Articles | Volume 7, issue 5
https://doi.org/10.5194/tc-7-1635-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-1635-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield
M. Schwikowski
Paul Scherrer Institut (PSI), Villigen, Switzerland
Department for Chemistry and Biochemistry, University of Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Switzerland
M. Schläppi
Paul Scherrer Institut (PSI), Villigen, Switzerland
Department for Chemistry and Biochemistry, University of Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Switzerland
P. Santibañez
Centro de Estudios Científicos (CECS), Valdivia, Chile
A. Rivera
Centro de Estudios Científicos (CECS), Valdivia, Chile
Departamento de Geografía, Universidad de Chile, Santiago, Chile
G. Casassa
Centro de Estudios Científicos (CECS), Valdivia, Chile
Related authors
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243, https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a 2-dimensional liquid chromatography method to determine the chiral ratios of monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Dimitri Osmont, Michael Sigl, Anja Eichler, Theo M. Jenk, and Margit Schwikowski
Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019, https://doi.org/10.5194/cp-15-579-2019, 2019
Short summary
Short summary
We present the first black carbon (BC) ice-core record from the Andes (Illimani, Bolivia). It spans the entire Holocene and reflects biomass burning emissions from the Amazon Basin, with high (low) concentrations during warm–dry (wet–cold) periods. The highest fire activity occurred during the Holocene Climatic Optimum (7000–3000 BCE). Recent BC levels, increasing since 1730 CE, do not exceed those of the Medieval Warm Period. The contribution from industrial and traffic emissions remains minor.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
Anina Gilgen, Carole Adolf, Sandra O. Brugger, Luisa Ickes, Margit Schwikowski, Jacqueline F. N. van Leeuwen, Willy Tinner, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11813–11829, https://doi.org/10.5194/acp-18-11813-2018, https://doi.org/10.5194/acp-18-11813-2018, 2018
Short summary
Short summary
Microscopic charcoal particles are fire-specific tracers, which are presently the primary source for reconstructing past fire activity. In this study, we implement microscopic charcoal particles into a global aerosol–climate model to better understand the transport of charcoal on a large scale. We find that the model captures a significant portion of the spatial variability but fails to reproduce the extreme variability observed in the charcoal data.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Chiara Uglietti, Alexander Zapf, Theo Manuel Jenk, Michael Sigl, Sönke Szidat, Gary Salazar, and Margit Schwikowski
The Cryosphere, 10, 3091–3105, https://doi.org/10.5194/tc-10-3091-2016, https://doi.org/10.5194/tc-10-3091-2016, 2016
Short summary
Short summary
A meaningful interpretation of the climatic history contained in ice cores requires a precise chronology. For dating the older and deeper part of the glaciers, radiocarbon analysis can be used when organic matter such as plant or insect fragments are found in the ice. Since this happens rarely, a complementary dating tool, based on radiocarbon dating of the insoluble fraction of carbonaceous aerosols entrapped in the ice, allows for ice dating between 200 and more than 10 000 years.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
C. Müller-Tautges, A. Eichler, M. Schwikowski, G. B. Pezzatti, M. Conedera, and T. Hoffmann
Atmos. Chem. Phys., 16, 1029–1043, https://doi.org/10.5194/acp-16-1029-2016, https://doi.org/10.5194/acp-16-1029-2016, 2016
Short summary
Short summary
The paper focuses on the determination and interpretation of historic records of organic compounds in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. The resulting long-term records of organic species were found to be influenced by the forest fire history in southern Switzerland, anthropogenic emissions, as well as changing mineral dust transport to the drilling site.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, and M. Schwikowski
Atmos. Chem. Phys., 15, 7287–7300, https://doi.org/10.5194/acp-15-7287-2015, https://doi.org/10.5194/acp-15-7287-2015, 2015
Short summary
Short summary
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic pollution from Eurasia as major source during the 20th century. In pre-industrial times nitrate is correlated with methane sulfonate, which we explain with a fertilising effect, presumably triggered by enhanced atmospheric nitrogen input to the ocean. Eurasia was likely the main source area also of pre-industrial nitrate, but for ammonium, biogenic emissions from Siberian boreal forests were dominant.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
P. Zotter, V. G. Ciobanu, Y. L. Zhang, I. El-Haddad, M. Macchia, K. R. Daellenbach, G. A. Salazar, R.-J. Huang, L. Wacker, C. Hueglin, A. Piazzalunga, P. Fermo, M. Schwikowski, U. Baltensperger, S. Szidat, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, https://doi.org/10.5194/acp-14-13551-2014, 2014
I. A. Wendl, J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski
Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, https://doi.org/10.5194/amt-7-2667-2014, 2014
S. Kaspari, T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski
Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, https://doi.org/10.5194/acp-14-8089-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
T. Papina, T. Blyakharchuk, A. Eichler, N. Malygina, E. Mitrofanova, and M. Schwikowski
Clim. Past, 9, 2399–2411, https://doi.org/10.5194/cp-9-2399-2013, https://doi.org/10.5194/cp-9-2399-2013, 2013
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
Esteban Lannutti, Pablo Marmolejo, José Sanchez, Ignacio Ortíz, María G. Lenzano, Silvana Moragues, Andrés Rivera, Paulina Vacaflor, Gustavo Pereyra, and Hugo Morales
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W6-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-13-2024, 2024
Camilo Rada, Andrés Rivera, and Sebastián Alfaro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W6-2024, 37–43, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-37-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-37-2024, 2024
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243, https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a 2-dimensional liquid chromatography method to determine the chiral ratios of monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10, https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The terminus of San Quintín glacier, the largest of the Northern Patagonia Icefield in southern Chile, is rapidly disintegrating with large tabular icebergs into a proglacial lake left behind by this retreating glacier. We show that the ongoing retreat is caused by recent detachment of a floating terminus from the glacier bed. This process may lead to the disappearance of the last existing piedmont lobe in Patagonia, and one of the few remaining glaciers of this type in the world.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Dimitri Osmont, Michael Sigl, Anja Eichler, Theo M. Jenk, and Margit Schwikowski
Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019, https://doi.org/10.5194/cp-15-579-2019, 2019
Short summary
Short summary
We present the first black carbon (BC) ice-core record from the Andes (Illimani, Bolivia). It spans the entire Holocene and reflects biomass burning emissions from the Amazon Basin, with high (low) concentrations during warm–dry (wet–cold) periods. The highest fire activity occurred during the Holocene Climatic Optimum (7000–3000 BCE). Recent BC levels, increasing since 1730 CE, do not exceed those of the Medieval Warm Period. The contribution from industrial and traffic emissions remains minor.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
Anina Gilgen, Carole Adolf, Sandra O. Brugger, Luisa Ickes, Margit Schwikowski, Jacqueline F. N. van Leeuwen, Willy Tinner, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11813–11829, https://doi.org/10.5194/acp-18-11813-2018, https://doi.org/10.5194/acp-18-11813-2018, 2018
Short summary
Short summary
Microscopic charcoal particles are fire-specific tracers, which are presently the primary source for reconstructing past fire activity. In this study, we implement microscopic charcoal particles into a global aerosol–climate model to better understand the transport of charcoal on a large scale. We find that the model captures a significant portion of the spatial variability but fails to reproduce the extreme variability observed in the charcoal data.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Claudio Bravo, Thomas Loriaux, Andrés Rivera, and Ben W. Brock
Hydrol. Earth Syst. Sci., 21, 3249–3266, https://doi.org/10.5194/hess-21-3249-2017, https://doi.org/10.5194/hess-21-3249-2017, 2017
Short summary
Short summary
We present an analysis of meteorological conditions and melt for Universidad Glacier in central Chile. This glacier is characterized by high melt rates over the ablation season, representing a mean contribution of between 10 and 13 % of the total runoff observed in the upper Tinguiririca Basin during the November 2009 to March 2010 period. Few studies have quantified the glacier melt contribution to river runoff in Chile, and this work represents a new precedent for the Andes.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Chiara Uglietti, Alexander Zapf, Theo Manuel Jenk, Michael Sigl, Sönke Szidat, Gary Salazar, and Margit Schwikowski
The Cryosphere, 10, 3091–3105, https://doi.org/10.5194/tc-10-3091-2016, https://doi.org/10.5194/tc-10-3091-2016, 2016
Short summary
Short summary
A meaningful interpretation of the climatic history contained in ice cores requires a precise chronology. For dating the older and deeper part of the glaciers, radiocarbon analysis can be used when organic matter such as plant or insect fragments are found in the ice. Since this happens rarely, a complementary dating tool, based on radiocarbon dating of the insoluble fraction of carbonaceous aerosols entrapped in the ice, allows for ice dating between 200 and more than 10 000 years.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
C. Müller-Tautges, A. Eichler, M. Schwikowski, G. B. Pezzatti, M. Conedera, and T. Hoffmann
Atmos. Chem. Phys., 16, 1029–1043, https://doi.org/10.5194/acp-16-1029-2016, https://doi.org/10.5194/acp-16-1029-2016, 2016
Short summary
Short summary
