Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2783-2024
https://doi.org/10.5194/tc-18-2783-2024
Research article
 | 
20 Jun 2024
Research article |  | 20 Jun 2024

Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy

Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle

Related authors

How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024,https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Impact of shrub branches on the shortwave vertical irradiance profile in snow
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
EGUsphere, https://doi.org/10.5194/egusphere-2024-1582,https://doi.org/10.5194/egusphere-2024-1582, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Snow Hydrology
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023,https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022,https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022,https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021,https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Fractional snow-covered area: scale-independent peak of winter parameterization
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021,https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary

Cited articles

Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments, The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, 2016. 
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. 
Beaudry, P. and Golding, D.: Snowmelt during rain-on-snow in coastal British Columbia, in: Proceedings of the Western Snow Conference, 19–21 April 1983, Vancouver, Canada, Washinton, USA, 1983, 55–66, 1983. 
Berg, N., Osterhuber, R., and Bergman, J.: Rain-induced outflow from deep snowpacks in the central Sierra Nevada, California, Hydrolog. Sci. J., 36, 611–629, https://doi.org/10.1080/02626669109492547, 1991. 
Berris, S. N. and Harr, R. D.: Comparative snow accumulation and melt during rainfall in forested and clear-cut plots in the Western Cascades of Oregon, Water Resour. Res., 23, 135–142, https://doi.org/10.1029/WR023i001p00135, 1987. 
Download
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.