Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-827-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-827-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerial observations of sea ice breakup by ship waves
Elie Dumas-Lefebvre
CORRESPONDING AUTHOR
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des ursulines, Rimouski, QC, G5L 3A1, Canada
Dany Dumont
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des ursulines, Rimouski, QC, G5L 3A1, Canada
Related authors
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022, https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary
Short summary
In some shallow seas, grounded ice ridges contribute to stabilizing and maintaining a landfast ice cover. A scheme has already proposed where the keel thickness varies linearly with the mean thickness. Here, we extend the approach by taking into account the ice thickness and bathymetry distributions. The probabilistic approach shows a reasonably good agreement with observations and previous grounding scheme while potentially offering more physical insights into the formation of landfast ice.
Sebastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3304, https://doi.org/10.5194/egusphere-2025-3304, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Jeremy Baudry, Dany Dumont, David Didier, Pascal Bernatchez, and Sebastien Dugas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2168, https://doi.org/10.5194/egusphere-2025-2168, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This two-part study explores the development of a short-term (up to 48 hours) coastal flood forecasting system along the Quebec coastline. The first part of the study focuses on wave prediction, a main contributor to coastal hazards. The key results of the study show that wave conditions can be accurately predicted during summer, however, the performances of the model in winter are considerably reduced, primarily because predicting sea ice conditions at fine spatial scales remains challenging.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022, https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary
Short summary
In some shallow seas, grounded ice ridges contribute to stabilizing and maintaining a landfast ice cover. A scheme has already proposed where the keel thickness varies linearly with the mean thickness. Here, we extend the approach by taking into account the ice thickness and bathymetry distributions. The probabilistic approach shows a reasonably good agreement with observations and previous grounding scheme while potentially offering more physical insights into the formation of landfast ice.
Gwenaëlle Gremion, Louis-Philippe Nadeau, Christiane Dufresne, Irene R. Schloss, Philippe Archambault, and Dany Dumont
Geosci. Model Dev., 14, 4535–4554, https://doi.org/10.5194/gmd-14-4535-2021, https://doi.org/10.5194/gmd-14-4535-2021, 2021
Short summary
Short summary
An accurate description of detritic organic particles is key to improving estimations of carbon export into the ocean abyss in ocean general circulation models. Yet, most parametrization are numerically impractical due to the required number of tracers needed to resolve the particle size spectrum. Here, a new parametrization that aims to minimize the tracers number while accurately describing the particles dynamics is developed and tested in a series of idealized numerical experiments.
Cited articles
Alberello, A., Onorato, M., Bennetts, L., Vichi, M., Eayrs, C., MacHutchon, K., and Toffoli, A.: Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone, The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, 2019. a
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020. a, b, c, d
Bennetts, L. G., Peter, M. A., Squire, V. A., and Meylan, M. H.: A
three-dimensional model of wave attenuation in the marginal ice zone,
J. Geophys. Res.-Oceans, 115, C12043, https://doi.org/10.1029/2009JC005982,
2010. a
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017. a
Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone, The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, 2020. a, b, c, d
Casas-Prat, M. and Wang, X. L.: Projections of Extreme Ocean Waves in the
Arctic and Potential Implications for Coastal Inundation and Erosion,
J. Geophys. Res.-Oceans, 125, https://doi.org/10.1029/2019JC015745, 2020. a
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012. a
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated
decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703,
https://doi.org/10.1029/2007GL031972, 2008. a
Cox, G. and Weeks, W.: Equations for Determining the Gas and Brine Volumes in
Sea-Ice Samples, J. Glaciol., 29, 306–316,
https://doi.org/10.3189/S0022143000008364, 1983. a, b
Cox, G. F. N. and Weeks, W. F.: Salinity Variations in Sea Ice, J. Glaciol.,
13, 109–120, https://doi.org/10.3189/S0022143000023418, 1974. a, b
Dumas-Lefebvre, E. and Dumont, D.: Wave-induced sea ice breakup experiment in the Gulf of Saint-Lawrence, ResearchGate [data set], https://doi.org/10.13140/RG.2.2.27919.10403, 2019a. a
Dumas-Lefebvre, E. and Dumont, D.: Aerial footage of wave-induced sea ice breakup in the Gulf of Saint-Lawrence, ResearchGate [video], https://doi.org/10.13140/RG.2.2.32873.62564, 2019b. a
Dumas-Lefebvre, E. and Dumont, D.: Wave-induced sea ice breakup footage processing scripts (tc-2023), Zenodo [code], https://doi.org/10.5281/zenodo.7632812, 2023a. a
Dumas-Lefebvre, E. and Dumont, D.: Binarized NBB orthophoto, ResearchGate [data set], https://doi.org/10.13140/RG.2.2.14165.50400, 2023b. a
Herman, A.: Sea-ice floe-size distribution in the context of spontaneous
scaling emergence in stochastic systems, Phys. Rev. E, 81, 66123, https://doi.org/10.1103/PhysRevE.81.066123,
2010. a, b
Herman, A., Wenta, M., and Cheng, S.: Sizes and Shapes of Sea Ice Floes Broken
by Waves – A Case Study From the East Antarctic Coast, Front. Earth Sci.,
9, 390, https://doi.org/10.3389/feart.2021.655977, 2021. a, b, c
Holt, B. and Martin, S.: The effect of a storm on the 1992 summer sea ice
cover of the Beaufort, Chukchi, and East Siberian Seas, J.
