Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-37-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-37-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li
CORRESPONDING AUTHOR
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Sanne B. M. Veldhuijsen
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Stef Lhermitte
Department of Earth & Environmental Sciences, KU Leuven, Leuven, Belgium
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Related authors
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3251, https://doi.org/10.5194/egusphere-2024-3251, 2024
Short summary
Short summary
Due to the melt events in recent decades, the snow condition over Greenland has been changed. To observe this, we use a parameter (leading edge width; LeW) derived from satellite altimetry, and analyse its spatial and temporal variations. By comparing the LeW variations with modelled firn parameters, we concluded that the 2012 melt event has a long-lasting impact on the volume scattering of Greenland firn. This impact cannot fully recover due to the recent and more frequent melt events.
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
Short summary
This study proposes a new method for correcting the slope-induced errors in satellite radar altimetry. The slope-induced errors can significantly affect the height estimations of ice sheets if left uncorrected. This study applies the method to radar altimetry data (CryoSat-2) and compares the performance with two existing methods. The performance is assessed by comparison with independent height measurements from ICESat-2. The assessment shows that the method performs promisingly.
Weiran Li, Stef Lhermitte, and Paco López-Dekker
The Cryosphere, 15, 5309–5322, https://doi.org/10.5194/tc-15-5309-2021, https://doi.org/10.5194/tc-15-5309-2021, 2021
Short summary
Short summary
Surface meltwater lakes have been observed on several Antarctic ice shelves in field studies and optical images. Meltwater lakes can drain and refreeze, increasing the fragility of the ice shelves. The combination of synthetic aperture radar (SAR) backscatter and interferometric information (InSAR) can provide the cryosphere community with the possibility to continuously assess the dynamics of the meltwater lakes, potentially helping to facilitate the study of ice shelves in a changing climate.
Sofie Van Winckel, Jonas Simons, Stef Lhermitte, and Bart Muys
Biogeosciences, 22, 4291–4307, https://doi.org/10.5194/bg-22-4291-2025, https://doi.org/10.5194/bg-22-4291-2025, 2025
Short summary
Short summary
Insights on management's impact on forest carbon stocks are crucial for sustainable forest management practices. However, accurately monitoring carbon stocks remains a technological challenge. This study estimates above-ground carbon stock in managed and unmanaged forests using passive optical, synthetic aperture radar (SAR), and light detection and ranging (lidar) remote sensing data. Results show promising potential in using multiple remote sensing predictors and publicly available high-resolution data for mapping forest carbon stocks.
Ann-Sofie P. Zinck, Bert Wouters, Franka Jesse, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2025-573, https://doi.org/10.5194/egusphere-2025-573, 2025
Short summary
Short summary
Ocean-driven basal melting of ice shelves can carve channels into the ice shelf base. These channels represent potential weak areas of the ice shelf. On George VI Ice shelf we discover a new channel which onset coincides with the 2015 El-Nino Southern Oscillation event. Since the channel has developed rapidly and is located within a highly channelized area close to the ice shelf front it poses a potential thread of ice shelf retreat.
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3251, https://doi.org/10.5194/egusphere-2024-3251, 2024
Short summary
Short summary
Due to the melt events in recent decades, the snow condition over Greenland has been changed. To observe this, we use a parameter (leading edge width; LeW) derived from satellite altimetry, and analyse its spatial and temporal variations. By comparing the LeW variations with modelled firn parameters, we concluded that the 2012 melt event has a long-lasting impact on the volume scattering of Greenland firn. This impact cannot fully recover due to the recent and more frequent melt events.
Julius Sommer, Maaike Izeboud, Sophie de Roda Husman, Bert Wouters, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-3105, https://doi.org/10.5194/egusphere-2024-3105, 2024
Short summary
Short summary
Ice shelves, the floating extensions of Antarctica’s ice sheet, play a crucial role in preventing mass ice loss, and understanding their stability is crucial. If surface meltwater lakes drain rapidly through fractures, the ice shelf can destabilize. We analyzed satellite images of three years from the Shackleton Ice Shelf and found that lake drainages occurred in areas where damage is present and developing, and coincided with rising tides, offering insights into the drivers of this process.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Filippo Emilio Scarsi, Alessandro Battaglia, Maximilian Maahn, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1917, https://doi.org/10.5194/egusphere-2024-1917, 2024
Short summary
Short summary
Snowfall measurements at high latitudes are crucial for estimating ice sheet mass balance. Spaceborne radar and radiometer missions help estimate snowfall but face uncertainties. This work evaluates uncertainties in snowfall estimates from a fixed near-nadir radar (CloudSat-like) and a conically scanning radar (WIVERN-like), determining that WIVERN will provide much better estimates than CloudSat, and at much smaller spatial and temporal scales.
