Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-701-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-701-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Serena Schroeter
CORRESPONDING AUTHOR
Earth Systems, CSIRO Environment, Hobart, Tasmania, Australia
Terence J. O'Kane
Earth Systems, CSIRO Environment, Hobart, Tasmania, Australia
Australian Centre for Excellence in Antarctic Science, Hobart,
Tasmania, Australia
Paul A. Sandery
Earth Systems, CSIRO Environment, Hobart, Tasmania, Australia
Related authors
No articles found.
Mark Collier, Dylan Harries, and Terence O'Kane
EGUsphere, https://doi.org/10.5194/egusphere-2025-3948, https://doi.org/10.5194/egusphere-2025-3948, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
Here we apply Bayesian methods to reconstructed and simulated climate model data over past decades to determine the role of long timescale phase dependencies, and extratropical teleconnections, on the major drivers of tropical climate variability.
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys., 27, 453–471, https://doi.org/10.5194/npg-27-453-2020, https://doi.org/10.5194/npg-27-453-2020, 2020
Short summary
Short summary
Different dimension reduction methods may produce profoundly different low-dimensional representations of multiscale systems. We perform a set of case studies to investigate these differences. When a clear scale separation is present, similar bases are obtained using all methods, but when this is not the case some methods may produce representations that are poorly suited for describing features of interest, highlighting the importance of a careful choice of method when designing analyses.
Cited articles
Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to
southern annular mode trends, J. Climate, 19, 2896–2905, 2006.
Arguez, A. and Vose, R. S.: The definition of the standard WMO climate
normal: The key to deriving alternative climate normals,
B. Am. Meteorol. Soc., 92, 699–704, 2011.
Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., and Newsom, E. R.:
Southern Ocean warming delayed by circumpolar upwelling and equatorward
transport, Nat. Geosci., 9, 549–554,
https://doi.org/10.1038/ngeo2731, 2016.
Bernades Pezza, A., Rashid, H. A., and Simmonds, I.: Climate links and
recent extremes in Antarctic sea ice, high-latitude cyclones, Southern
Annular Mode and ENSO, Clim. Dynam., 38, 57–73, 2012.
Blanchard-Wrigglesworth, E., Roach, L. A., Donohoe, A., and Ding, Q.: Impact
of winds and Southern Ocean SSTs on Antarctic sea ice trends and
variability, J. Climate, 34, 949–965, 2021.
Campitelli, E., Díaz, L. B., and Vera, C.: Assessment of zonally
symmetric and asymmetric components of the Southern Annular Mode using a
novel approach, Clim. Dynam., 58, 161–178, 2022.
Comiso, J. C., Gersten, R. A., Stock, L. V., Turner, J., Perez, G. J., and
Cho, K.: Positive trend in the Antarctic sea ice cover and associated
changes in surface temperature, J. Climate, 30, 2251–2267, 2017.
Cotte, C. and Guinet, C.: Historical whaling records reveal major regional
retreat of Antarctic sea ice, Deep-Sea Res. Pt. I, 54, 243–252, 2007.
Curran, M. A., van Ommen, T. D., Morgan, V. I., Phillips, K. L., and Palmer,
A. S.: Ice core evidence for Antarctic sea ice decline since the 1950s,
Science, 302, 1203–1206, 2003.
de la Mare, W. K.: Abrupt mid-twentieth-century decline in Antarctic sea-ice
extent from whaling records, Nature, 389, 57–60, https://doi.org/10.1038/37956, 1997.
de la Mare, W. K.: Changes in Antarctic sea-ice extent from direct
historical observations and whaling records, Clim. Change, 92, 461–493,
https://doi.org/10.1007/s10584-008-9473-2, 2009.
Doddridge, E. W. and Marshall, J.: Modulation of the Seasonal Cycle of
Antarctic Sea Ice Extent Related to the Southern Annular Mode,
Geophys. Res. Lett., 44, 9761–9768, https://doi.org/10.1002/2017GL074319, 2017.