Geophys. Res.-Oceans, 106, 1017–1032, 2001. a
Horvat, C. and Tziperman, E.: A prognostic model of the sea-ice floe size and thickness distribution, The Cryosphere, 9, 2119–2134, https://doi.org/10.5194/tc-9-2119-2015, 2015. a
Hunke, E. C. and Lipscomb, W. H.: CICE : the Los Alamos Sea Ice Model
Documentation and Software User's Manual LA-CC-06-012, Research Report,
1–76, https://doi.org/10.1111/j.1523-1747.2003.12629.x, 2010. a
Kohout, A. L. and Meylan, M. H.: An elastic plate model for wave attenuation
and ice floe breaking in the marginal ice zone, J. Geophys.
Res.-Oceans, 113, C09016, https://doi.org/10.1029/2007JC004434, 2008. a
Kohout, A. L., Williams, M. J., Dean, S. M., and Meylan, M. H.: Storm-induced
sea-ice breakup and the implications for ice extent, Nature, 509, 604–607,
https://doi.org/10.1038/nature13262, 2014. a
Kohout, A. L., Williams, M. J., Toyota, T., Lieser, J., and Hutchings, J.: In
situ observations of wave-induced sea ice breakup, Deep-Sea Res. Pt.
II, 131, 22–27, https://doi.org/10.1016/j.dsr2.2015.06.010,
2016. a, b
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035,
2009. a
Langhorne, P. J., Squire, V. A., Fox, C., and Haskell, T. G.: Break-up of sea
ice by ocean waves, Ann. Glaciol., 27, 438–442, https://doi.org/10.3189/S0260305500017869,
1998. a, b
Li, J., Ma, Y., Liu, Q., Zhang, W., and Guan, C.: Growth of wave height with
retreating ice cover in the Arctic, Cold Reg. Sci. Technol.,
164, 102790, https://doi.org/10.1016/j.coldregions.2019.102790, 2019. a
Liu, A. K. and Mollo-Christensen, E.: Wave Propagation in a Solid Ice Pack,
J. Phys. Oceanogr., 18, 1702–1712,
https://doi.org/10.1175/1520-0485(1988)018<1702:wpiasi>2.0.co;2, 1988. a
Lu, P., Li, Z. J., Zhang, Z. H., and Dong, X. L.: Aerial observations of floe
size distribution in the marginal ice zone of summer Prydz Bay, J.
Geophys. Res.-Oceans, 113, C02011, https://doi.org/10.1029/2006JC003965, 2008. a
Meyer, F.: Topographic distance and watershed lines, Signal Process., 38,
113–125, https://doi.org/10.1016/0165-1684(94)90060-4, 1994. a, b
Mokus, N. G. A. and Montiel, F.: Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study, The Cryosphere, 16, 4447–4472, https://doi.org/10.5194/tc-16-4447-2022, 2022. a, b
Montiel, F. and Squire, V. A.: Modelling wave-induced sea ice break-up in the
marginal ice zone, P. Roy. Soc. A, 473, 20170258, https://doi.org/10.1098/rspa.2017.0258, 2017. a, b
Rinke, A., Maturilli, M., Graham, R. M., Matthes, H., Handorf, D., Cohen, L.,
Hudson, S. R., and Moore, J. C.: Extreme cyclone events in the Arctic:
Wintertime variability and trends, Environ. Res. Lett., 12, 094006,
https://doi.org/10.1088/1748-9326/aa7def, 2017. a
Rothrock, D. A. and Thorndike, A. S.: Measuring the Sea Ice Floe Size
Distribution, J. Geophys. Res., 89, 6477–6486,
https://doi.org/10.1029/JC089iC04p06477, 1984. a, b, c
Smith, M. and Thomson, J.: Scaling observations of surface waves in the
Beaufort Sea, Elementa, 4, 000097, https://doi.org/10.12952/journal.elementa.000097, 2016. a
Soomere, T.: Nonlinear components of ship wake waves, Appl. Mech.