Thore Kausch, Stef Lhermitte, Marie G. P. Cavitte, Eric Keenan, and Shashwat Shukla
EGUsphere, https://doi.org/10.5194/egusphere-2024-2077, https://doi.org/10.5194/egusphere-2024-2077, 2024
Short summary
Short summary
Determining the net balance of snow accumulation on the surface of Antarctica is challenging. Sentinel-1 satellite sensors, which can see through snow, offer a promising method. However, linking their signals to snow amounts is complex due to snow's internal structure and limited on-the-ground data. This study found a connection between satellite signals and snow levels at three locations in Dronning Maud Land. Using models and field data, the method shows potential for wider use in Antarctica.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Lena G. Buth, Valeria Di Biase, Peter Kuipers Munneke, Stef Lhermitte, Sanne B. M. Veldhuijsen, Sophie de Roda Husman, Michiel R. van den Broeke, and Bert Wouters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2000, https://doi.org/10.5194/egusphere-2023-2000, 2023
Preprint archived
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023, https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary
Short summary
The ice shelves in Antarctica are melting from below, which puts their stability at risk. Therefore, it is important to observe how much and where they are melting. In this study we use high-resolution satellite imagery to derive 50 m resolution basal melt rates of the Dotson Ice Shelf. With the high resolution of our product we are able to uncover small-scale features which may in the future help us to understand the state and fate of the Antarctic ice shelves and their (in)stability.
Diana Francis, Ricardo Fonseca, Kyle S. Mattingly, Stef Lhermitte, and Catherine Walker
The Cryosphere, 17, 3041–3062, https://doi.org/10.5194/tc-17-3041-2023, https://doi.org/10.5194/tc-17-3041-2023, 2023
Short summary
Short summary
Role of Foehn Winds in ice and snow conditions at the Pine Island Glacier, West Antarctica.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Lena G. Buth, Bert Wouters, Sanne B. M. Veldhuijsen, Stef Lhermitte, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-127, https://doi.org/10.5194/tc-2022-127, 2022
Manuscript not accepted for further review
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
Short summary
This study proposes a new method for correcting the slope-induced errors in satellite radar altimetry. The slope-induced errors can significantly affect the height estimations of ice sheets if left uncorrected. This study applies the method to radar altimetry data (CryoSat-2) and compares the performance with two existing methods. The performance is assessed by comparison with independent height measurements from ICESat-2. The assessment shows that the method performs promisingly.
Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke
The Cryosphere, 15, 5639–5658, https://doi.org/10.5194/tc-15-5639-2021, https://doi.org/10.5194/tc-15-5639-2021, 2021
Short summary
Short summary
Antarctica is shrinking, and part of the mass loss is caused by higher temperatures leading to more snowmelt. We use computer models to estimate the amount of melt, but this can be inaccurate – specifically in the areas with the most melt. This is because the model cannot account for small, darker areas like rocks or darker ice. Thus, we trained a computer using artificial intelligence and satellite images that showed these darker areas. The model computed an improved estimate of melt.
Weiran Li, Stef Lhermitte, and Paco López-Dekker
The Cryosphere, 15, 5309–5322, https://doi.org/10.5194/tc-15-5309-2021, https://doi.org/10.5194/tc-15-5309-2021, 2021
Short summary
Short summary
Surface meltwater lakes have been observed on several Antarctic ice shelves in field studies and optical images. Meltwater lakes can drain and refreeze, increasing the fragility of the ice shelves. The combination of synthetic aperture radar (SAR) backscatter and interferometric information (InSAR) can provide the cryosphere community with the possibility to continuously assess the dynamics of the meltwater lakes, potentially helping to facilitate the study of ice shelves in a changing climate.