Doddridge, E. W., Marshall, J., Song, H., Campin, J. M., Kelley, M., and
Nazarenko, L.: Eddy compensation dampens Southern Ocean sea surface
temperature response to westerly wind trends, Geophys. Res. Lett.,
46, 4365–4377, 2019.
Doddridge, E. W., Marshall, J., Song, H., Campin, J.-M., and Kelley, M.:
Southern Ocean heat storage, reemergence, and winter sea ice decline induced
by summertime winds, J. Climate, 34, 1403–1415, 2021.
Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.:
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context
of Longer-Term Variability, Rev. Geophys., 57, 1037–1064, 2019.
Eayrs, C., Li, X., Raphael, M. N., and Holland, D. M.: Rapid decline in
Antarctic sea ice in recent years hints at future change, Nat. Geosci.,
14, 460–464,
https://doi.org/10.1038/s41561-021-00768-3, 2021.
Fan, T., Deser, C., and Schneider, D. P.: Recent Antarctic sea ice trends in
the context of Southern Ocean surface climate variations since 1950,
Geophys. Res. Lett., 41, 2419–2426, https://doi.org/10.1002/2014GL059239, 2014.
Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S., and Plumb, A.:
Antarctic ocean and sea ice response to ozone depletion: A two-time-scale
problem, J. Climate, 28, 1206–1226, https://doi.org/10.1175/JCLI-D-14-00313.1, 2015.
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: variability,
trends, and climate impacts across the Southern Hemisphere, Wiley
Interdisciplinary Reviews, Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020.
Fogt, R. L., Jones, J. M., and Renwick, J.: Seasonal zonal asymmetries in
the Southern Annular Mode and their impact on regional temperature
anomalies, J. Climate, 25, 6253–6270, 2012a.
Fogt, R. L., Wovrosh, A. J., Langen, R. A., and Simmonds, I.: The
characteristic variability and connection to the underlying synoptic
activity of the Amundsen-Bellingshausen Seas Low,
J. Geophys. Res.-Atmos., 117, D07111, https://doi.org/10.1029/2011JD017337, 2012b.
Fogt, R. L., Sleinkofer, A. M., Raphael, M. N., and Handcock, M. S.: A
regime shift in seasonal total Antarctic sea ice extent in the twentieth
century, Nat. Clim. Change, 12, 54–62, 2022.
Franzke, C. L. E., O'Kane, T. J., Monselesan, D. P., Risbey, J. S., and Horenko, I.: Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability, Nonlin. Processes Geophys., 22, 513–525, https://doi.org/10.5194/npg-22-513-2015, 2015.
Frederiksen, J., Frederiksen, C., Osbrough, S., and Sisson, J. M.: Changes
in Southern Hemisphere rainfall, circulation and weather systems, 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011, 2712–2718, http://hdl.handle.net/102.100.100/102006?index=1, 2011.
Frederiksen, J. S. and Frederiksen, C. S.: Interdecadal changes in southern
hemisphere winter storm track modes, Tellus A, 59, 599–617, 2007.
Freitas, A. C., Frederiksen, J. S., Whelan, J., O'Kane, T. J., and Ambrizzi,
T.: Observed and simulated inter-decadal changes in the structure of
Southern Hemisphere large-scale circulation, Clim. Dynam., 45,
2993–3017, 2015.
Gong, D. and Wang, S.: Definition of Antarctic oscillation index,
Geophys. Res. Lett., 26, 459–462, 1999.
Goosse, H., Lefebvre, W., de Montety, A., Crespin, E., and Orsi, A. H.:
Consistent past half-century trends in the atmosphere, the sea ice and the
ocean at high southern latitudes, Clim. Dynam., 33, 999–1016, 2009.
Hall, A. and Visbeck, M.: Synchronous Variability in the Southern Hemisphere
Atmosphere, Sea Ice, and Ocean Resulting from the Annular Mode, J. Climate, 15, 3043–3057, 2002.
