Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-63-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-63-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Northern Environmental Geoscience Laboratory, Department of Geography and Planning, Kingston, K7L 3N6, Canada
Robert G. Way
Northern Environmental Geoscience Laboratory, Department of Geography and Planning, Kingston, K7L 3N6, Canada
Jordan Beer
Northern Environmental Geoscience Laboratory, Department of Geography and Planning, Kingston, K7L 3N6, Canada
Anika Forget
Northern Environmental Geoscience Laboratory, Department of Geography and Planning, Kingston, K7L 3N6, Canada
Rosamond Tutton
Northern Environmental Geoscience Laboratory, Department of Geography and Planning, Kingston, K7L 3N6, Canada
Global Water Futures, Wilfrid Laurier University, Yellowknife, X1A
2P8, Canada
Meredith C. Purcell
Torngat Wildlife, Plants, and Fisheries Secretariat, Happy
Valley-Goose Bay, A0P 1E0, Canada
Related authors
No articles found.
Madeleine C. Garibaldi, Philip P. Bonnaventure, Robert G. Way, Alexandre Bevington, Sharon L. Smith, Scott F. Lamoureux, Jean E. Holloway, Antoni G. Lewkowicz, and Hannah Ackerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-4478, https://doi.org/10.5194/egusphere-2025-4478, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We assessed the sensitivity of a simple permafrost model to changes in parameter values using measured data across northern Canada. We altered the value of one parameter at a time to assess the changes in the resulting temperature. The model was most sensitive to changes in the freezing season parameters and least sensitive to changes in the thawing parameters. However, the importance of specific parameters varied across Canada. The findings of this study can aid in development of future models.
Rosamond J. Tutton and Robert G. Way
The Cryosphere, 15, 1–15, https://doi.org/10.5194/tc-15-1-2021, https://doi.org/10.5194/tc-15-1-2021, 2021
Short summary
Short summary
Snow cover is critical to everyday life for people around the globe. Regular measurements of snow cover usually occur only in larger communities because snow monitoring equipment is costly. In this study, we developed a new low-cost method for estimating snow depth and tested it continuously for 1 year at six remote field locations in coastal Labrador, Canada. Field testing suggests that this new method provides a promising option for researchers in need of a low-cost snow measurement system.
Cited articles
Allard, M. and Rousseau, L.: The international structure of a palsa and a
peat plateau in the Rivière Boniface region, Québec: Inferences on
the formation of ice segregation mounds, Géographie Phys. Quat., 53,
373–387, https://doi.org/10.7202/004760ar, 1999.
Allard, M. and Seguin, M. K.: Le pergélisol au Québec nordique:
bilan et perspectives, Géographie Phys. Quat., 41, 141–152,
https://doi.org/10.7202/032671ar, 1987.
Anderson, D., Ford, J. D., and Way, R. G.: The impacts of climate and social
changes on cloudberry (bakeapple) picking: A case study from southeastern
Labrador, Hum. Ecol., 46, 849–863,
https://doi.org/10.1007/s10745-018-0038-3, 2018.
Andrews, J. T.: The glacial geomorphology of the northern Nain-Okak section of Labrador, MSc Thesis, McGill University, Montreal, Canada, 301 pp., https://escholarship.mcgill.ca/concern/theses/db78tg69w (last access: 26 November 2022), 1961.
Banfield, C. E. and Jacobs, J. D.: Regional patterns of temperature and
precipitation for Newfoundland and Labrador during the past century, Can.
Geogr. Géographe Can., 42, 354–64, 1998.
Barrette, C., Brown, R., Way, R. G., Mailhot, A., Diaconescu, E. P.,
Grenier, P., Chaumount, D., Dumont, D., Sévigny, C., Howell, S., and
Senneville, S.: Nunavik and Nunatsiavut regional climate information update,
in: Nunavik and Nunatsiavut: From science to policy, an integrated regional
impact study (IRIS) of climate change and modernization, second iteration,
edited by: Ropars, P., Allard, M., and Lemay, M., ArcticNet Inc., Quebec
City, Canada, 62, 2020.