Annelies Voordendag, Marion Réveillet, Shelley MacDonell, and Stef Lhermitte
The Cryosphere, 15, 4241–4259, https://doi.org/10.5194/tc-15-4241-2021, https://doi.org/10.5194/tc-15-4241-2021, 2021
Short summary
Short summary
The sensitivity of two snow models (SNOWPACK and SnowModel) to various parameterizations and atmospheric forcing biases is assessed in the semi-arid Andes of Chile in winter 2017. Models show that sublimation is a main driver of ablation and that its relative contribution to total ablation is highly sensitive to the selected albedo parameterization and snow roughness length. The forcing and parameterizations are more important than the model choice, despite differences in physical complexity.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Christiaan T. van Dalum, Willem Jan van de Berg, Stef Lhermitte, and Michiel R. van den Broeke
The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, https://doi.org/10.5194/tc-14-3645-2020, 2020
Short summary
Short summary
The reflectivity of sunlight, which is also known as albedo, is often inadequately modeled in regional climate models. Therefore, we have implemented a new snow and ice albedo scheme in the regional climate model RACMO2. In this study, we evaluate a new RACMO2 version for the Greenland ice sheet by using observations and the previous model version. RACMO2 output compares well with observations, and by including new processes we improve the ability of RACMO2 to make future climate projections.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Cited articles
Amory, C., Buizert, C., Buzzard, S., Case, E., Clerx, N., Culberg, R., Datta, R. T., Dey, R., Drews, R., Dunmire, D., Eayrs, C., Hansen, N., Humbert, A., Kaitheri, A., Keegan, K., Kuipers Munneke, P., Lenaerts, J. T. M., Lhermitte, S., Mair, D., McDowell, I., Mejia, J., Meyer, C. R., Morris, E., Moser, D., Oraschewski, F. M., Pearce, E., de Roda Husman, S., Schlegel, N.-J., Schultz, T., Simonsen, S. B., Stevens, C. M., Thomas, E. R., Thompson-Munson, M., Wever, N., and Wouters, B.: Firn on ice sheets, Nature Reviews Earth & Environment, 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9, 2024. a, b, c
Anilkumar, R., Bharti, R., Chutia, D., and Aggarwal, S. P.: Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques, The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, 2023. a, b
Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Comput. Stat. Data An., 52, 2249–2260, https://doi.org/10.1016/j.csda.2007.08.015, 2008. a
Arndt, S. and Haas, C.: Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers, The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, 2019. a
Bingham, A. and Drinkwater, M.: Recent changes in the microwave scattering properties of the Antarctic ice sheet, IEEE T. Geosci. Remote, 38, 1810–1820, https://doi.org/10.1109/36.851765, 2000. a
Breiman, L.: Bagging predictors, Machine Learning, 24, 123–140, https://doi.org/10.1007/bf00058655, 1996. a
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. a
Brucker, L., Picard, G., and Fily, M.: Snow grain-size profiles deduced from microwave snow emissivities in Antarctica, J. Glaciol., 56, 514–526, https://doi.org/10.3189/002214310792447806, 2010. a, b, c, d
Brucker, L., Picard, G., Arnaud, L., Barnola, J.-M., Schneebeli, M., Brunjail, H., Lefebvre, E., and Fily, M.: Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciol., 57, 171–182, https://doi.org/10.3189/002214311795306736, 2011. a
Brucker, L., Dinnat, E. P., Picard, G., and Champollion, N.: Effect of Snow Surface Metamorphism on Aquarius L-Band Radiometer Observations at Dome C, Antarctica, IEEE T. Geosci. Remote, 52, 7408–7417, https://doi.org/10.1109/tgrs.2014.2312102, 2014. a, b
Cartwright, J., Fraser, A. D., and Porter-Smith, R.: Polar maps of C-band backscatter parameters from the Advanced Scatterometer, Earth Syst. Sci. Data, 14, 479–490, https://doi.org/10.5194/essd-14-479-2022, 2022. a