Rev., 60, 120–138, https://doi.org/10.1115/1.2730847, 2007. a
Squire, V. A.: Of ocean waves and sea-ice revisited, Cold Reg. Sci. Technol., 49, 110–133,
https://doi.org/10.1016/j.coldregions.2007.04.007, 2007. a
Squire, V. A.: A fresh look at how ocean waves and sea ice interact,
Philos. T. Roy. Soc. A, 376, 20170342, https://doi.org/10.1098/rsta.2017.0342, 2018. a
Squire, V. A.: Ocean Wave Interactions with Sea Ice: A Reappraisal, Annu.
Rev. Fluid Mech., 52, 37–60, https://doi.org/10.1146/annurev-fluid-010719-060301,
2020. a
Steele, M.: Sea ice melting and floe geometry in a simple ice-ocean model,
J. Geophys. Res.-Oceans, 97, 17729–17738, 1992. a
Stern, H. L., Schweiger, A. J., Zhang, J., and Steele, M.: On reconciling
disparate studies of the sea-ice floe size distribution, Elementa, 6, 49,
https://doi.org/10.1525/elementa.304, 2018. a, b, c
Stopa, J. E., Ardhuin, F., and Girard-Ardhuin, F.: Wave climate in the Arctic 1992–2014: seasonality and trends, The Cryosphere, 10, 1605–1629, https://doi.org/10.5194/tc-10-1605-2016, 2016. a
Sutherland, P. and Dumont, D.: Marginal ice zone thickness and extent due to
wave radiation stress, J. Phys. Oceanogr., 48, 1885–1901,
https://doi.org/10.1175/JPO-D-17-0167.1, 2018. a, b
Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean,
Geophys. Res. Lett., 41, 3136–3140, 2014. a
Thomson, W.: On Ship Waves, Trans. Inst. Mech. Eng., 8, 409–433, 1887. a
Toyota, T. and Enomoto, H.: Analysis of sea ice floes in the Sea of Okhotsk
using ADEOS/AVNIR images, in: Proceedings of the 16th IAHR International
Symposium on Ice, Dunedin, New Zealand, 211–217, 2002. a
Toyota, T., Takatsuji, S., and Nakayama, M.: Characteristics of sea ice floe
size distribution in the seasonal ice zone, Geophys. Res. Lett.,
33, L02616, https://doi.org/10.1029/2005GL024556, 2006. a, b
Veras Guimarães, P., Ardhuin, F., Sutherland, P., Accensi, M., Hamon, M., Pérignon, Y., Thomson, J., Benetazzo, A., and Ferrant, P.: A surface kinematics buoy (SKIB) for wave–current interaction studies, Ocean Sci., 14, 1449–1460, https://doi.org/10.5194/os-14-1449-2018, 2018. a
Weeks, W. F., Tucker III, W. B., Frank, M., and Fungcharoen, S.:
Characterization of surface roughness and floe geometry of Sea Ice over the
Continental Shelves of the Beaufort and Chukchi Seas, in: Symposium on Sea
Ice Processes and Models, vol. 2, 32–41, ISBN 0295956585, 9780295956589, 1980. a
Zhang, J., Stern, H., Hwang, B., Schweiger, A., Steele, M., Stark, M., and
Graber, H. C.: Modeling the seasonal evolution of the Arctic sea ice floe
size distribution, Elementa, 4, 000126, https://doi.org/10.12952/journal.elementa.000126, 2016. a
Zhang, Q. and Skjetne, R.: Image techniques for identifying sea-ice
parameters, Model. Ident. Control, 35, 293–301,
https://doi.org/10.4173/mic.2014.4.6, 2014. a
Zhang, Q. and Skjetne, R.: Image processing for identification of sea-ice
floes and the floe size distributions, IEEE T. Geosci.
Remote, 53, 2913–2924, https://doi.org/10.1109/TGRS.2014.2366640, 2015. a
Zhang, Q., Skjetne, R., Løset, S., and Marchenko, A.: Digital image
processing for sea ice observations in support to arctic DP operations, in:
International Conference on Ocean, Offshore and Arctic Engineering, Vol. 6, Materials Technology, Polar and Arctic Sciences and Technology, Petroleum Technology Symposium, Rio de Janeiro, Brazil, 1–6 July 2012, 555–561, ASME, 2012. a
Zhang, Q., Skjetne, R., and Su, B.: Automatic image segmentation for boundary
detection of apparently connected sea-ice floes, in: Proceedings of the
International Conference on Port and Ocean Engineering under Arctic
Conditions, POAC, 2012, 2013. a
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the...