Beilman, D. W., Vitt, D. H., and Halsey, L. A.: Localized permafrost
peatlands in western Canada: Definition, distributions, and degradation,
Arct. Antarct. Alp. Res., 33, 70–77,
https://doi.org/10.1080/15230430.2001.12003406, 2001.
Bell, T., Putt, M., and Sheldon, T.: Landscape hazard assessment in Nain,
Phase I: Inventory of surficial sediment types and infrastructure damage,
Final Report to Nunatsiavut Government and Nain Inuit Community Government,
2011.
Boisson, A. and Allard, M.: Coastal classification of Nunavik and dynamics of the Arctic/Subarctic coastal environments, Vulnerabilities of the Quebec’s Arctic Territory in the Context of Climate Change, Kuujjuaq, Canada, https://mffp.gouv.qc.ca/wp-content/uploads/antoine-boisson-ulaval-19-04-18.pdf (last access: 26 November 2022), 2018.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Brown, R. and Lemay, M.: Chapter 2: Climate variability and change in the
Canadian Eastern Subarctic IRIS region (Nunavik and Nunatsiavut), in:
Nunavik and Nunatsiavut: From science to policy. An Integrated Regional
Impact Study (IRIS) of climate change and modernization, ArcticNet Inc.,
https://doi.org/10.13140/2.1.1041.7284, 2012.
Brown, R. J. E.: Permafrost investigations in Quebec and Newfoundland
(Labrador), National Research Council of Canada, Division of Building
Research, Technical Paper 449, https://doi.org/10.4224/20374659, 1975.
Brown, R. J. E.: Permafrost distribution in the southern part of the
discontinuous zone in Québec and Labrador, Géographie Phys. Quat.,
33, 279–289, https://doi.org/10.7202/1000364ar, 1979.
Burn, C. R. and Smith, C. A. S.: Observations of the “thermal offset” in
near-surface mean annual ground temperatures at several sites near Mayo,
Yukon Territory, Canada, Arctic, 41, 99–104,
https://doi.org/10.14430/arctic1700, 1988.
Coultish, T. L. and Lewkowicz, A. G.: Palsa dynamics in a subarctic mountainous environment,Wolf Creek, Yukon Territory, Canada, Proc. 8th Int. Conf. Permafr., Zurich, Switzerland, 21–25 July 2003, 163–168, 2003.
Davis, E., Trant, A., Hermanutz, L., Way, R. G., Lewkowicz, A. G., Siegwart
Collier, L., Cuerrier, A., and Whitaker, D.: Plant–environment interactions
in the low Arctic Torngat Mountains of Labrador, Ecosystems, 24, 1038–1058,
https://doi.org/10.1007/s10021-020-00577-6, 2020.
Dionne, J.-C.: Palses et limite méridionale du pergélisol dans
l'hémisphère nord: Le cas de Blanc-Sablon, Québec,
Géographie Phys. Quat., 38, 165–184, https://doi.org/10.7202/032550ar,
1984.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Developments in Quaternary Sciences, vol.
2, Elsevier, 373–424, https://doi.org/10.1016/S1571-0866(04)80209-4, 2004.
Dyke, A. S., Dredge, L. A., and Hodgson, D. A.: North American deglacial
marine- and lake-limit surfaces, Géographie Phys. Quat., 59, 155–185,
https://doi.org/10.7202/014753ar, 2005.
Elias, S. A.: Paleoenvironmental interpretation of Holocene insect fossils
from northeastern Labrador, Canada, Arct. Alp. Res., 14, 311–319,
https://doi.org/10.2307/1550794, 1982.
Environment and Climate Change Canada: Canadian Climate Normals,
https://climate.weather.gc.ca/climate_normals/index_e.html, last access: 27 September 2022.
Environment Canada: Audio Tape Transcript of the East-Central Labrador
Ecological Land Survey, https://ftp.maps.canada.ca/pub/nrcan_rncan/archive/vector/labrador/ (last access: 27 September 2022), 1999.
Esri: World Imagery, Esri [data set], https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9, last access: 27 September 2022.