Champollion, N., Picard, G., Arnaud, L., Lefebvre, E., and Fily, M.: Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite, The Cryosphere, 7, 1247–1262, https://doi.org/10.5194/tc-7-1247-2013, 2013. a, b, c, d, e, f, g, h, i, j, k
Craven, M. and Allison, I.: Firnification and the effects of wind-packing on Antarctic snow, Ann. Glaciol., 27, 239–245, https://doi.org/10.3189/1998aog27-1-239-245, 1998. a
de Roda Husman, S., Hu, Z., Wouters, B., Munneke, P. K., Veldhuijsen, S., and Lhermitte, S.: Remote Sensing of Surface Melt on Antarctica: Opportunities and Challenges, IEEE J. Sel. Top. Appl., 16, 2462–2480, https://doi.org/10.1109/jstars.2022.3216953, 2022. a, b
Early, D. and Long, D.: Image reconstruction and enhanced resolution imaging from irregular samples, IEEE T. Geosci. Remote, 39, 291–302, https://doi.org/10.1109/36.905237, 2001. a
Fahnestock, M., Bindschadler, R., Kwok, R., and Jezek, K.: Greenland Ice Sheet Surface Properties and Ice Dynamics from ERS-1 SAR Imagery, Science, 262, 1530–1534, https://doi.org/10.1126/science.262.5139.1530, 1993. a
Fahnestock, M. A., Scambos, T. A., Shuman, C. A., Arthern, R. J., Winebrenner, D. P., and Kwok, R.: Snow megadune fields on the East Antarctic Plateau: Extreme atmosphere-ice interaction, Geophys. Res. Lett., 27, 3719–3722, https://doi.org/10.1029/1999gl011248, 2000. a
Figa-Saldaña, J., Wilson, J. J., Attema, E., Gelsthorpe, R., Drinkwater, M. R., and Stoffelen, A.: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers, Can. J. Remote Sens., 28, 404–412, https://doi.org/10.5589/m02-035, 2002. a
Fraser, A. D., Nigro, M. A., Ligtenberg, S. R. M., Legrésy, B., Inoue, M., Cassano, J. J., Kuipers Munneke, P., Lenaerts, J. T. M., Young, N. W., Treverrow, A., van den Broeke, M., and Enomoto, H.: Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica, J. Glaciol., 62, 170–184, https://doi.org/10.1017/jog.2016.29, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Fujita, S., Goto-Azuma, K., Hirabayashi, M., Hori, A., Iizuka, Y., Motizuki, Y., Motoyama, H., and Takahashi, K.: Densification of layered firn in the ice sheet at Dome Fuji, Antarctica, J. Glaciol., 62, 103–123, https://doi.org/10.1017/jog.2016.16, 2016. a
Fung, A., Li, Z., and Chen, K.: Backscattering from a randomly rough dielectric surface, IEEE T. Geosci. Remote, 30, 356–369, https://doi.org/10.1109/36.134085, 1992. a
Hastie, T., Tibshirani, R., and Friedman, J.: Random Forests, Springer New York, 587–604, ISBN 9780387848587, https://doi.org/10.1007/978-0-387-84858-7_15, 2008. a
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B.: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables, PeerJ, 6, e5518, https://doi.org/10.7717/peerj.5518, 2018. a
Johnson, A., Fahnestock, M., and Hock, R.: Evaluation of passive microwave melt detection methods on Antarctic Peninsula ice shelves using time series of Sentinel-1 SAR, Remote Sens. Environ., 250, 112044, https://doi.org/10.1016/j.rse.2020.112044, 2020. a
Judson, A. and Doesken, N.: Density of Freshly Fallen Snow in the Central Rocky Mountains, B. Am. Meteorol. Soc., 81, 1577–1587, https://doi.org/10.1175/1520-0477(2000)081<1577:doffsi>2.3.co;2, 2000. a
Kar, R. and Aksoy, M.: Passive Microwave Remote Sensing of the Antarctic Ice Sheet: Retrieval of Firn Properties Near the Concordia Station, IEEE Geosci. Remote S., 21, 1–5, https://doi.org/10.1109/lgrs.2023.3343594, 2024. a
Keenan, E., Wever, N., Dattler, M., Lenaerts, J. T. M., Medley, B., Kuipers Munneke, P., and Reijmer, C.: Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, 2021. a
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of meltwater onto and across Antarctic ice shelves, Nature, 544, 349–352, https://doi.org/10.1038/nature22049, 2017. a
Koenig, L. and Montgomery, L.: Surface Mass Balance and Snow Depth on Sea Ice Working Group (SUMup) snow density subdataset, Greenland and Antartica, 1950–2018, Arctic Data Center instead of National Snow and Ice Data Center [data set], https://doi.org/10.18739/A2JH3D23R, 2018. a, b
