Articles | Volume 7, issue 6
https://doi.org/10.5194/tc-7-1839-2013
https://doi.org/10.5194/tc-7-1839-2013
Research article
 | 
06 Dec 2013
Research article |  | 06 Dec 2013

Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

A. Lorek and N. Wagner

Related authors

Improving relative humidity measurements on Mars: New laboratory calibration measurements
Maria Hieta, Iina Jaakonaho, Jouni Polkko, Andreas Lorek, Stephen Garland, Jean-Pierre de Vera, Maria Genzer, and Ari-Matti Harri
EGUsphere, https://doi.org/10.5194/egusphere-2023-1823,https://doi.org/10.5194/egusphere-2023-1823, 2023
Short summary
Humidity measurement with capacitive humidity sensors between −70°C and 25°C in low vacuum
A. Lorek
J. Sens. Sens. Syst., 3, 177–185, https://doi.org/10.5194/jsss-3-177-2014,https://doi.org/10.5194/jsss-3-177-2014, 2014

Related subject area

Frozen Ground
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
EGUsphere, https://doi.org/10.5194/egusphere-2024-68,https://doi.org/10.5194/egusphere-2024-68, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary

Cited articles

Agilent: Agilent 16451B Dielectric Test Fixture, Operation and Service Manual, Manual Identification: Model Number 16451B; Data Printed Oct. 2000, Part Number 16451-90020, 2000.
Allen, C. C., Morris, R. V., Jager, K. M., Golden, D. C., Lindstrom, D. J., Lindstrom, M. M., and Lockwood, J. P.: Martian regolith simulant JSC MARS-1. Presented at the 29th Annual Lunar and Planetary Science Conference, LPI, Houston, TX, 1998.
Anderson, D. M. and Tice, A. R.: The unfrozen water and the apparent specific heat capacity of frozen soils, in: Permafrost: North American Contribution [to The] Second International Conference. Presented at the 2nd International Conference on Permafrost, National Academy of Sciences, Washington, 1973.
Auty, R. P. and Cole, R. H.: Dielectric properties of ice and solid D2 O, J. Chem. Phys., 20, 1309–1314, 1952.
Behari, J.: MicroWave Dielectric Behavior of Wet Soils, Springer, Anamaya, New York, New Delhi, 2005.
Download