Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-37-2025
https://doi.org/10.5194/tc-19-37-2025
Research article
 | 
08 Jan 2025
Research article |  | 08 Jan 2025

Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data

Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte

Related authors

Assessing spatio-temporal variability of firn volume scattering over Greenland with satellite altimeters
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3251,https://doi.org/10.5194/egusphere-2024-3251, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022,https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
The potential of synthetic aperture radar interferometry for assessing meltwater lake dynamics on Antarctic ice shelves
Weiran Li, Stef Lhermitte, and Paco López-Dekker
The Cryosphere, 15, 5309–5322, https://doi.org/10.5194/tc-15-5309-2021,https://doi.org/10.5194/tc-15-5309-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Remote Sensing
A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024,https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024,https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024,https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Sentinel-1 detection of ice slabs on the Greenland Ice Sheet
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
The Cryosphere, 18, 2531–2555, https://doi.org/10.5194/tc-18-2531-2024,https://doi.org/10.5194/tc-18-2531-2024, 2024
Short summary
Mapping the extent of giant Antarctic icebergs with deep learning
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023,https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary

Cited articles

Amory, C., Buizert, C., Buzzard, S., Case, E., Clerx, N., Culberg, R., Datta, R. T., Dey, R., Drews, R., Dunmire, D., Eayrs, C., Hansen, N., Humbert, A., Kaitheri, A., Keegan, K., Kuipers Munneke, P., Lenaerts, J. T. M., Lhermitte, S., Mair, D., McDowell, I., Mejia, J., Meyer, C. R., Morris, E., Moser, D., Oraschewski, F. M., Pearce, E., de Roda Husman, S., Schlegel, N.-J., Schultz, T., Simonsen, S. B., Stevens, C. M., Thomas, E. R., Thompson-Munson, M., Wever, N., and Wouters, B.: Firn on ice sheets, Nature Reviews Earth & Environment, 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9, 2024. a, b, c
Anilkumar, R., Bharti, R., Chutia, D., and Aggarwal, S. P.: Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques, The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, 2023. a, b
Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Comput. Stat. Data An., 52, 2249–2260, https://doi.org/10.1016/j.csda.2007.08.015, 2008. a
Arndt, S. and Haas, C.: Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers, The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, 2019. a
Bingham, A. and Drinkwater, M.: Recent changes in the microwave scattering properties of the Antarctic ice sheet, IEEE T. Geosci. Remote, 38, 1810–1820, https://doi.org/10.1109/36.851765, 2000. a
Download
Short summary
This study used a machine learning approach to estimate the densities over the Antarctic Ice Sheet, particularly in the areas where the snow is usually dry. The motivation is to establish a link between satellite parameters to snow densities, as measurements are difficult for people to take on site. It provides valuable insights into the complexities of the relationship between satellite parameters and firn density and provides potential for further studies.