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y., Howat, I. M., Box, J. E., Mosley-Thompson, E., McConnell, J. R., Steffen, K., Harper, J. T., Das, S. B., and van den Broeke, M. R.: Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014, The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, 2015. a
Kunkee, D. B., Poe, G. A., Boucher, D. J., Swadley, S. D., Hong, Y., Wessel, J. E., and Uliana, E. A.: Design and Evaluation of the First Special Sensor Microwave Imager/Sounder, IEEE T. Geosci. Remote, 46, 863–883, https://doi.org/10.1109/tgrs.2008.917980, 2008. a
Larue, F., Picard, G., Aublanc, J., Arnaud, L., Robledano-Perez, A., Meur, E. L., Favier, V., Jourdain, B., Savarino, J., and Thibaut, P.: Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT), Remote Sens. Environ., 263, 112534, https://doi.org/10.1016/j.rse.2021.112534, 2021. a, b, c, d, e
Leduc-Leballeur, M., Picard, G., Macelloni, G., Arnaud, L., Brogioni, M., Mialon, A., and Kerr, Y.: Influence of snow surface properties on L-band brightness temperature at Dome C, Antarctica, Remote Sens. Environ., 199, 427–436, https://doi.org/10.1016/j.rse.2017.07.035, 2017. a
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/s0165-232x(02)00073-3, 2002. a
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger, S., Helm, V., Smeets, C. J. P. P., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., Eijkelboom, M., Eisen, O., and Pattyn, F.: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf, Nat. Clim. Change, 7, 58–62, https://doi.org/10.1038/nclimate3180, 2016. a
Li, J. and Zwally, H. J.: Modeling the density variation in the shallow firn layer, Ann. Glaciol., 38, 309–313, https://doi.org/10.3189/172756404781814988, 2004. a
Li, W., Lhermitte, S., and López-Dekker, P.: The potential of synthetic aperture radar interferometry for assessing meltwater lake dynamics on Antarctic ice shelves, The Cryosphere, 15, 5309–5322, https://doi.org/10.5194/tc-15-5309-2021, 2021. a
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011. a
Lindsley, R. D. and Long, D. G.: Standard BYU ASCAT Land/Ice Image Products, Tech. Rep., Brigham Young University Microwave Earth Remote Sensing (MERS) Laboratory, https://www.scp.byu.edu/docs/pdf/MERS1002.pdf (last access: 20 June 2022), 2010. a
Long, D. and Drinkwater, M.: Azimuth variation in microwave scatterometer and radiometer data over Antarctica, IEEE T. Geosci. Remote, 38, 1857–1870, https://doi.org/10.1109/36.851769, 2000. a, b
Long, D., Hardin, P., and Whiting, P.: Resolution enhancement of spaceborne scatterometer data, IEEE T. Geosci. Remote, 31, 700–715, https://doi.org/10.1109/36.225536, 1993. a
Macelloni, G., Brogioni, M., Pampaloni, P., and Cagnati, A.: Multifrequency Microwave Emission From the Dome-C Area on the East Antarctic Plateau: Temporal and Spatial Variability, IEEE T. Geosci. Remote, 45, 2029–2039, https://doi.org/10.1109/tgrs.2007.890805, 2007. a
Mätzler, C.: Improved Born approximation for scattering of radiation in a granular medium, J. Appl. Phys., 83, 6111–6117, https://doi.org/10.1063/1.367496, 1998. a
Meier, W. N., Stewart, J. S., Wilcox, H., Scott, D. J., and Hardman, M. A.: DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures, Boulder, Colorado USA, Version 6, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/MXJL42WSXTS1, 2021. a, b
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E.: Polar Regions, chap. 3, 203–320, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157964.005, 2019. a
Michel, A., Flament, T., and Rémy, F.: Study of the Penetration Bias of ENVISAT Altimeter Observations over Antarctica in Comparison to ICESat Observations, Remote Sensing, 6, 9412–9434, https://doi.org/10.3390/rs6109412, 2014. a