Handcock, M. S. and Raphael, M. N.: Modeling the annual cycle of daily Antarctic sea ice extent, The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020, 2020.
Haumann, F. A., Notz, D., and Schmidt, H.: Anthropogenic influence on recent
circulation-driven Antarctic sea ice changes, Geophys. Res. Lett.,
41, 8429–8437, https://doi.org/10.1002/2014GL061659, 2014.
Hobbs, W. R. and Raphael, M. N.: Characterizing the zonally asymmetric
component of the SH circulation, Clim. Dynam., 35, 859–873, 2010.
Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., and
Meier, W.: A review of recent changes in Southern Ocean sea ice, their
drivers and forcings, Global Planet. Change, 143, 228–250,
https://doi.org/10.1016/j.gloplacha.2016.06.008, 2016.
Holland, M. M., Landrum, L., Kostov, Y., and Marshall, J.: Sensitivity of
Antarctic sea ice to the Southern Annular Mode in coupled climate models,
Clim. Dynam., 49, 1813–1831, 2017.
Holland, P. R.: The seasonality of Antarctic sea ice trends, Geophys. Res. Lett., 41, 4230–4237, https://doi.org/10.1002/2014GL060172, 2014.
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift,
Nat. Geosci., 5, 872–875, https://doi.org/10.1038/ngeo1627, 2012.
Holland, P. R., O'Connor, G. K., Bracegirdle, T. J., Dutrieux, P., Naughten, K. A., Steig, E. J., Schneider, D. P., Jenkins, A., and Smith, J. A.: Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries, The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, 2022.
JMA: JRA-55: Japanese 55-year Reanalysis, Monthly Means and Variances, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D60G3H5B, 2013.
Kidson, J. W. and Sinclair, M. R.: The influence of persistent anomalies on
Southern Hemisphere storm tracks, J. Climate, 8, 1938–1950, 1995.
Kimura, N., Onomura, T., and Kikuchi, T.: Processes governing seasonal and
interannual change of the Antarctic sea-ice area, J. Oceanogr.,
1–13, https://doi.org/10.1007/s10872-022-00669-y, 2022.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., and Endo, H.: The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, 2015.
Kostov, Y., Marshall, J., Hausmann, U., Armour, K. C., Ferreira, D., and
Holland, M. M.: Fast and slow responses of Southern Ocean sea surface
temperature to SAM in coupled climate models, Clim. Dynam., 48,
1595–1609, 2017.
Kukla, G. and Gavin, J.: Summer ice and carbon dioxide, Science, 214,
497–503, 1981.
Kusahara, K., Williams, G. D., Massom, R., Reid, P., and Hasumi, H.: Roles
of wind stress and thermodynamic forcing in recent trends in Antarctic sea
ice and Southern Ocean SST: An ocean-sea ice model study, Global
Planet. Change, 158, 103–118, https://doi.org/10.1016/j.gloplacha.2017.09.012, 2017.
Lefebvre, W. and Goosse, H.: Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing, Ocean Sci., 1, 145–157, https://doi.org/10.5194/os-1-145-2005, 2005.
Lefebvre, W., Goosse, H., Timmermann, R., and Fichefet, T.: Influence of the
Southern Annular Mode on the sea ice–ocean system, J. Geophys.
Res.-Oceans, 109, C09005, https://doi.org/10.1029/2004JC002403, 2004.
Livezey, R. E., Vinnikov, K. Y., Timofeyeva, M. M., Tinker, R., and van den
Dool, H. M.: Estimation and extrapolation of climate normals and climatic
trends, J. Appl. Meteorol. Clim., 46, 1759–1776, 2007.
Mahlstein, I., Gent, P. R., and Solomon, S.: Historical Antarctic mean sea
ice area, sea ice trends, and winds in CMIP5 simulations, J. Geophys. Res.-Atmos., 118, 5105–5110, https://doi.org/10.1002/jgrd.50443, 2013.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143, 2003.
