Research article
07 Dec 2012
Research article | 07 Dec 2012
Calibration of a surface mass balance model for global-scale applications
R. H. Giesen and J. Oerlemans
Related subject area
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019,https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018,https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018,https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017,https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015
Owen King, Duncan J. Quincey, Jonathan L. Carrivick, and Ann V. Rowan
The Cryosphere, 11, 407–426, https://doi.org/10.5194/tc-11-407-2017,https://doi.org/10.5194/tc-11-407-2017, 2017
Short summary
Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014
Torbjørn Ims Østby, Thomas Vikhamar Schuler, Jon Ove Hagen, Regine Hock, Jack Kohler, and Carleen H. Reijmer
The Cryosphere, 11, 191–215, https://doi.org/10.5194/tc-11-191-2017,https://doi.org/10.5194/tc-11-191-2017, 2017
Short summary
Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau
Fangping Yan, Shichang Kang, Chaoliu Li, Yulan Zhang, Xiang Qin, Yang Li, Xiaopeng Zhang, Zhaofu Hu, Pengfei Chen, Xiaofei Li, Bin Qu, and Mika Sillanpää
The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016,https://doi.org/10.5194/tc-10-2611-2016, 2016
Short summary
Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal
Christian Vincent, Patrick Wagnon, Joseph M. Shea, Walter W. Immerzeel, Philip Kraaijenbrink, Dibas Shrestha, Alvaro Soruco, Yves Arnaud, Fanny Brun, Etienne Berthier, and Sonam Futi Sherpa
The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016,https://doi.org/10.5194/tc-10-1845-2016, 2016
Short summary
The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model
Kjetil S. Aas, Thorben Dunse, Emily Collier, Thomas V. Schuler, Terje K. Berntsen, Jack Kohler, and Bartłomiej Luks
The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016,https://doi.org/10.5194/tc-10-1089-2016, 2016
Short summary
Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015,https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015,https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Modelling glacier change in the Everest region, Nepal Himalaya
J. M. Shea, W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya
The Cryosphere, 9, 1105–1128, https://doi.org/10.5194/tc-9-1105-2015,https://doi.org/10.5194/tc-9-1105-2015, 2015
Short summary
The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers
T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita
The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-9-849-2015,https://doi.org/10.5194/tc-9-849-2015, 2015
Short summary
Climate regime of Asian glaciers revealed by GAMDAM glacier inventory
A. Sakai, T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal
The Cryosphere, 9, 865–880, https://doi.org/10.5194/tc-9-865-2015,https://doi.org/10.5194/tc-9-865-2015, 2015
Short summary
Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015,https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
Changes in the southeast Vatnajökull ice cap, Iceland, between ~ 1890 and 2010
H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and Sv. Guðmundsson
The Cryosphere, 9, 565–585, https://doi.org/10.5194/tc-9-565-2015,https://doi.org/10.5194/tc-9-565-2015, 2015
Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance
F. Brun, M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al. Ramanathan
The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015,https://doi.org/10.5194/tc-9-341-2015, 2015
Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015,https://doi.org/10.5194/tc-9-197-2015, 2015
UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015,https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014,https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Glacier topography and elevation changes derived from Pléiades sub-meter stereo images
E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, and P. Wagnon
The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014,https://doi.org/10.5194/tc-8-2275-2014, 2014
Short summary
Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014,https://doi.org/10.5194/tc-8-1497-2014, 2014
Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014,https://doi.org/10.5194/tc-8-1297-2014, 2014
A data set of worldwide glacier length fluctuations
P. W. Leclercq, J. Oerlemans, H. J. Basagic, I. Bushueva, A. J. Cook, and R. Le Bris
The Cryosphere, 8, 659–672, https://doi.org/10.5194/tc-8-659-2014,https://doi.org/10.5194/tc-8-659-2014, 2014
Cited articles
Andreassen, L. M., Van den Broeke, M. R., Giesen, R. H., and Oerlemans, J.: A 5 year record of surface energy and mass balance from the ablation zone of {S}torbreen, {N}orway, J. Glaciol., 54, 245–258, 2008.
de Woul, M. and Hock, R.: Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach, Ann. Glaciol., 42, 217–224, 2005.
Giesen, R. H. and Oerlemans, J.: Response of the ice cap Hardangerjøkulen in southern Norway to the 20th and 21st century climates, The Cryosphere, 4, 191–213, https://doi.org/10.5194/tc-4-191-2010, 2010.
Giesen, R. H., Van den Broeke, M. R., Oerlemans, J., and Andreassen, L. M.: The surface energy balance in the ablation zone of M}idtdalsbreen, a glacier in southern {N}orway: {Interannual variability and the effect of clouds, J. Geophys. Res., 113, D21111, https://doi.org/10.1029/2008JD010390, 2008.
Giesen, R. H., Andreassen, L. M., van den Broeke, M. R., and Oerlemans, J.: Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway, The Cryosphere, 3, 57–74, https://doi.org/10.5194/tc-3-57-2009, 2009.