Montgomery, L., Koenig, L., and Alexander, P.: The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland, Earth Syst. Sci. Data, 10, 1959–1985, https://doi.org/10.5194/essd-10-1959-2018, 2018. a
Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a, b
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C., Powers, H. H., Ryczek, M., Stone, G., and Wille, J. D.: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño, Nat. Commun., 8, 15799, https://doi.org/10.1038/ncomms15799, 2017. a, b, c, d, e, f
Pattyn, F. and Morlighem, M.: The uncertain future of the Antarctic Ice Sheet, Science, 367, 1331–1335, https://doi.org/10.1126/science.aaz5487, 2020. a
Picard, G., Fily, M., and Gallee, H.: Surface melting derived from microwave radiometers: a climatic indicator in Antarctica, Ann. Glaciol., 46, 29–34, https://doi.org/10.3189/172756407782871684, 2007. a, b, c, d
Picard, G., Brucker, L., Fily, M., Gallée, H., and Krinner, G.: Modeling time series of microwave brightness temperature in Antarctica, J. Glaciol., 55, 537–551, https://doi.org/10.3189/002214309788816678, 2009. a, b, c, d
Picard, G., Royer, A., Arnaud, L., and Fily, M.: Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica, The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, 2014. a
Picard, G., Sandells, M., and Löwe, H.: SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0), Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, 2018. a, b, c
Picard, G., Löwe, H., and Mätzler, C.: Brief communication: A continuous formulation of microwave scattering from fresh snow to bubbly ice from first principles, The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, 2022. a, b
Rignot, E.: Mass balance of East Antarctic glaciers and ice shelves from satellite data, Ann. Glaciol., 34, 217–227, https://doi.org/10.3189/172756402781817419, 2002. a
Rizzoli, P., Martone, M., Rott, H., and Moreira, A.: Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data, Remote Sensing, 9, 315, https://doi.org/10.3390/rs9040315, 2017. a, b, c
Rott, H., Sturm, K., and Miller, H.: Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data, Ann. Glaciol., 17, 337–343, https://doi.org/10.3189/S0260305500013070, 1993. a, b, c
Santi, E., Brogioni, M., Paloscia, S., and Pampaloni, P.: Analysis of the frequency and polarization indexes over snow cover areas by means of experimental and theoretical data, in: 2012 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), IEEE, Rome, Italy, 5–9 March 2012, https://doi.org/10.1109/microrad.2012.6185250, 2012a. a
Santi, E., Fontanelli, G., Pettinato, S., and Crepaz, A.: Monitoring of snow cover on Italian Alps using AMSR-E and Artificial Neural Networks, in: 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Munich, Germany, 22–27 July 2012, https://doi.org/10.1109/igarss.2012.6351095, 2012b. a
Schmidt, K., Tous Ramon, N., and Schwerdt, M.: Radiometric accuracy and stability of sentinel-1A determined using point targets, International Journal of Microwave and Wireless Technologies, 10, 538–546, https://doi.org/10.1017/s1759078718000016, 2018. a
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry, The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, 2019. a, b
Spergel, J. J., Kingslake, J., Creyts, T., van Wessem, M., and Fricker, H. A.: Surface meltwater drainage and ponding on Amery Ice Shelf, East Antarctica, 1973–2019, J. Glaciol., 67, 985–998, https://doi.org/10.1017/jog.2021.46, 2021. a
Stiles, W. H. and Ulaby, F. T.: The active and passive microwave response to snow parameters: 1. Wetness, J. Geophys. Res.-Oceans, 85, 1037–1044, https://doi.org/10.1029/jc085ic02p01037, 1980. a, b
Stokes, C. R., Abram, N. J., Bentley, M. J., Edwards, T. L., England, M. H., Foppert, A., Jamieson, S. S. R., Jones, R. S., King, M. A., Lenaerts, J. T. M., Medley, B., Miles, B. W. J., Paxman, G. J. G., Ritz, C., van de Flierdt, T., and Whitehouse, P. L.: Response of the East Antarctic Ice Sheet to past and future climate change, Nature, 608, 275–286, https://doi.org/10.1038/s41586-022-04946-0, 2022. a
