2021
Short summary
Short summary
Using the temperature-dependent solubility of noble gases in ocean water, we reconstruct global mean ocean temperature (MOT) over the last 700 kyr using noble gas ratios in air enclosed in polar ice cores. Our record shows that glacial MOT was about 3 °C cooler compared to the Holocene. Interglacials before 450 kyr ago were characterized by about 1.5 °C lower MOT than the Holocene. In addition, some interglacials show transient maxima in ocean temperature related to changes in ocean circulation.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Jann Schrod, Dominik Kleinhenz, Maria Hörhold, Tobias Erhardt, Sarah Richter, Frank Wilhelms, Hubertus Fischer, Martin Ebert, Birthe Twarloh, Damiano Della Lunga, Camilla M. Jensen, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 12459–12482, https://doi.org/10.5194/acp-20-12459-2020, https://doi.org/10.5194/acp-20-12459-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) concentrations of the last 6 centuries are presented from an ice core in Greenland. The data are accompanied by physical and chemical aerosol data. INPs are correlated to the dust signal from the ice core and seem to follow the annual input of mineral dust. We find no clear trend in the INP concentration. However, modern-day concentrations are higher and more variable than the concentrations of the past. This might have significant atmospheric implications.
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Dipayan Paul, Hubertus A. Scheeren, Henk G. Jansen, Bert A. M. Kers, John B. Miller, Andrew M. Crotwell, Sylvia E. Michel, Luciana V. Gatti, Lucas G. Domingues, Caio S. C. Correia, Raiane A. L. Neves, Harro A. J. Meijer, and Wouter Peters
Atmos. Meas. Tech., 13, 4051–4064, https://doi.org/10.5194/amt-13-4051-2020, https://doi.org/10.5194/amt-13-4051-2020, 2020
Short summary
Short summary
For reliable measurements of CO2 mole fractions and its stable isotope composition in air samples, one needs to carefully dry them during collection. Here we describe evaluation of a portable, consumable-free and power-free Nafion-based drying system that is currently being used for sample collection over the Amazon. Laboratory tests indicate that this Nafion-based system does not influence the mole fraction measurements of CH4, CO, N2O, SF6, and CO2 and the stable isotope composition of CO2.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Boris K. Biskaborn, Larisa Nazarova, Lyudmila A. Pestryakova, Liudmila Syrykh, Kim Funck, Hanno Meyer, Bernhard Chapligin, Stuart Vyse, Ruslan Gorodnichev, Evgenii Zakharov, Rong Wang, Georg Schwamborn, Hannah L. Bailey, and Bernhard Diekmann
Biogeosciences, 16, 4023–4049, https://doi.org/10.5194/bg-16-4023-2019, https://doi.org/10.5194/bg-16-4023-2019, 2019
Short summary
Short summary
To better understand time-series data in lake sediment cores in times of rapidly changing climate, we study within-lake spatial variabilities of environmental indicator data in 38 sediment surface samples along spatial habitat gradients in the boreal deep Lake Bolshoe Toko (Russia). Our methods comprise physicochemical as well as diatom and chironomid analyses. Species diversities vary according to benthic niches, while abiotic proxies depend on river input, water depth, and catchment lithology.
Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Sebastian Lienert, Gianna Battaglia, Benjamin D. Stocker, Adrian Schilt, and Edward J. Brook
Biogeosciences, 16, 3997–4021, https://doi.org/10.5194/bg-16-3997-2019, https://doi.org/10.5194/bg-16-3997-2019, 2019
Short summary
Short summary
N2O concentrations were subject to strong variations accompanying glacial–interglacial but also rapid climate changes over the last 21 kyr. The sources of these N2O changes can be identified by measuring the isotopic composition of N2O in ice cores and using the distinct isotopic composition of terrestrial and marine N2O. We show that both marine and terrestrial sources increased from the last glacial to the Holocene but that only terrestrial emissions responded quickly to rapid climate changes.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Haoyue Deng, Anita Aerts-Bijma, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 19, 10405–10422, https://doi.org/10.5194/acp-19-10405-2019, https://doi.org/10.5194/acp-19-10405-2019, 2019
Short summary
Short summary
We apply radiocarbon source apportionment of more volatile organic carbon (mvOC) to winter aerosol samples from six Chinese cities. We find a consistently larger contribution of fossil sources to mvOC than to secondary or total organic carbon. Fossil mvOC concentrations are strongly correlated with primary fossil OC but not with secondary fossil OC. The variability in nonfossil mvOC seems to be related to both primary and secondary biomass burning sources.
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019, https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Short summary
To reconstruct past winter climate, we studied ice wedges at two sites in the Yana Highlands, interior Yakutia (Russia), the most continental region of the Northern Hemisphere. Our ice wedges of the upper ice complex unit of the Batagay megaslump and a river terrace show much more depleted stable-isotope compositions than other study sites in coastal and central Yakutia, reflecting lower winter temperatures and a higher continentality of the study region during Marine Isotope Stages 3 and 1.
Johannes Sutter, Hubertus Fischer, Klaus Grosfeld, Nanna B. Karlsson, Thomas Kleiner, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 13, 2023–2041, https://doi.org/10.5194/tc-13-2023-2019, https://doi.org/10.5194/tc-13-2023-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet may have played an important role in moderating the transition between warm and cold climate epochs over the last million years. We find that the Antarctic Ice Sheet grew considerably about 0.9 Myr ago, a time when ice-age–warm-age cycles changed from a
40 000 to a 100 000 year periodicity. Our findings also suggest that ice as old as 1.5 Myr still exists at the bottom of the East Antarctic Ice Sheet despite the major climate reorganisations in the past.
