Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-827-2023
https://doi.org/10.5194/tc-17-827-2023
Research article
 | 
20 Feb 2023
Research article |  | 20 Feb 2023

Aerial observations of sea ice breakup by ship waves

Elie Dumas-Lefebvre and Dany Dumont

Related authors

A probabilistic seabed–ice keel interaction model
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022,https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023,https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023,https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023,https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023,https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023,https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary

Cited articles

Alberello, A., Onorato, M., Bennetts, L., Vichi, M., Eayrs, C., MacHutchon, K., and Toffoli, A.: Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone, The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, 2019. a
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020. a, b, c, d
Bennetts, L. G., Peter, M. A., Squire, V. A., and Meylan, M. H.: A three-dimensional model of wave attenuation in the marginal ice zone, J. Geophys. Res.-Oceans, 115, C12043, https://doi.org/10.1029/2009JC005982, 2010. a
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017. a
Boutin, G., Ardhuin, F., Dumont, D., Sévigny, C., Girard-Ardhuin, F., and Accensi, M.: Floe Size Effect on Wave-Ice Interactions: Possible Effects, Implementation in Wave Model, and Evaluation, J. Geophys. Res.-Oceans, 123, 4779–4805, https://doi.org/10.1029/2017JC013622, 2018. a, b, c, d, e, f
Download
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.