Strobl, C., Boulesteix, A.-L., and Augustin, T.: Unbiased split selection for classification trees based on the Gini Index, Comput. Stat. Data An., 52, 483–501, https://doi.org/10.1016/j.csda.2006.12.030, 2007. a
Sugiyama, S., Enomoto, H., Fujita, S., Fukui, K., Nakazawa, F., Holmlund, P., and Surdyk, S.: Snow density along the route traversed by the Japanese-Swedish Antarctic Expedition 2007/08, J. Glaciol., 58, 529–539, https://doi.org/10.3189/2012jog11j201, 2012. a
Tedesco, M.: Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations, Geophys. Res. Lett., 34, L02504, https://doi.org/10.1029/2006gl028466, 2007. a
Tedesco, M.: Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979–2008), Remote Sens. Environ., 113, 979–997, https://doi.org/10.1016/j.rse.2009.01.009, 2009. a
Tedesco, M. and Kim, E.: Retrieval of dry-snow parameters from microwave radiometric data using a dense-medium model and genetic algorithms, IEEE T. Geosci. Remote, 44, 2143–2151, https://doi.org/10.1109/tgrs.2006.872087, 2006. a
Trusel, L. D., Frey, K. E., and Das, S. B.: Antarctic surface melting dynamics: Enhanced perspectives from radar scatterometer data, J. Geophys. Res.-Earth, 117, F02023, https://doi.org/10.1029/2011jf002126, 2012. a, b
Ulaby, F., Siquera, P., Nashashibi, A., and Sarabandi, K.: Semi-empirical model for radar backscatter from snow at 35 and 95 GHz, IEEE T. Geosci. Remote, 34, 1059–1065, https://doi.org/10.1109/36.536521, 1996. a
Vafakhah, M., Nasiri Khiavi, A., Janizadeh, S., and Ganjkhanlo, H.: Evaluating different machine learning algorithms for snow water equivalent prediction, Earth Sci. Inform., 15, 2431–2445, https://doi.org/10.1007/s12145-022-00846-z, 2022. a, b
van den Broeke, M.: Depth and Density of the Antarctic Firn Layer, Arct. Antarct. Alp. Res., 40, 432–438, https://doi.org/10.1657/1523-0430(07-021)[broeke]2.0.co;2, 2008. a, b
van den Broeke, M. R., Winther, J.-G., Isaksson, E., Pinglot, J. F., Karlöf, L., Eiken, T., and Conrads, L.: Climate variables along a traverse line in Dronning Maud Land, East Antarctica, J. Glaciol., 45, 295–302, https://doi.org/10.3189/s0022143000001799, 1999. a
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018. a
Veldhuijsen, S. B. M., van de Berg, W. J., Brils, M., Kuipers Munneke, P., and van den Broeke, M. R.: Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A, The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, 2023. a, b, c, d
Verjans, V., Leeson, A. A., Nemeth, C., Stevens, C. M., Kuipers Munneke, P., Noël, B., and van Wessem, J. M.: Bayesian calibration of firn densification models, The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020, 2020. a, b
Viallon-Galinier, L., Hagenmuller, P., and Eckert, N.: Combining modelled snowpack stability with machine learning to predict avalanche activity, The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023, 2023. a
Ward, Jr., J. H.: Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat. Assoc., 58, 236–244, https://doi.org/10.1080/01621459.1963.10500845, 1963. a
Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A., Brenner, A. C., Saba, J. L., and Yi, D.: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002, J. Glaciol., 51, 509–527, https://doi.org/10.3189/172756505781829007, 2005. a
Short summary
This study used a machine learning approach to estimate the densities over the Antarctic Ice Sheet, particularly in the areas where the snow is usually dry. The motivation is to establish a link between satellite parameters to snow densities, as measurements are difficult for people to take on site. It provides valuable insights into the complexities of the relationship between satellite parameters and firn density and provides potential for further studies.
This study used a machine learning approach to estimate the densities over the Antarctic Ice...