Tobias Erhardt, Emilie Capron, Sune Olander Rasmussen, Simon Schüpbach, Matthias Bigler, Florian Adolphi, and Hubertus Fischer
Clim. Past, 15, 811–825, https://doi.org/10.5194/cp-15-811-2019, https://doi.org/10.5194/cp-15-811-2019, 2019
Short summary
Short summary
The cause of the rapid warming events documented in proxy records across the Northern Hemisphere during the last glacial has been a long-standing puzzle in paleo-climate research. Here, we use high-resolution ice-core data from to cores in Greenland to investigate the progression during the onset of these events on multi-annual timescales to test their plausible triggers. We show that atmospheric circulation changes preceded the warming in Greenland and the collapse of the sea ice by a decade.
Jonas Beck, Michael Bock, Jochen Schmitt, Barbara Seth, Thomas Blunier, and Hubertus Fischer
Biogeosciences, 15, 7155–7175, https://doi.org/10.5194/bg-15-7155-2018, https://doi.org/10.5194/bg-15-7155-2018, 2018
Short summary
Short summary
Ice core concentration and stable isotope measurements of atmospheric CH4 give valuable insights into the CH4 cycle of the past. New carbon and hydrogen stable isotope CH4 data measured on ice from both Greenland and Antarctica over the Holocene allow us to draw conclusions on the methane emission processes. In particular, our results cast doubt on a hypothesis proposing early human land use to be responsible for the atmospheric methane concentration increase in the second half of the Holocene.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Weiguo Liu, Ting Zhang, Meng Wang, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 18, 16363–16383, https://doi.org/10.5194/acp-18-16363-2018, https://doi.org/10.5194/acp-18-16363-2018, 2018
Short summary
Short summary
Seasonal changes in organic carbon (OC) and elemental carbon (EC) sources in Xi'an, China, are investigated based on measurements of radiocarbon and the stable isotope 13C. Relative contributions to EC from biomass burning, coal combustion, and vehicle emissions change substantially between different seasons. Biomass burning contributes 60 % to the EC increment in winter. Comparing concentrations and sources of primary OC to total OC suggests non-negligible OC loss due to active photochemistry.
Francisco Fernandoy, Dieter Tetzner, Hanno Meyer, Guisella Gacitúa, Kirstin Hoffmann, Ulrike Falk, Fabrice Lambert, and Shelley MacDonell
The Cryosphere, 12, 1069–1090, https://doi.org/10.5194/tc-12-1069-2018, https://doi.org/10.5194/tc-12-1069-2018, 2018
Short summary
Short summary
Through the geochemical analysis of the surface snow of a glacier at the northern tip of the Antarctic Peninsula, we aimed to investigate how atmosphere and ocean conditions of the surrounding region are varying under the present climate scenario. We found that meteorological conditions strongly depend on the extension of sea ice. Our results show a slight cooling of the surface air during the last decade at this site. However, the general warming tendency for the region is still on-going.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Pascal Bohleber, Tobias Erhardt, Nicole Spaulding, Helene Hoffmann, Hubertus Fischer, and Paul Mayewski
Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, https://doi.org/10.5194/cp-14-21-2018, 2018
Short summary
Short summary
The Colle Gnifetti (CG) glacier is the only drilling site in the European Alps offering ice core records back to some 1000 years. We aim to fully exploit these unique long-term records by establishing a reliable long-term age scale and an improved ice core proxy interpretation for reconstructing temperature. Our findings reveal a site-specific temperature-related signal in the trends of the mineral dust proxy Ca2+ that may supplement other proxy evidence over the last millennium.
Heather Graven, Colin E. Allison, David M. Etheridge, Samuel Hammer, Ralph F. Keeling, Ingeborg Levin, Harro A. J. Meijer, Mauro Rubino, Pieter P. Tans, Cathy M. Trudinger, Bruce H. Vaughn, and James W. C. White
Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, https://doi.org/10.5194/gmd-10-4405-2017, 2017
Short summary
Short summary
Modelling of carbon isotopes 13C and 14C in land and ocean components of Earth system models provides opportunities for new insights and improved understanding of global carbon cycling, and for model evaluation. We compiled existing historical datasets to define the annual mean carbon isotopic composition of atmospheric CO2 for 1850–2015 that can be used in CMIP6 and other modelling activities.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, https://doi.org/10.5194/tc-11-2427-2017, 2017
Short summary
Short summary
The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC:
Little Dome C Patchand
North Patch.