The paper focuses on the determination and interpretation of historic records of organic compounds in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. The resulting long-term records of organic species were found to be influenced by the forest fire history in southern Switzerland, anthropogenic emissions, as well as changing mineral dust transport to the drilling site.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, and M. Schwikowski
Atmos. Chem. Phys., 15, 7287–7300, https://doi.org/10.5194/acp-15-7287-2015, https://doi.org/10.5194/acp-15-7287-2015, 2015
Short summary
Short summary
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic pollution from Eurasia as major source during the 20th century. In pre-industrial times nitrate is correlated with methane sulfonate, which we explain with a fertilising effect, presumably triggered by enhanced atmospheric nitrogen input to the ocean. Eurasia was likely the main source area also of pre-industrial nitrate, but for ammonium, biogenic emissions from Siberian boreal forests were dominant.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
M. Schaefer, H. Machguth, M. Falvey, G. Casassa, and E. Rignot
The Cryosphere, 9, 25–35, https://doi.org/10.5194/tc-9-25-2015, https://doi.org/10.5194/tc-9-25-2015, 2015
Short summary
Short summary
We use a meteorological-glaciological multi-model approach to quantify, for the first time, melt and accumulation of snow on the Southern Patagonia Icefield (SPI). We were able to reproduce the high measured accumulation of snow of up to 15.4 m water equivalent per year as well as the high measured ablation of up to 11 m water equivalent per year. Mass losses of the SPI due to calving of icebergs strongly increased from 1975-2000 to 2000-2011 and were higher than losses due to surface melt.
P. Zotter, V. G. Ciobanu, Y. L. Zhang, I. El-Haddad, M. Macchia, K. R. Daellenbach, G. A. Salazar, R.-J. Huang, L. Wacker, C. Hueglin, A. Piazzalunga, P. Fermo, M. Schwikowski, U. Baltensperger, S. Szidat, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, https://doi.org/10.5194/acp-14-13551-2014, 2014
I. A. Wendl, J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski
Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, https://doi.org/10.5194/amt-7-2667-2014, 2014
S. Kaspari, T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski
Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, https://doi.org/10.5194/acp-14-8089-2014, 2014
A. Rivera, R. Zamora, J. A. Uribe, R. Jaña, and J. Oberreuter
The Cryosphere, 8, 1445–1456, https://doi.org/10.5194/tc-8-1445-2014, https://doi.org/10.5194/tc-8-1445-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
T. Papina, T. Blyakharchuk, A. Eichler, N. Malygina, E. Mitrofanova, and M. Schwikowski
Clim. Past, 9, 2399–2411, https://doi.org/10.5194/cp-9-2399-2013, https://doi.org/10.5194/cp-9-2399-2013, 2013
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
A. K. Melkonian, M. J. Willis, M. E. Pritchard, A. Rivera, F. Bown, and S. A. Bernstein
The Cryosphere, 7, 823–839, https://doi.org/10.5194/tc-7-823-2013, https://doi.org/10.5194/tc-7-823-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Ice Cores
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
The grain-scale signature of isotopic diffusion in ice
Combining traditional and novel techniques to increase our understanding of the lock-in depth of atmospheric gases in polar ice cores – results from the EastGRIP region
Scientific history, sampling approach, and physical characterization of the Camp Century subglacial material, a rare archive from beneath the Greenland Ice Sheet
Novel approach to estimate the water isotope diffusion length in deep ice cores with an application to Marine Isotope Stage 19 in the Dome C ice core
The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations
Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
Research into mechanical modeling based on characteristics of the fracture mechanics of ice cutting for scientific drilling in polar regions
Temporal markers in a temperate ice core: insights from 3H and 137Cs profiles from the Adamello Glacier
Review article: Melt-affected ice cores for polar research in a warming world
Impact of subsurface crevassing on the depth–age relationship of high-Alpine ice cores extracted at Col du Dôme between 1994 and 2012
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers
Identifying atmospheric processes favouring the formation of bubble-free layers in the Law Dome ice core, East Antarctica
Millennial and orbital-scale variability in a 54 000-year record of total air content from the South Pole ice core
Investigating the spatial representativeness of East Antarctic ice cores: a comparison of ice core and radar-derived surface mass balance over coastal ice rises and Dome Fuji
Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints
Greenland and Canadian Arctic ice temperature profiles database
Isotopic diffusion in ice enhanced by vein-water flow
A one-dimensional temperature and age modeling study for selecting the drill site of the oldest ice core near Dome Fuji, Antarctica
Chemical and visual characterisation of EGRIP glacial ice and cloudy bands within
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
Detection of ice core particles via deep neural networks
Development of crystal orientation fabric in the Dome Fuji ice core in East Antarctica: implications for the deformation regime in ice sheets
Gas isotope thermometry in the South Pole and Dome Fuji ice cores provides evidence for seasonal rectification of ice core gas records