Matear, R. J., O'Kane, T. J., Risbey, J. S., and Chamberlain, M.: Sources of
heterogeneous variability and trends in Antarctic sea-ice, Nat.
Commun., 6, 8656,
https://doi.org/10.1038/ncomms9656, 2015.
Meehl, G. A., Arblaster, J. M., Chung, C. T., Holland, M. M., DuVivier, A.,
Thompson, L., Yang, D., and Bitz, C. M.: Sustained ocean changes contributed
to sudden Antarctic sea ice retreat in late 2016, Nat. Commun., 10,
14,
https://doi.org/10.1038/s41467-018-07865-9, 2019.
Meier, W. N., Fetterer, F., Windnagel, A. K., and Stewart, J. S.:
Near-Real-Time NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice
Concentration, Version 2, NSIDC: National Snow and Ice Data
Center
[data set], https://doi.org/10.7265/tgam-yv28, 2021a.
Meier, W. N., Fetterer, F., Windnagel, A. K., and Stewart, J. S.: NOAA/NSIDC
Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4,
NSIDC: National Snow and Ice Data Center [data set], https://doi.org/10.7265/efmz-2t65, 2021b.
Mo, K. C. and Higgins, R. W.: The Pacific–South American Modes and Tropical
Convection during the Southern Hemisphere Winter, Mon. Weather Rev.,
126, 1581–1596, 1998.
Mo, K. C. and Paegle, J. N.: The Pacific–South American modes and their
downstream effects, Int. J. Climatol., 21, 1211–1229,
https://doi.org/10.1002/joc.685, 2001.
Morioka, Y. and Behera, S. K.: Remote and local processes controlling
decadal sea ice variability in the Weddell Sea,
J. Geophys. Res.-Oceans, 126, e2020JC017036, https://doi.org/10.1029/2020JC017036, 2021.
Morioka, Y., Iovino, D., Cipollone, A., Masina, S., and Behera, S. K.:
Decadal Sea Ice Prediction in the West Antarctic Seas with Ocean and Sea Ice
Initializations, Commun. Earth Environ., 3, 189,
https://doi.org/10.1038/s43247-022-00529-z, 2022.
O'Kane, T. J., Risbey, J. S., Franzke, C., Horenko, I., and Monselesan, D.
P.: Changes in the metastability of the midlatitude Southern Hemisphere
circulation and the utility of nonstationary cluster analysis and split-flow
blocking indices as diagnostic tools, J. Atmos. Sci.,
70, 824–842, 2013a.
O'Kane, T. J., Matear, R. J., Chamberlain, M. A., Risbey, J. S., Sloyan, B.
M., and Horenko, I.: Decadal variability in an OGCM Southern Ocean:
Intrinsic modes, forced modes and metastable states, Ocean Model., 69,
1-21, 2013b.
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423, 2019.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring, Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013.
Polvani, L. M., Waugh, D. W., Correa, G. J., and Son, S.-W.: Stratospheric
ozone depletion: The main driver of twentieth-century atmospheric
circulation changes in the Southern Hemisphere, J. Climate, 24,
795–812, 2011.
Raphael, M.: A zonal wave 3 index for the Southern Hemisphere, Geophys. Res. Lett., 31, L23212, https://doi.org/10.1029/2004GL020365, 2004.
Raphael, M., Marshall, G., Turner, J., Fogt, R., Schneider, D., Dixon, D.,
Hosking, J., Jones, J., and Hobbs, W.: The Amundsen Sea Low: Variability,
Change and Impact on Antarctic Climate, B. Am. Meteorol. Soc., 97, 111–121,
https://doi.org/10.1175/BAMS-D-14-00018.1, 2015.
Raphael, M. N. and Handcock, M. S.: A new record minimum for Antarctic sea
ice, Nat. Rev. Earth Environ., 1–2, 2022.
Raphael, M. N. and Hobbs, W.: The influence of the large-scale atmospheric
circulation on Antarctic sea ice during ice advance and retreat seasons,
Geophys. Res. Lett., 41, 5037–5045, https://doi.org/10.1002/2014GL060365, 2014.