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
The Cryosphere, 11, 2175–2188, https://doi.org/10.5194/tc-11-2175-2017, https://doi.org/10.5194/tc-11-2175-2017, 2017
Short summary
Short summary
The importance of post-depositional changes for the temperature interpretation of water isotopes is poorly constrained by observations. Here, for the first time, temporal isotope changes in the open-porous firn are directly analysed using a large array of shallow isotope profiles. By this, we can reject the possibility of post-depositional change beyond diffusion and densification as the cause of the discrepancy between isotope and local temperature variations at Kohnen Station, East Antarctica.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Thomas Opel, Sebastian Wetterich, Hanno Meyer, Alexander Y. Dereviagin, Margret C. Fuchs, and Lutz Schirrmeister
Clim. Past, 13, 587–611, https://doi.org/10.5194/cp-13-587-2017, https://doi.org/10.5194/cp-13-587-2017, 2017
Short summary
Short summary
We studied late Quaternary permafrost at the Oyogos Yar coast (Dmitry Laptev Strait) to reconstruct palaeoclimate and palaeonvironmental conditions in the Northeast Siberian Arctic. Our ice-wedge stable isotope record, combined with data from Bol'shoy Lyakhovsky Island, indicates coldest winter temperatures during MIS5 and MIS2, warmest conditions during the Holocene, i.e. today, and non-stable winter climate during MIS3. New IRSL ages reveal high climate variability during MIS5.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Ulrike Dusek, Regina Hitzenberger, Anne Kasper-Giebl, Magdalena Kistler, Harro A. J. Meijer, Sönke Szidat, Lukas Wacker, Rupert Holzinger, and Thomas Röckmann
Atmos. Chem. Phys., 17, 3233–3251, https://doi.org/10.5194/acp-17-3233-2017, https://doi.org/10.5194/acp-17-3233-2017, 2017
Short summary
Short summary
Measurements of the radioactive carbon isotope 14C allow to identify the sources of aerosol carbon. We report an extensive 14C source apportionment record in the Netherlands with samples covering a whole year. We discovered that long-range transport has a large influence on aerosol carbon levels. Fossil fuel carbon is least influenced by long-range transport and more regional in origin. Biomass burning seems to be a minor source of aerosol carbon in the Netherlands.
Sander van der Laan, Swagath Manohar, Alex Vermeulen, Fred Bosveld, Harro Meijer, Andrew Manning, Michiel van der Molen, and Ingrid van der Laan-Luijkx
Atmos. Meas. Tech., 9, 5523–5533, https://doi.org/10.5194/amt-9-5523-2016, https://doi.org/10.5194/amt-9-5523-2016, 2016
Short summary
Short summary
A new methodology is presented to estimate regional-scale surface fluxes of 222Rn. 222Rn is an increasingly important trace gas which is used to calculate regional-scale greenhouse gas emissions and to validate atmospheric transport models. We tested our method at two atmospheric research stations in the Netherlands and compared our results with measurements from accumulation chambers and two recently published 222Rn soil flux maps for Europe.
Michel Legrand, Joseph McConnell, Hubertus Fischer, Eric W. Wolff, Susanne Preunkert, Monica Arienzo, Nathan Chellman, Daiana Leuenberger, Olivia Maselli, Philip Place, Michael Sigl, Simon Schüpbach, and Mike Flannigan
Clim. Past, 12, 2033–2059, https://doi.org/10.5194/cp-12-2033-2016, https://doi.org/10.5194/cp-12-2033-2016, 2016
Short summary
Short summary
Here, we review previous attempts made to reconstruct past forest fire using chemical signals recorded in Greenland ice. We showed that the Greenland ice records of ammonium, found to be a good fire proxy, consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred since the last 15 000 years, including the Little Ice Age and the last large climatic transition.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Olivier Eicher, Matthias Baumgartner, Adrian Schilt, Jochen Schmitt, Jakob Schwander, Thomas F. Stocker, and Hubertus Fischer
Clim. Past, 12, 1979–1993, https://doi.org/10.5194/cp-12-1979-2016, https://doi.org/10.5194/cp-12-1979-2016, 2016
Short summary
Short summary
A new high-resolution total air content record over the NGRIP ice core, spanning 0.3–120 kyr is presented. In agreement with Antarctic ice cores, we find a strong local insolation signature but also 3–5 % decreases in total air content as a local response to Dansgaard–Oeschger events, which can only partly be explained by changes in surface pressure and temperature. Accordingly, a dynamic response of firnification to rapid climate changes on the Greenland ice sheet must have occurred.
Dipayan Paul, Huilin Chen, Henk A. Been, Rigel Kivi, and Harro A. J. Meijer
Atmos. Meas. Tech., 9, 4997–5006, https://doi.org/10.5194/amt-9-4997-2016, https://doi.org/10.5194/amt-9-4997-2016, 2016
Short summary
Short summary
Here we describe the determination of C-14 concentration in stratospheric CO2 samples collected using the AirCore sampling method. Two stratospheric AirCore profiles, collected in Sodankylä, were used for this study. The stratospheric profile was divided into six sections. CO2 from each section was extracted and converted to graphite for the determination of C-14 using AMS. Through this study, we show that the AirCore is a viable and valuable sampling method for stratospheric C-14 measurements.
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016, https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
Short summary
The last lnterglacial (LIG; 116 000 to 129 000 years before present) surface temperature at the upstream Greenland NEEM deposition site is estimated to be warmer by +7 to +11 °C compared to the preindustrial period. We show that under such warm temperatures, melting of snow probably led to a significant surface melting. There is a paradox between the extent of the Greenland ice sheet during the LIG and the strong warming during this period that models cannot solve.
E. N. Koffi, P. Bergamaschi, U. Karstens, M. Krol, A. Segers, M. Schmidt, I. Levin, A. T. Vermeulen, R. E. Fisher, V. Kazan, H. Klein Baltink, D. Lowry, G. Manca, H. A. J. Meijer, J. Moncrieff, S. Pal, M. Ramonet, H. A. Scheeren, and A. G. Williams
Geosci. Model Dev., 9, 3137–3160, https://doi.org/10.5194/gmd-9-3137-2016, https://doi.org/10.5194/gmd-9-3137-2016, 2016
Short summary
Short summary
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using 222Rn. Focusing on the European scale, we compare the TM5 boundary layer heights with observations from radiosondes, lidar, and ceilometer. Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe, with 222Rn harmonized measurements from 10 stations.