Chronostratigraphy of the Larsen blue-ice area in northern Victoria Land, East Antarctica, and its implications for paleoclimate
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Regional variability of diatoms in ice cores from the Antarctic Peninsula and Ellsworth Land, Antarctica
Microstructure, micro-inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core – Part 2: Implications for palaeo-mineralogy
Microstructure, micro-inclusions, and mineralogy along the EGRIP ice core – Part 1: Localisation of inclusions and deformation patterns
Fractionation of O2∕N2 and Ar∕N2 in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core
Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation
Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands
Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years
Multi-tracer study of gas trapping in an East Antarctic ice core
Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica
Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology
Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica
Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”
Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains
On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits
The first luminescence dating of Tibetan glacier basal sediment
Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024, https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
Short summary
Ice cores are archives of past atmospheric conditions. In deep and old ice, the layers containing this information get thinned to the millimetre scale or below. We installed a setup for high-resolution (182 μm) chemical impurity measurements in ice cores using the laser ablation technique at the University of Cambridge. In a first application to the Skytrain ice core from Antarctica, we discuss the potential to detect fine-layered structures in ice up to an age of 26 000 years.
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024, https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary
Short summary
Liquid veins and grain boundaries in ice can accelerate the decay of climate signals in δ18O and δD by short-circuiting the slow isotopic diffusion in crystal grains. This theory for "excess diffusion" has not been confirmed experimentally. We show that, if the mechanism occurs, then distinct isotopic patterns must form near grain junctions, offering a testable prediction of the theory. We calculate the patterns and describe an experimental scheme for testing ice-core samples for the mechanism.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Fyntan Shaw, Andrew M. Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024, https://doi.org/10.5194/tc-18-3685-2024, 2024
Short summary
Short summary
Fast variability of water isotopes in ice cores is attenuated by diffusion but can be restored if the diffusion length is accurately estimated. Current estimation methods are inadequate for deep ice, mischaracterising millennial-scale climate variability. We address this using variability estimates from shallower ice. The estimated diffusion length of 31 cm for the bottom of the Dome C ice core is 20 cm less than the old method, enabling signal recovery on timescales previously considered lost.
Vasilii V. Petrenko, Segev BenZvi, Michael Dyonisius, Benjamin Hmiel, Andrew M. Smith, and Christo Buizert
The Cryosphere, 18, 3439–3451, https://doi.org/10.5194/tc-18-3439-2024, https://doi.org/10.5194/tc-18-3439-2024, 2024
Short summary
Short summary
This manuscript presents the concept for a new proxy for past variations in the galactic cosmic ray flux (GCR). Past variations in GCR flux are important to understand for interpretation of records of isotopes produced by cosmic rays; these records are used for reconstructing solar variations and past land ice extent. The proxy involves using measurements of 14CO in ice cores, which should provide an uncomplicated and precise estimate of past GCR flux variations for the past few thousand years.
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Xinyu Lv, Zhihao Cui, Ting Wang, Yumin Wen, An Liu, and Rusheng Wang
The Cryosphere, 18, 3351–3362, https://doi.org/10.5194/tc-18-3351-2024, https://doi.org/10.5194/tc-18-3351-2024, 2024
Short summary
Short summary
In this study, the formation process of ice chips was observed and the fracture mechanics characteristics of the ice during the cutting process were analyzed. Additionally, a mechanical model for the cutting force was established based on the observation and analysis results. Finally, influencing factors and laws of the cutting force were verified by cutting force test results generated under various experimental conditions.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Felix S. L. Ng
The Cryosphere, 17, 3063–3082, https://doi.org/10.5194/tc-17-3063-2023, https://doi.org/10.5194/tc-17-3063-2023, 2023
Short summary
Short summary
The stable isotopes of oxygen and hydrogen in ice cores are routinely analysed for the climate signals which they carry. It has long been known that the system of water veins in ice facilitates isotopic diffusion. Here, mathematical modelling shows that water flow in the veins strongly accelerates the diffusion and the decay of climate signals. The process hampers methods using the variations in signal decay with depth to reconstruct past climatic temperature.