Raphael, M. N., Holland, M. M., Landrum, L., and Hobbs, W. R.: Links between
the Amundsen Sea Low and sea ice in the Ross Sea: seasonal and interannual
relationships, Clim. Dynam., 52, 2333–2349, 2019.
Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W.,
Notz, D., Rackow, T., Raphael, M. N., O'Farrell, S. P., and Bailey, D. A.:
Antarctic sea ice area in CMIP6, Geophys. Res. Lett., 47,
e2019GL086729, https://doi.org/10.1029/2019GL086729, 2020.
Santer, B. D., Wigley, T., Boyle, J., Gaffen, D. J., Hnilo, J., Nychka, D., Parker, D., and Taylor, K.: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series, J. Geophys. Res.-Atmos., 105, 7337–7356, 2000.
Schlosser, E., Haumann, F. A., and Raphael, M. N.: Atmospheric influences on the anomalous 2016 Antarctic sea ice decay, The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018, 2018.
Schossler, V., Aquino, F. E., Reis, P. A., and Simões, J. C.: Antarctic
atmospheric circulation anomalies and explosive cyclogenesis in the spring
of 2016, Theor. Appl. Climatol., 141, 537–549, 2020.
Schroeter, S., Hobbs, W., and Bindoff, N. L.: Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models, The Cryosphere, 11, 789–803, https://doi.org/10.5194/tc-11-789-2017, 2017.
Seviour, W., Codron, F., Doddridge, E. W., Ferreira, D., Gnanadesikan, A.,
Kelley, M., Kostov, Y., Marshall, J., Polvani, L., and Thomas, J.: The
Southern Ocean sea surface temperature response to ozone depletion: a
multimodel comparison, J. Climate, 32, 5107–5121, 2019.
Shindell, D. T. and Schmidt, G. A.: Southern Hemisphere climate response to
ozone changes and greenhouse gas increases, Geophys. Res. Lett.,
31, L18209, https://doi.org/10.1029/2004GL020724, 2004.
Shu, Q., Song, Z., and Qiao, F.: Assessment of sea ice simulations in the CMIP5 models, The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015, 2015.
Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., and Li, X.:
Assessment of sea ice extent in CMIP6 with comparison to observations and
CMIP5, Geophys. Res. Lett., 47, e2020GL087965,
https://doi.org/10.1029/2020GL087965, 2020.
Simmonds, I.: Comparing and contrasting the behaviour of Arctic and
Antarctic sea ice over the 35 year period 1979–2013, Ann. Glaciol.,
56, 18–28, 2015.
Simpkins, G. R., Ciasto, L. M., Thompson, D. W. J., and England, M. H.:
Seasonal relationships between large-scale climate variability and antarctic
sea ice concentration, J. Climate, 25, 5451–5469,
https://doi.org/10.1175/JCLI-D-11-00367.1, 2012.
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., and
Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science,
353, 269–274, 2016.
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., and Rind, D.:
Trends in Antarctic annual sea ice retreat and advance and their relation to
El Niño-Southern Oscillation and Southern Annular Mode variability,
J. Geophys. Res.-Oceans, 113, C03S90, https://doi.org/10.1029/2007JC004269, 2008.
Stuecker, M. F., Bitz, C. M., and Armour, K. C.: Conditions leading to the
unprecedented low Antarctic sea ice extent during the 2016 austral spring
season, Geophys. Res. Lett., 44, 9008–9019, 2017.
Thompson, D. W. J. and Wallace, J. M.: Annular Modes in the Extratropical
Circulation. Part I: Month-to-Month Variability, J. Climate, 13,
1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2, 2000.
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations, J. Geophys. Res.-Atmos., 119, 2864–2889, https://doi.org/10.1002/2013JD020316, 2014 (data available at: https://www.metoffice.gov.uk/hadobs/hadisst/, last access: 9 February 2023).