Thomas Röckmann, Simon Eyer, Carina van der Veen, Maria E. Popa, Béla Tuzson, Guillaume Monteil, Sander Houweling, Eliza Harris, Dominik Brunner, Hubertus Fischer, Giulia Zazzeri, David Lowry, Euan G. Nisbet, Willi A. Brand, Jaroslav M. Necki, Lukas Emmenegger, and Joachim Mohn
Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, https://doi.org/10.5194/acp-16-10469-2016, 2016
Short summary
Short summary
A dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months, yielding a combined dataset with more than 2500 measurements of both δ13C and δD.
Jacob C. Yde, Niels T. Knudsen, Jørgen P. Steffensen, Jonathan L. Carrivick, Bent Hasholt, Thomas Ingeman-Nielsen, Christian Kronborg, Nicolaj K. Larsen, Sebastian H. Mernild, Hans Oerter, David H. Roberts, and Andrew J. Russell
Hydrol. Earth Syst. Sci., 20, 1197–1210, https://doi.org/10.5194/hess-20-1197-2016, https://doi.org/10.5194/hess-20-1197-2016, 2016
S. Weißbach, A. Wegner, T. Opel, H. Oerter, B. M. Vinther, and S. Kipfstuhl
Clim. Past, 12, 171–188, https://doi.org/10.5194/cp-12-171-2016, https://doi.org/10.5194/cp-12-171-2016, 2016
Short summary
Short summary
Based on a set of 12 intermediate deep ice cores, covering an area of about 200 000 km2, we studied the spatial and temporal d18O patterns of northern Greenland over the past millennium and found a strong east-west gradient related to the main ice divide. A stacked record with significantly reduced noise revealed distinct climate variations with a pronounced Little Ice Age and distinct warm events such as the Medieval Climate Anomaly, around AD 1420 and in the 20th century.
S. Eyer, B. Tuzson, M. E. Popa, C. van der Veen, T. Röckmann, M. Rothe, W. A. Brand, R. Fisher, D. Lowry, E. G. Nisbet, M. S. Brennwald, E. Harris, C. Zellweger, L. Emmenegger, H. Fischer, and J. Mohn
Atmos. Meas. Tech., 9, 263–280, https://doi.org/10.5194/amt-9-263-2016, https://doi.org/10.5194/amt-9-263-2016, 2016
Short summary
Short summary
We present a newly developed field-deployable, autonomous platform simultaneously measuring the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy.
The instrument consists of a compact quantum cascade laser absorption spectrometer (QCLAS) coupled to a preconcentration unit, called TRace gas EXtractor (TREX).
The performance of this new in situ technique was investigated during a 2-week measurement campaign and compared to other techniques.
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015, https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
Short summary
We performed 2H isotope diffusion measurements in the upper 3 metres of firn at Summit, Greenland, by following over a 4-year period isotope-enriched snow that we deposited.
We found that the diffusion process was much less rapid than in the most commonly used model. We discuss several aspects of the diffusion process that are still poorly constrained and might lead to this discrepancy. Quantitative knowledge of diffusion is necessary for use of the diffusion process itself as a climate proxy.
A. S. Lansø, J. Bendtsen, J. H. Christensen, L. L. Sørensen, H. Chen, H. A. J. Meijer, and C. Geels
Biogeosciences, 12, 2753–2772, https://doi.org/10.5194/bg-12-2753-2015, https://doi.org/10.5194/bg-12-2753-2015, 2015
Short summary
Short summary
The air-sea CO2 exchange is investigated in the coastal region of the Baltic Sea and Danish inner waters. The impact of short-term variability in atmospheric CO2 on the air-sea CO2 exchange is examined, and it is found that ignoring short-term variability in the atmospheric CO2 creates a significant bias in the CO2 exchange. Atmospheric short-term variability is not always included in studies of the air-sea CO2 exchange, but based on the present study, we recommend it to be so in the future.
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
T. Pados, R. F. Spielhagen, D. Bauch, H. Meyer, and M. Segl
Biogeosciences, 12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, https://doi.org/10.5194/bg-12-1733-2015, 2015
Short summary
Short summary
Fossil planktic foraminifera and their geochemical composition are commonly used proxies in palaeoceanography. Our study with living specimens revealed that in the Fram Strait both Neogloboquadrina pachyderma and Turborotalita quinqueloba from the water column have lower δ18O and δ13C values than inorganically precipitated calcite/fossil tests from the sediment surface. These offsets indicate biological influence during calcification and a change of water column properties in the recent past.