Takashi Obase, Ayako Abe-Ouchi, Fuyuki Saito, Shun Tsutaki, Shuji Fujita, Kenji Kawamura, and Hideaki Motoyama
The Cryosphere, 17, 2543–2562, https://doi.org/10.5194/tc-17-2543-2023, https://doi.org/10.5194/tc-17-2543-2023, 2023
Short summary
Short summary
We use a one-dimensional ice-flow model to examine the most suitable core location near Dome Fuji (DF), Antarctica. This model computes the temporal evolution of age and temperature from past to present. We investigate the influence of different parameters of climate and ice sheet on the ice's basal age and compare the results with ground radar surveys. We find that the local ice thickness primarily controls the age because it is critical to the basal melting, which can eliminate the old ice.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022, https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Short summary
Crystal orientation fabrics (COF) of the Dome Fuji ice core were investigated with an innovative method with unprecedentedly high statistical significance and dense depth coverage. The COF profile and its fluctuation were found to be highly dependent on concentrations of chloride ion and dust. The data suggest deformation of ice at the deepest zone is highly influenced by COF fluctuations that progressively develop from the near-surface firn toward the deepest zone within ice sheets.
Jacob D. Morgan, Christo Buizert, Tyler J. Fudge, Kenji Kawamura, Jeffrey P. Severinghaus, and Cathy M. Trudinger
The Cryosphere, 16, 2947–2966, https://doi.org/10.5194/tc-16-2947-2022, https://doi.org/10.5194/tc-16-2947-2022, 2022
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thinner snowpack in the past is often due to steeper surface topography, in which faster winds erode the snow and deposit it in flatter areas. The slope and wind seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Florian Ritterbusch, Ikumi Oyabu, Christo Buizert, Songyi Kim, Jangil Moon, Sambit Ghosh, Kenji Kawamura, Zheng-Tian Lu, Sangbum Hong, Chang Hee Han, Soon Do Hur, Wei Jiang, and Guo-Min Yang
The Cryosphere, 16, 2301–2324, https://doi.org/10.5194/tc-16-2301-2022, https://doi.org/10.5194/tc-16-2301-2022, 2022
Short summary
Short summary
Blue-ice areas (BIAs) have several advantages for reconstructing past climate. However, the complicated ice flow in the area hinders constraining the age. We applied state-of-the-art techniques and found that the ages cover the last deglaciation period. Our study demonstrates that the BIA in northern Victoria Land may help reconstruct the past climate during the termination of the last glacial period.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798, https://doi.org/10.5194/tc-16-779-2022, https://doi.org/10.5194/tc-16-779-2022, 2022
Short summary
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Nicolas Stoll, Jan Eichler, Maria Hörhold, Tobias Erhardt, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 15, 5717–5737, https://doi.org/10.5194/tc-15-5717-2021, https://doi.org/10.5194/tc-15-5717-2021, 2021
Short summary
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
Ikumi Oyabu, Kenji Kawamura, Tsutomu Uchida, Shuji Fujita, Kyotaro Kitamura, Motohiro Hirabayashi, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Jeffrey P. Severinghaus, and Jacob D. Morgan
The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, https://doi.org/10.5194/tc-15-5529-2021, 2021
Short summary
Short summary
We present O2/N2 and Ar/N2 records from the Dome Fuji ice core through the bubbly ice, bubble–clathrate transition, and clathrate ice zones without gas-loss fractionation. The insolation signal is preserved through the clathrate formation. The relationship between Ar/Ν2 and Ο2/Ν2 suggests that the fractionation for the bubble–clathrate transition is mass independent, while the bubble close-off process involves a combination of mass-independent and mass-dependent fractionation for O2 and Ar.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Short summary
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering their dating. I show that the Gibbs–Thomson effect, which has been overlooked, causes fast diffusion that prevents signals from surviving into deep ice. Hence the deep climatic peaks in Antarctic and Greenlandic ice must be due to impurities in the ice matrix (outside veins) and safe from migration. These findings reset our understanding of postdepositional changes of ice-core climate signals.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Zhu Zhang, Shugui Hou, and Shuangwen Yi
The Cryosphere, 12, 163–168, https://doi.org/10.5194/tc-12-163-2018, https://doi.org/10.5194/tc-12-163-2018, 2018
Short summary
Short summary
We provide the first luminescence dating of the basal sediment of the Chongce ice cap in the western Kunlun Mountains on the north-western Tibetan Plateau (TP), which gives an upper constraint for the age of the bottom ice at the drilling site. The age is more than 1 order of magnitude younger than the previously suggested age of the basal ice of the nearby Guliya ice cap (~ 40 km away from the Chongce ice cap). This work provides an important step towards better understanding the TP ice cores.