Greuell, W. and Konzelmann, T.: Numerical modelling of the energy balance and the englacial temperature of the Greenland {Ice} Sheet, Calculations for the ETH-Camp location ({West} Greenland, 1155 m a.s.l.), Global Planet. Change, 9, 91–114, 1994.
Haeberli, W., G{ä}rtner-Roer, I., Hoelzle, M., Paul, F., and Zemp, M. (Eds.): Glacier Mass Balance Bulletin No. 10 (2006–2007), ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 2009.
Iqbal, M.: An introduction to solar radiation, Academic Press, New York, 1983.
Kaser, G.: Glacier-climate interaction at low latitudes, J. Glaciol., 47, 195–204, 2001.
Krismer, T.: Local and spatial mass balance modelling on an Arctic glacier: Kongsvegen, Spitzbergen, Master's thesis, Department of Meteorology and Geophysics, University of Innsbruck, 2009.
Mölg, T. and Hardy, D. R.: Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro, J. Geophys. Res., 109, D16104, https://doi.org/10.1029/2003JD004338, 2004.
Mölg, T., Cullen, N. J., Hardy, D. R., Kaser, G., and Klok, L.: Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate, Int. J. Climatol., 28, 881–892, https://doi.org/10.1002/joc.1589, 2008.
Mölg, T., Cullen, N. J., Hardy, D. R., Winkler, M., and Kaser, G.: Quantifying climate change in the tropical midtroposphere over East Africa from glacier shrinkage on Kilimanjaro, J. Climate, 22, 4162–4181, 2009.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution dataset of surface climate over global land areas, Climate Res., 21, 1–25, 2002.
Oerlemans, J.: The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling, Holocene, 1, 40–49, 1991.
Oerlemans, J.: Glaciers and Climate Change, Balkema, Lisse, 2001.
Oerlemans, J.: The microclimate of valley glaciers, Igitur, Utrecht Publishing & Archiving Service, Utrecht, 2010.
Oerlemans, J. and Knap, W. H.: A 1 year record of global radiation and albedo in the ablation zone of {M}orteratschgletscher, {S}witzerland, J. Glaciol., 44, 231–238, 1998.
Oerlemans, J., Giesen, R. H., and Van den Broeke, M. R.: Retreating alpine glaciers: increased melt rates due to accumulation of dust ({Vadret} da Morteratsch, {Switzerland}), J. Glaciol., 55, 729–736, 2009.
Ohmura, A.: Observed decadal variations in surface solar radiation and their causes, J. Geophys. Res., 114, D00D05, https://doi.org/10.1029/2008JD011290, 2009.
Radić, V. and Hock, R.: Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4, 91–94, https://doi.org/10.1038/NGEO1052, 2011.
Raper, S. C. B. and Braithwaite, R. J.: Low sea level rise projections from mountain glaciers and icecaps under global warming, Nature, 439, 311–313, https://doi.org/10.1038/nature04448, 2006.
Schneider, C., Kilian, R., and Glaser, M.: Energy balance in the ablation zone during the summer season at the Gran Campo} Nevado {Ice} Cap in the Southern {Andes, Global Planet. Change, 59, 175–188, 2007.
Sicart, J. E., Wagnon, P., and Ribstein, P.: Atmospheric controls of the heat balance of Zongo Glacier (16° S, Bolivia), J. Geophys. Res., 110, D12106, https://doi.org/10.1029/2004JD005732, 2005.
Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Vermeersen, L. L. A., and Riva, R. E. M.: Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios, Clim. Dynam., 38, 1191–1209, https://doi.org/10.1007/s00382-011-1057-6, 2012.
Van den Broeke, M., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R., and Oerlemans, J.: Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet, The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, 2008.
Van den Broeke, M. R., Reijmer, C. H., Van As, D., Van de Wal, R. S. W., and Oerlemans, J.: Seasonal cycles of {A}ntarctic surface energy balance from automatic weather stations, Ann. Glaciol., 41, 131–139, 2005.
Wagnon, P., Ribstein, P., Kaser, G., and Berton, P.: Energy balance and runoff seasonality of a {B}olivian glacier, Global Planet. Change, 22, 49–58, 1999.
Wild, M.: Global dimming and brightening: A review, J. Geophys. Res., 114, D00D16, https://doi.org/10.1029/2008JD011470, 2009.
Wright, A. P., Wadham, J. L., Siegert, M. J., Luckman, A., Kohler, J., and Nuttall, A. M.: Modeling the refreezing of meltwater as superimposed ice on a high Arctic glacier: A comparison of approaches, J. Geophys. Res., 112, F04016, https://doi.org/10.1029/2007JF000818, 2007.
Zemp, M., Roer, I., Kääb, A., Hoelzle, M., Paul, F., and Haeberli, W.: Global Glacier Changes: facts and figures, United Nations Environmental Programme (UNEP) and World Glacier Monitoring Service (WGMS), 2008.