R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic, F. Couvreux, J.-Y. Grandpeix, M.-P. Lefebvre, C. Rio, P. Bergamaschi, S. D. Chambers, U. Karstens, V. Kazan, S. van der Laan, H. A. J. Meijer, J. Moncrieff, M. Ramonet, H. A. Scheeren, C. Schlosser, M. Schmidt, A. Vermeulen, and A. G. Williams
Geosci. Model Dev., 8, 129–150, https://doi.org/10.5194/gmd-8-129-2015, https://doi.org/10.5194/gmd-8-129-2015, 2015
D. Bozhinova, M. K. van der Molen, I. R. van der Velde, M. C. Krol, S. van der Laan, H. A. J. Meijer, and W. Peters
Atmos. Chem. Phys., 14, 7273–7290, https://doi.org/10.5194/acp-14-7273-2014, https://doi.org/10.5194/acp-14-7273-2014, 2014
M. Bock, J. Schmitt, J. Beck, R. Schneider, and H. Fischer
Atmos. Meas. Tech., 7, 1999–2012, https://doi.org/10.5194/amt-7-1999-2014, https://doi.org/10.5194/amt-7-1999-2014, 2014
U. Dusek, M. Monaco, M. Prokopiou, F. Gongriep, R. Hitzenberger, H. A. J. Meijer, and T. Röckmann
Atmos. Meas. Tech., 7, 1943–1955, https://doi.org/10.5194/amt-7-1943-2014, https://doi.org/10.5194/amt-7-1943-2014, 2014
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
M. Baumgartner, P. Kindler, O. Eicher, G. Floch, A. Schilt, J. Schwander, R. Spahni, E. Capron, J. Chappellaz, M. Leuenberger, H. Fischer, and T. F. Stocker
Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, https://doi.org/10.5194/cp-10-903-2014, 2014
S. Schüpbach, U. Federer, P. R. Kaufmann, S. Albani, C. Barbante, T. F. Stocker, and H. Fischer
Clim. Past, 9, 2789–2807, https://doi.org/10.5194/cp-9-2789-2013, https://doi.org/10.5194/cp-9-2789-2013, 2013
R. Schneider, J. Schmitt, P. Köhler, F. Joos, and H. Fischer
Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, https://doi.org/10.5194/cp-9-2507-2013, 2013
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
T. Opel, D. Fritzsche, and H. Meyer
Clim. Past, 9, 2379–2389, https://doi.org/10.5194/cp-9-2379-2013, https://doi.org/10.5194/cp-9-2379-2013, 2013
I. T. van der Laan-Luijkx, S. van der Laan, C. Uglietti, M. F. Schibig, R. E. M. Neubert, H. A. J. Meijer, W. A. Brand, A. Jordan, J. M. Richter, M. Rothe, and M. C. Leuenberger
Atmos. Meas. Tech., 6, 1805–1815, https://doi.org/10.5194/amt-6-1805-2013, https://doi.org/10.5194/amt-6-1805-2013, 2013
S. Zürcher, R. Spahni, F. Joos, M. Steinacher, and H. Fischer
Biogeosciences, 10, 1963–1981, https://doi.org/10.5194/bg-10-1963-2013, https://doi.org/10.5194/bg-10-1963-2013, 2013
B. Bereiter, T. F. Stocker, and H. Fischer
Atmos. Meas. Tech., 6, 251–262, https://doi.org/10.5194/amt-6-251-2013, https://doi.org/10.5194/amt-6-251-2013, 2013
Related subject area
Ice Cores
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
The grain-scale signature of isotopic diffusion in ice
Combining traditional and novel techniques to increase our understanding of the lock-in depth of atmospheric gases in polar ice cores – results from the EastGRIP region
Scientific history, sampling approach, and physical characterization of the Camp Century subglacial material, a rare archive from beneath the Greenland Ice Sheet
Novel approach to estimate the water isotope diffusion length in deep ice cores with an application to Marine Isotope Stage 19 in the Dome C ice core
The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations
Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
Research into mechanical modeling based on characteristics of the fracture mechanics of ice cutting for scientific drilling in polar regions
Temporal markers in a temperate ice core: insights from 3H and 137Cs profiles from the Adamello Glacier
Review article: Melt-affected ice cores for polar research in a warming world
Impact of subsurface crevassing on the depth–age relationship of high-Alpine ice cores extracted at Col du Dôme between 1994 and 2012
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers
Identifying atmospheric processes favouring the formation of bubble-free layers in the Law Dome ice core, East Antarctica
Millennial and orbital-scale variability in a 54 000-year record of total air content from the South Pole ice core
Investigating the spatial representativeness of East Antarctic ice cores: a comparison of ice core and radar-derived surface mass balance over coastal ice rises and Dome Fuji
Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints
Greenland and Canadian Arctic ice temperature profiles database
Isotopic diffusion in ice enhanced by vein-water flow
A one-dimensional temperature and age modeling study for selecting the drill site of the oldest ice core near Dome Fuji, Antarctica
Chemical and visual characterisation of EGRIP glacial ice and cloudy bands within
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
Detection of ice core particles via deep neural networks
Development of crystal orientation fabric in the Dome Fuji ice core in East Antarctica: implications for the deformation regime in ice sheets
Gas isotope thermometry in the South Pole and Dome Fuji ice cores provides evidence for seasonal rectification of ice core gas records
Chronostratigraphy of the Larsen blue-ice area in northern Victoria Land, East Antarctica, and its implications for paleoclimate
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Regional variability of diatoms in ice cores from the Antarctic Peninsula and Ellsworth Land, Antarctica
Microstructure, micro-inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core – Part 2: Implications for palaeo-mineralogy
Microstructure, micro-inclusions, and mineralogy along the EGRIP ice core – Part 1: Localisation of inclusions and deformation patterns
Fractionation of O2∕N2 and Ar∕N2 in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core
Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation
Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands
Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years
Multi-tracer study of gas trapping in an East Antarctic ice core
Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica
Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology
Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica
Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”
Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains
On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits
The first luminescence dating of Tibetan glacier basal sediment
Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024, https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
Short summary
Ice cores are archives of past atmospheric conditions. In deep and old ice, the layers containing this information get thinned to the millimetre scale or below. We installed a setup for high-resolution (182 μm) chemical impurity measurements in ice cores using the laser ablation technique at the University of Cambridge. In a first application to the Skytrain ice core from Antarctica, we discuss the potential to detect fine-layered structures in ice up to an age of 26 000 years.