Matthew Osman, Sarah B. Das, Olivier Marchal, and Matthew J. Evans
The Cryosphere, 11, 2439–2462, https://doi.org/10.5194/tc-11-2439-2017, https://doi.org/10.5194/tc-11-2439-2017, 2017
Short summary
Short summary
We combine a synthesis of 22 ice core records and a model of soluble impurity transport to investigate the enigmatic, post-depositional migration of methanesulfonic acid in polar ice. Our findings suggest that migration may be universal across coastal regions of Greenland and Antarctica, though it is mitigated at sites with higher accumulation and (or) lower impurity content. Records exhibiting severe migration may still be useful for inferring decadal and lower-frequency climate variability.
Cited articles
Aniya, M., Sato, H., Naruse, R., Skvarca, P., and Casassa, G.: The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America, Photogramm. Eng. Rem. S., 62, 1361–1369, 1996.
Aristarain, A. J. and Delmas, R. J.: Firn-core study from the Southern Patagonia Ice Cap, South-America, J. Glaciol., 39, 249–254, 1993.
Aristarain, A. J., Jouzel, J., and Pourchet, M.: Past Antarctic Peninsula climate (1850–1980) deduced from an ice core isotope record, Climatic Change, 8, 69–89, 1986.
Carrasco, J. F., Casassa, G., and Rivera, A.: Meteorological and climatological aspects of the Southern Patagonia Icefield, in: The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies, edited by: Casassa, G., Sepulveda, F., and Sinclair, R. M., Kluwer Academic/Plenum Publishers, New York, 29–41, 2002.
Carrasco, J. F., Osorio, R., and Casassa, G.: Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations, J. Glaciol., 54, 538–550, 2008.
Casassa, G., Rivera, A., Aniya, M., and Naruse, R.: Current knowledge of the Southern Patagonia Icefield, in: The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies, edited by: Casassa, G., Sepulveda, F., and Sinclair, R. M., Kluwer Academic/Plenum Publishers, New York, 67–83, 2002.
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Fourth edition, Elsevier, Burlington, MA, USA, 2010.
Eichler, A., Schwikowski, M., Gäggeler, H. W., Furrer, V., Synal, H. A., Beer, J., Saurer, M., and Funk, M.: Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), J. Glaciol., 46, 507–515, 2000.
Falvey, M. and Garreaud, R. D.: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America, J. Geophys. Res., 114, D04102, https://doi.org/10.1029/2008jd010519, 2009.
Gehre, M., Geilmann, H., Richter, J., Werner, R. A., and Brand, W. A.: Continuous flow 2H/1H and and 18O/16O analysis of water samples with dual inlet precision, Rapid Commun. Mass Sp., 18, 2650–2660, 2004.
Ginot, P., Stampfli, F., Stampfli, D., Schwikowski, M., and Gäggeler, H.: Felics, a new ice core drilling system for high-altitude glaciers, Workshop "Ice Drilling Technology 2000", Mem. Natl. Inst. Pol. Res. Spec. Issue 56, 38-48, 2002.
Glasser, N. F., Harrison, S., Jansson, K. N., Anderson, K., and Cowley, A.: Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum, Nature Geosci., 4, 303–307, 2011.
Goto-Azuma, K., Koerner, R. M., and Fisher, D. A.: An ice-core record over the last two centuries from Penny Ice Cap, Baffin Island, Canada, Ann. Glaciol., 35, 29–35, 2002.
Hechenleitner, V., Gardner, M. F., Thomas, P. I., Echeverria, C., Escobar, B., Brownless, P., and Martinez, C.: Plantas amenzadas del centro sur de Chile: Distribución, conservación y propagación, Universidad Austral de Chile y Real Jard\i n Botanico de Edimburgo, 188 pp., 2005.