Turner, J., Bracegirdle, T. J., Phillips, T., Marshall, G. J., and Scott
Hosking, J.: An initial assessment of antarctic sea ice extent in the CMIP5
models, J. Climate, 26, 1473–1484, https://doi.org/10.1175/JCLI-D-12-00068.1, 2013a.
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.: The
Amundsen Sea low, Int. J. Climatol., 33, 1818–1829,
https://doi.org/10.1002/joc.3558, 2013b.
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., and
Phillips, T.: Recent changes in Antarctic sea ice, Philos.
T. Roy. Soc. A, 373, 20140163, https://doi.org/10.1098/rsta.2014.0163, 2015.
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O.,
Bracegirdle, T. J., and Deb, P.: Unprecedented springtime retreat of
Antarctic sea ice in 2016, Geophys. Res. Lett., 44, 6868–6875,
2017.
Turner, J., Holmes, C., Caton Harrison, T., Phillips, T., Jena, B.,
Reeves-Francois, T., Fogt, R., Thomas, E. R., and Bajish, C.: Record low
Antarctic sea ice cover in February 2022, Geophys. Res. Lett., 49,
e2022GL098904, https://doi.org/10.1029/2022GL098904, 2022.
Turney, C. S. M., Fogwill, C. J., Palmer, J. G., van Sebille, E., Thomas, Z., McGlone, M., Richardson, S., Wilmshurst, J. M., Fenwick, P., Zunz, V., Goosse, H., Wilson, K.-J., Carter, L., Lipson, M., Jones, R. T., Harsch, M., Clark, G., Marzinelli, E., Rogers, T., Rainsley, E., Ciasto, L., Waterman, S., Thomas, E. R., and Visbeck, M.: Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction, Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, 2017.
van Loon, H.: Pressure in the southern hemisphere, in: Meteorology of the
Southern hemisphere, Springer, 59–86, https://doi.org/10.1007/978-1-935704-33-1_4, 1972.
Verfaillie, D., Pelletier, C., Goosse, H., Jourdain, N. C., Bull, C.,
Dalaiden, Q., Favier, V., Fichefet, T., and Wille, J. D.: The
circum-Antarctic ice-shelves respond to a more positive Southern Annular
Mode with regionally varied melting, Commun. Earth Environ.,
3, 139,
https://doi.org/10.1038/s43247-022-00458-x, 2022.
Wachter, P., Beck, C., Philipp, A., Höppner, K., and Jacobeit, J.:
Spatiotemporal variability of the Southern Annular Mode and its influence on
Antarctic surface temperatures, J. Geophys. Res.-Atmos., 125, e2020JD033818, https://doi.org/10.1029/2020JD033818, 2020.
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., and van
Rensch, P.: Compounding tropical and stratospheric forcing of the record low
Antarctic sea-ice in 2016, Nat. Commun., 10, 13,
https://doi.org/10.1038/s41467-018-07689-7, 2019.
Wang, J., Luo, H., Yang, Q., Liu, J., Yu, L., Shi, Q., and Han, B.: An
Unprecedented Record Low Antarctic Sea-ice Extent during Austral Summer
2022, Adv. Atmos. Sci., 39, 1591–1597,
https://doi.org/10.1007/s00376-022-2087-1, 2022.
Zwally, H. J., Comiso, C., Parkinson, C. L., Campbell, W. J., Carsey, F. D., and Gloersen, P.: Antarctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations, NASA SP-459, NASA Special Publication, 459, 1983.
Short summary
Antarctic sea ice has increased over much of the satellite record, but we show that the early, strongly opposing regional trends diminish and reverse over time, leading to overall negative trends in recent decades. The dominant pattern of atmospheric flow has changed from strongly east–west to more wave-like with enhanced north–south winds. Sea surface temperatures have also changed from circumpolar cooling to regional warming, suggesting recent record low sea ice will not rapidly recover.
Antarctic sea ice has increased over much of the satellite record, but we show that the early,...