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024, https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary
Short summary
Liquid veins and grain boundaries in ice can accelerate the decay of climate signals in δ18O and δD by short-circuiting the slow isotopic diffusion in crystal grains. This theory for "excess diffusion" has not been confirmed experimentally. We show that, if the mechanism occurs, then distinct isotopic patterns must form near grain junctions, offering a testable prediction of the theory. We calculate the patterns and describe an experimental scheme for testing ice-core samples for the mechanism.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Fyntan Shaw, Andrew M. Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024, https://doi.org/10.5194/tc-18-3685-2024, 2024
Short summary
Short summary
Fast variability of water isotopes in ice cores is attenuated by diffusion but can be restored if the diffusion length is accurately estimated. Current estimation methods are inadequate for deep ice, mischaracterising millennial-scale climate variability. We address this using variability estimates from shallower ice. The estimated diffusion length of 31 cm for the bottom of the Dome C ice core is 20 cm less than the old method, enabling signal recovery on timescales previously considered lost.
Vasilii V. Petrenko, Segev BenZvi, Michael Dyonisius, Benjamin Hmiel, Andrew M. Smith, and Christo Buizert
The Cryosphere, 18, 3439–3451, https://doi.org/10.5194/tc-18-3439-2024, https://doi.org/10.5194/tc-18-3439-2024, 2024
Short summary
Short summary
This manuscript presents the concept for a new proxy for past variations in the galactic cosmic ray flux (GCR). Past variations in GCR flux are important to understand for interpretation of records of isotopes produced by cosmic rays; these records are used for reconstructing solar variations and past land ice extent. The proxy involves using measurements of 14CO in ice cores, which should provide an uncomplicated and precise estimate of past GCR flux variations for the past few thousand years.
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Xinyu Lv, Zhihao Cui, Ting Wang, Yumin Wen, An Liu, and Rusheng Wang
The Cryosphere, 18, 3351–3362, https://doi.org/10.5194/tc-18-3351-2024, https://doi.org/10.5194/tc-18-3351-2024, 2024
Short summary
Short summary
In this study, the formation process of ice chips was observed and the fracture mechanics characteristics of the ice during the cutting process were analyzed. Additionally, a mechanical model for the cutting force was established based on the observation and analysis results. Finally, influencing factors and laws of the cutting force were verified by cutting force test results generated under various experimental conditions.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Felix S. L. Ng
The Cryosphere, 17, 3063–3082, https://doi.org/10.5194/tc-17-3063-2023, https://doi.org/10.5194/tc-17-3063-2023, 2023
Short summary
Short summary
The stable isotopes of oxygen and hydrogen in ice cores are routinely analysed for the climate signals which they carry. It has long been known that the system of water veins in ice facilitates isotopic diffusion. Here, mathematical modelling shows that water flow in the veins strongly accelerates the diffusion and the decay of climate signals. The process hampers methods using the variations in signal decay with depth to reconstruct past climatic temperature.
Takashi Obase, Ayako Abe-Ouchi, Fuyuki Saito, Shun Tsutaki, Shuji Fujita, Kenji Kawamura, and Hideaki Motoyama
The Cryosphere, 17, 2543–2562, https://doi.org/10.5194/tc-17-2543-2023, https://doi.org/10.5194/tc-17-2543-2023, 2023
Short summary
Short summary
We use a one-dimensional ice-flow model to examine the most suitable core location near Dome Fuji (DF), Antarctica. This model computes the temporal evolution of age and temperature from past to present. We investigate the influence of different parameters of climate and ice sheet on the ice's basal age and compare the results with ground radar surveys. We find that the local ice thickness primarily controls the age because it is critical to the basal melting, which can eliminate the old ice.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022, https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Short summary
Crystal orientation fabrics (COF) of the Dome Fuji ice core were investigated with an innovative method with unprecedentedly high statistical significance and dense depth coverage. The COF profile and its fluctuation were found to be highly dependent on concentrations of chloride ion and dust. The data suggest deformation of ice at the deepest zone is highly influenced by COF fluctuations that progressively develop from the near-surface firn toward the deepest zone within ice sheets.