Herron, M. M. and Langway, C. C., Jr.: Firn densification: An empirical model, J. Glaciol., 25, 373–385, 1980.
Ibarzabal, T., Donangelo, T., Hoffmann, J. W., and Naruse, R.: Recent climate changes in southern Patagonia, Bull. Glacier Res. 14, 29–36, 1996.
Kerr, A. and Sugden, D.: The sensitivity of the South Chilean snowline to climatic-change, Climatic Change, 28, 255-272, 1994.
Kohshima, S., Takeuchi, N., Uetake, J., Shiraiwa, T., Uemura, R., Yoshida, N., Matoba, S., and Godoi, M. A.: Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae, Global Planet. Change, 59, 236–244, 2007.
Knüsel, S., Ginot, P., Schotterer, U\underline ., Schwikowski, M., Gäggeler, H. W., Francou, B., Petit, J. R., Simões, J. C., and Taupin, J. D.: Dating of two nearby ice cores from the Illimani, Bolivia, J. Geophys. Res., 107, 4181, https://doi.org/10.1029/2001JD002028, 2003.
Masiokas, M. H., Luckman, B. H., Villalba, R., Delgado, S., Skvarca, P., and Ripalta, A.: Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina, Palaeogeogr. Palaeocl., 281, 351–362, 2009a.
Masiokas, M. H., Rivera, A., Espizua, L. E., Villalba, R., Delgado, S., and Aravena, J. C.: Glacier fluctuations in extratropical South America during the past 1000 years, Palaeogeogr. Palaeocl., 281, 242–268, 2009b.
Matsuoka, K. and Naruse, R.: Mass balance features derived from a firn core at Hielo Patagonico Norte, South America, Arct. Antarct. Alp. Res., 31, 333–340, 1999.
Nelson, S. T. and Dettman, D.: Improving hydrogen isotope ratio measurements for on-line chromium reduction systems, Rapid Comm. Mass Sp., 15, 2301–2306, 2001.
Nye, J.: Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol. 4, 785–788, 1963.
Oerlemans, J. and Fortuin, J. P. F.: Sensitivity of glaciers and small ice caps to greenhouse warming, Science, 258, 115–117, 1992.
Pelto, M. and Miller, M. M.: Mass Balance of the Taku Glacier, Alaska from 1946 to 1986, Northwest Sci., 64, 121–130, 1990.
Poage, M. A. and Chamberlain, C. P.: Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change, Am. J. Sci., 301, 1–15, 2001.
Pohjola, V. A., Moore, J. C., Isaksson, E., Jauhiainen, T., van de Wal, R. S. W., Martma, T., Meijer, H. A. J., and Vaikmae, R.: Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard, J. Geophys. Res., 107, 4036, https://doi.org/10.1029/2000JD000149, 2002.
Post, A., O'Neel, S., Motyka, R., and Streveler, G.: A complex relationship between calving glaciers and climate, EOS, 92, 305–306, 2011.
Rasmussen, L. A., Conway, H., and Raymond, C. F.: Influence of upper air conditions on the Patagonia icefields, Global Planet. Change, 59, 203–216, 2007.
Rignot, E., Rivera, A., and Casassa, G.: Contribution of the Patagonia Icefields of South America to Sea Level Rise, Science, 302, 434–437, 2003.
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records, J. Geophys. Res., 115, D12118, https://doi.org/10.1029/2009jd013255, 2010.
Rivera, A. and Casassa, G.: Volume changes on Pío XI glacier, Patagonia: 1975-1995, Global Planet. Change, 22, 233–244, 1999.
Rivera, A., Aravena, J. C., and Casassa, G.: Recent fluctuations of Glaciar Pío XI, Pagagonia: Discussion of a glacial surge hypothesis, Mt. Res. Dev., 17, 309–322, 1997a.
Rivera, A., Lange, H., Aravena, J. C., and Casassa, G.: The 20th Century advance of Glaciar Pío XI, Southern Patagonia Icefield, Ann. Glaciol., 24, 66–71, 1997b.
Rivera, A., Koppes, M., Bravo, C., and Aravena, J. C.: Little Ice Age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia, Clim. Past, 8, 403–414, https://doi.org/10.5194/cp-8-403-2012, 2012.
Rosenblüth, B., Casassa, G., and Fuenzalida, H.: Recent climatic changes in western Patagonia, Bull. Glac. Res., 13, 127–132, 1995.