Jacob D. Morgan, Christo Buizert, Tyler J. Fudge, Kenji Kawamura, Jeffrey P. Severinghaus, and Cathy M. Trudinger
The Cryosphere, 16, 2947–2966, https://doi.org/10.5194/tc-16-2947-2022, https://doi.org/10.5194/tc-16-2947-2022, 2022
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thinner snowpack in the past is often due to steeper surface topography, in which faster winds erode the snow and deposit it in flatter areas. The slope and wind seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Florian Ritterbusch, Ikumi Oyabu, Christo Buizert, Songyi Kim, Jangil Moon, Sambit Ghosh, Kenji Kawamura, Zheng-Tian Lu, Sangbum Hong, Chang Hee Han, Soon Do Hur, Wei Jiang, and Guo-Min Yang
The Cryosphere, 16, 2301–2324, https://doi.org/10.5194/tc-16-2301-2022, https://doi.org/10.5194/tc-16-2301-2022, 2022
Short summary
Short summary
Blue-ice areas (BIAs) have several advantages for reconstructing past climate. However, the complicated ice flow in the area hinders constraining the age. We applied state-of-the-art techniques and found that the ages cover the last deglaciation period. Our study demonstrates that the BIA in northern Victoria Land may help reconstruct the past climate during the termination of the last glacial period.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798, https://doi.org/10.5194/tc-16-779-2022, https://doi.org/10.5194/tc-16-779-2022, 2022
Short summary
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Nicolas Stoll, Jan Eichler, Maria Hörhold, Tobias Erhardt, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 15, 5717–5737, https://doi.org/10.5194/tc-15-5717-2021, https://doi.org/10.5194/tc-15-5717-2021, 2021
Short summary
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
Ikumi Oyabu, Kenji Kawamura, Tsutomu Uchida, Shuji Fujita, Kyotaro Kitamura, Motohiro Hirabayashi, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Jeffrey P. Severinghaus, and Jacob D. Morgan
The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, https://doi.org/10.5194/tc-15-5529-2021, 2021
Short summary
Short summary
We present O2/N2 and Ar/N2 records from the Dome Fuji ice core through the bubbly ice, bubble–clathrate transition, and clathrate ice zones without gas-loss fractionation. The insolation signal is preserved through the clathrate formation. The relationship between Ar/Ν2 and Ο2/Ν2 suggests that the fractionation for the bubble–clathrate transition is mass independent, while the bubble close-off process involves a combination of mass-independent and mass-dependent fractionation for O2 and Ar.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Short summary
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering their dating. I show that the Gibbs–Thomson effect, which has been overlooked, causes fast diffusion that prevents signals from surviving into deep ice. Hence the deep climatic peaks in Antarctic and Greenlandic ice must be due to impurities in the ice matrix (outside veins) and safe from migration. These findings reset our understanding of postdepositional changes of ice-core climate signals.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Zhu Zhang, Shugui Hou, and Shuangwen Yi
The Cryosphere, 12, 163–168, https://doi.org/10.5194/tc-12-163-2018, https://doi.org/10.5194/tc-12-163-2018, 2018
Short summary
Short summary
We provide the first luminescence dating of the basal sediment of the Chongce ice cap in the western Kunlun Mountains on the north-western Tibetan Plateau (TP), which gives an upper constraint for the age of the bottom ice at the drilling site. The age is more than 1 order of magnitude younger than the previously suggested age of the basal ice of the nearby Guliya ice cap (~ 40 km away from the Chongce ice cap). This work provides an important step towards better understanding the TP ice cores.
Matthew Osman, Sarah B. Das, Olivier Marchal, and Matthew J. Evans
The Cryosphere, 11, 2439–2462, https://doi.org/10.5194/tc-11-2439-2017, https://doi.org/10.5194/tc-11-2439-2017, 2017
Short summary
Short summary
We combine a synthesis of 22 ice core records and a model of soluble impurity transport to investigate the enigmatic, post-depositional migration of methanesulfonic acid in polar ice. Our findings suggest that migration may be universal across coastal regions of Greenland and Antarctica, though it is mitigated at sites with higher accumulation and (or) lower impurity content. Records exhibiting severe migration may still be useful for inferring decadal and lower-frequency climate variability.
Cited articles
Andersen, N.: On the calculation of filter coefficients for maximum entropy spectral analysis, Geophysics, 39, 69–72, 1974.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age-ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Burden, R. and Faires, J.: Numerical Analysis, Brooks/Cole, 704–718, 2001.
Burg, J.: Maximum Entropy Spectral Analysis, PhD thesis, Stanford University, 1975.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, 1961.
Cuffey, K. M., Alley, R. B., Grootes, P. M., Bolzan, J. M., and Anandakrishnan, S.: Calibration of the δ18O isotopic paleothermometer for central Greenland, using borehole temperatures, J. Glaciol., 40, 341–349, 1994.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Freitag, J., Kipfstuhl, S., and Laepple, T.: Core-scale radioscopic imaging: a new method reveals density-calcium link in Antarctic firn, J. Glaciol., 59, 1009–1014, 2013a.
Freitag, J., Kipfstuhl, S., Laepple, T., and Wilhelms, F.: Impurity-controlled densification: a new model for stratified polar firn, J. Glaciol., 59, 1163–1169, 2013b.
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W. C., and Vinther, B. M.: Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years – glaciological and paleoclimatic implications, Earth Planet. Sc. Lett., 405, 132–141, https://doi.org/10.1016/j.epsl.2014.08.022, 2014.
Hall, W. D. and Pruppacher, H. R.: The survival of ice particles falling from cirrus clouds in subsaturated air, J. Atmos. Sci., 33, 1995–2006, 1976.
Herron, M. M. and Langway Jr., C. C.: Firn densification: an empirical model, J. Glaciol., 25, 373–385, 1980.
Huber, C., Leuenberger, M., Spahni, R., Flückiger, J., Schwander, J., Stocker, T. F., Johnsen, S., Landais, A., and Jouzel, J.: Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4, Earth Planet. Sc. Lett., 243, 504–519, https://doi.org/10.1016/j.epsl.2006.01.002, 2006.
Huybrechts, P., Rybak, O., Pattyn, F., Ruth, U., and Steinhage, D.: Ice thinning, upstream advection, and non-climatic biases for the upper 89
IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database, available at: http://www.iaea.org/water (last access: 31 January 2015), 2006.
Johnsen, S.: Stable isotope homogenization of polar firn and ice, in: Isotopes and Impurities in Snow and Ice, Proceedings of the Grenoble Symposium, August–September 1975, 210–219, 1977.
Johnsen, S., Dansgaard, W., and White, J. W. C.: The origin of Arctic precipitation under present and glacial conditions, Tellus B, 41, 452–468, 1989.
Johnsen, S., Clausen, H., Cuffey, K., Hoffmann, G., Schwander, J., and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 121–140, 2000.
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus B, 47, 624–629, https://doi.org/10.1034/j.1600-0889.47.issue5.9.x, 1995.
Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., Stuiver, M., and White, J.: Validity of the temperature reconstruction from water isotopes in ice cores, J. Geophys. Res., 102, 26471–26488, 1997.
Jouzel, J., Vimeux, F., Caillon, N., Delaygue, G., Hoffmann, G., Masson-Delmotte, V., and Parrenin, F.: Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores, J. Geophys. Res.-Atmos., 108, 6, https://doi.org/10.1029/2002JD002677, 2003.
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim. Past, 10, 887–902, https://doi.org/10.5194/cp-10-887-2014, 2014.
Langway Jr., C. C.: Stratigraphic Analysis of a Deep Ice Core from Greenland, Research Report 77, CRREL, Boulder, Colorado, USA, 1967.
Majoube, M.: Fractionation factor of 18O between water vapour and ice, Nature, 226, 1242–1242, https://doi.org/10.1038/2261242a0, 1970.
Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S. J., White, J. W. C., Werner, M., Sveinbjornsdottir, A., and Fuhrer, K.: GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin, Science, 309, 118–121, https://doi.org/10.1126/science.1108575, 2005.
Merlivat, L.: Molecular diffusivities of \chemH_2^{16O, \chemHD^{16O}, and \chemH_2^{18O} in gases}, J. Chem. Phys., 69, 2864–2871, 1978.
Merlivat, L. and Nief, G.: Fractionnement isotopique lors des changements detat solide-vapeur et liquide-vapeur de leau a des temperatures inferieures a 0 °C, Tellus, 19, 122–127, https://doi.org/10.1111/j.2153-3490.1967.tb01465.x, 1967.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131, 1539–1565, 2005.
Oerter, H. Baker, D. Stichler, W., and Rauert, W.: Isotope studies of ice cores from a temperate Alpine glacier (Vernagtferner, Austria) with respect to the meltwater flow, Ann Glaciol., 7, 90–93, 1985.
Oerter, H., Graf, W., Meyer, H., and Wilhelms, F.: The EPICA ice core Dronning Maud Land: first results from stable-isotope measurements, Ann. Glaciol., 39, 307–312, https://doi.org/10.3189/172756404781814032, 2004.
Paterson, W. S. B.: The Physics of Glaciers, 3 Edn., Butterworth-Heinemann, Oxford, UK, 206 pp., 1994.
Reijmer, C. H. and van den Broeke, M. R.: Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations, J. Glaciol., 49, 512–520, 2003.
Schlosser, E., Oerter, H., Masson-Delmotte, V., and Reijmer, C.: Atmospheric influence on the deuterium excess signal in polar firn: implications for ice-core interpretation, J. Glaciol., 54, 117–124, 2008.
Schwander, J., Stauffer, B., and Sigg, A.: Air mixing in firn and the age of the air at pore close-off, Ann. Glaciol., 10, 141–145, 1988.
Severinghaus, J. P. and Brook, E. J.: Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice, Science, 286, 930–934, 1999.
Simonsen, S. B., Johnsen, S. J., Popp, T. J., Vinther, B. M., Gkinis, V., and Steen-Larsen, H. C.: Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes, Clim. Past, 7, 1327–1335, https://doi.org/10.5194/cp-7-1327-2011, 2011.
Sommer, S., Wagenbach, D., Mulvaney, R., and Fischer, H.: Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica: 2. Seasonally resolved chemical records, J. Geophys. Res.-Atmos., 105, 29423–29433, 2000.
Van den Broeke, M., Reijmer, C., Van As, D., Van de Wal, R., and Oerlemans, J.: Seasonal cycles of Antarctic surface energy balance from automatic weather stations, Ann. Glaciol., 41, 131–139, https://doi.org/10.3189/172756405781813168, 2005.
van der Wel, L. G.: Analysis of Water Isotope Diffusion in Firn: Contributions to a Better Palaeoclimatic Interpretation of Ice Cores, PhD thesis, University of Groningen, available at: http://irs.ub.rug.nl/dbi/4f3bd27c7235e (last access: 31 January 2015), 2012.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vodila, G., Palcsu, L., Futo, I., and Szanto, Z.: A 9-year record of stable isotope ratios of precipitation in eastern Hungary: implications on isotope hydrology and regional palaeoclimatology, J. Hydrol., 400, 144–153, 2011.
Werner, M., Mikolajewicz, U., Heimann, M., and Hoffmann, G.: Borehole versus isotope temperatures on Greenland: seasonality does matter, Geophys. Res. Lett., 27, 723–726, https://doi.org/10.1029/1999GL006075, 2000.
Whillans, I. M. and Grootes, P. M.: Isotopic diffusion in cold snow and firn, J. Geophys. Res. 90, 3910–3918, 1985.
Short summary
The diffusion of the stable water isotope signal during firnification of snow is a temperature-dependent process. Therefore, past local temperatures can be derived from the differential diffusion length. In this paper we develop a new method for determining this quantity and compare it with the existing method. Both methods are applied to a large number of synthetic data sets to assess the precision and accuracy of the reconstruction and to a section of the Antarctic EDML ice core record.
The diffusion of the stable water isotope signal during firnification of snow is a...