Rozanski, A. and Araguas Araguas, L.: Spatial and temporal variability of stable isotope composition of precipitation over the South American continent, Bull. Inst. fr. etudes andines, 24, 370–390, 1995.
Rozanski, A., Araguas Araguas, L., and Gonfiantini, R.: Isotopic patterns in modern global precipitation, in: Climate Change in Continental Isotopic Records, Geophysical Monograph 78, Am. Geophys. Union, 1–36, 1993.
Santibañez, P., Kohshima, S., Scheihing, R., Jaramillo, J., Shiraiwa, T., Matoba, S., Kanda, D., Labarca, P., and Casassa, G.: Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district, J. Glaciol., 54, 452–462, 2008.
Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N., and Casassa, G.: Weather observations across the Southern Andes at 53° S, Phys. Geogr., 24, 97–119, 2003.
Schwerzmann, A., Funk, M., Blatter, H., Lüthi, M. P., Schwikowski, M., and Palmer, A. S.: Reconstruction of past accumulation rates in an alpine firn region: Fiescherhorn, Swiss Alps, J. Geophys. Res., 111, F01014, https://doi.org/10.1029/2005JF000283, 2006.
Schwikowski, M., Brütsch, S., Casassa, G., and Rivera, A.: A potential high-elevation ice-core site at Hielo Patagonico Sur, Ann. Glaciol., 43, 8–13, 2006.
Shiraiwa, T., Kohshima, S., Uemura, R., Yoshida, N., Matoba, S., Uetake, J., and Godoi, M. A.: High net accumulation rates at Campo de Hielo Patagonico Sur, South America, revealed by analysis of a 45.97 m long ice core, Ann. Glaciol., 35, 84–90, 2002.
Thomas, E. R., Dennis, P. F., Bracegirdle, T. J., and Franzke, C.: Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula, Geophys. Res. Lett., 36, L20704, https://doi.org/10.1029/2009GL040104, 2009.
Uetake, J., Kohshima, S., Nakazawa, F., Suzuk, K., Kohno, M., Kameda, T., Arkhipov, S., and Fujii, Y.: Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai, Ann. Glaciol., 43, 70–78, 2006.
Villalba, R., Lara, A., Boninsegna, J. A., Masiokas, M., Delgado, S., Aravena, J. C., Roig, F. A., Schmelter, A., Wolodarsky, A., and Ripalta, A.: Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years, Climatic Change, 59, 177–232, 2003.
Vimeux, F., de Angelis, M., Ginot, P., Magand, O., Casassa, G., Pouyaud, B., Falourd, S., and Johnsen, S.: A promising location in Patagonia for paleoclimate and paleoenvironmental reconstructions revealed by a shallow firn core from Monte San Valentín (Northern Patagonia Icefield, Chile), J. Geophys. Res., 113, D16118, https://doi.org/10.1029/2007JD009502, 2008.
Vimeux, F., Maignan, F., Reutenauer, C., and Pouyaud, B.: Evaluation of cloudiness over Monte San Valentín, Northern Patagonia Icefield, from 2000 to 2008 using MODIS satellite images: implications for paleoclimate investigations from ice cores, J. Glaciol., 57, 221–230, 10.3189/002214311796405915, 2011.
Warren, C. R. and Rivera, A.: Nonlinear climatic response of calving glaciers – a case-study of Pío-Xi Glacier, Chilean Patagonia, Revista Chilena De Historia Natural, 67, 385–394, 1994.
Warren, C. R. and Sugden, D. E.: The Patagonian Icefields – a glaciological review, Arctic Alpine Res., 25, 316–331, 1993.
Willis, M., Melkonian, A., Pritchard M., and Rivera, A.: Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett., 39, L17501, https://doi.org/10.1029/2012gl053136, 2012.
Yamada, T.: Glaciological characteristics revealed by 37.6-m deep core drilled at the accumulation area of San Rafael Glacier, the Northern Patagonia Icefield, Bull. Glac. Res., 4, 59–67, 1987.
Yoshimura, Y., Kohshima, S., Takeuchi, N., Seko, K., and Fujita, K.: Himalayan ice-core dating with snow algae, J. Glaciol., 46, 335–340, 2000.
Zhou, S. Q., Nakawo, M., Hashimoto, S., and Sakai, A.: The effect of refreezing on the isotopic composition of melting snowpack, Hydrol. Process., 22, 873–882, 2008.