Fewster, R. E., Morris, P. J., Swindles, G. T., Gregoire, L. J., Ivanovic,
R. F., Valdes, P. J., and Mullan, D.: Drivers of Holocene palsa distribution
in North America, Quaternary Sci. Rev., 240, 106337,
https://doi.org/10.1016/j.quascirev.2020.106337, 2020.
Foster, D. R.: The history and pattern of fire in the boreal forest of
southeastern Labrador, Can. J. Bot., 61, 2459–2471,
https://doi.org/10.1139/b83-269, 1983.
Foster, D. R. and Glaser, P. H.: The raised bogs of south-eastern Labrador,
Canada: Classification, distribution, vegetation and recent dynamics, J.
Ecol., 74, 47–71, https://doi.org/10.2307/2260348, 1986.
Fulton, R. J. (Ed.): Quaternary Geology of Canada and Greenland, Minister of
Supply and Services Canada, Ottawa, Canada, 846 pp., ISBN 0-660-13114-5, 1989.
Fulton, R. J.: Surficial Materials of Canada, “A” Series Map 1880A,
Natural Resources Canada, Geological Survey of Canada,
https://doi.org/10.4095/205040, 1995.
Gibson, C., Morse, P. D., Kelly, J. M., Turetsky, M. R., Baltzer, J. L.,
Gingras-Hill, T., and Kokelj, S. V.: Thermokarst mapping collective:
Protocol for organic permafrost terrain and preliminary inventory from the
Taiga Plains test area, Northwest Territories, N. W. T. Open Rep., 2020, 29, https://northernwaterfutures.files.wordpress.com/2021/04/nwt_open_report_2020-010.pdf (last access: 26 November 2022),
2020.
Gibson, C., Cottenie, K., Gingras-Hill, T., Kokelj, S. V., Baltzer, J. L.,
Chasmer, L., and Turetsky, M. R.: Mapping and understanding the
vulnerability of northern peatlands to permafrost thaw at scales relevant to
community adaptation planning, Environ. Res. Lett., 16, 055022,
https://doi.org/10.1088/1748-9326/abe74b, 2021.
Gorham, E.: Northern peatlands: Role in the carbon cycle and probable
responses to climatic warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991.
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L.: Temporal and
spatial aspects of peatland initiation following deglaciation in North
America, Quaternary Sci. Rev., 26, 300–311,
https://doi.org/10.1016/j.quascirev.2006.08.008, 2007.
Hagedorn, G. W.: Preliminary delineation of marine sediments in east-central Labrador: Parts of NTS map areas 13F, G, I, J, K,
N and O, Gov. Nfld. Labrador Dep. Ind. Energy Technol. Curr. Res., 22, 189–201, https://www.gov.nl.ca/iet/files/CurrentResearch_Hagedorn_2022.pdf, last access: 26 November 2022.
Hare, F. K.: Climate and zonal divisions of the boreal forest formation in
eastern Canada, Geogr. Rev., 40, 615–635, https://doi.org/10.2307/211106, 1950.
Heginbottom, J. A., Dubreuil, M. A., and Harker, P. T.: Canada, permafrost, The National Atlas of Canada, Natural Resources Canada,
Geomatics Canada, MCR Series no. 4177, https://doi.org/10.4095/294672, 1995.
Holloway, J. E. and Lewkowicz, A. G.: Half a century of discontinuous
permafrost persistence and degradation in western Canada, Permafr. Periglac.
Process., 31, 85–96, https://doi.org/10.1002/ppp.2017, 2020.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland
carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad.
Sci., 117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
Hustich, I.: Notes on the coniferous forest and tree limit on the east coast of Newfoundland-Labrador, Acta Geogr., 7, 81 pp., 1939.
International Permafrost Association Terminology Working Group: Multi-language glossary of permafrost and related ground-ice terms, edited by: van Everdingen, R. O., International Permafrost Association, 2005.
Ives, J. D.: A proposed history of permafrost development in
Labrador-Ungava, Géographie Phys. Quat., 33, 233–244,
https://doi.org/10.7202/1000360ar, 1979.
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J.,
Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and
vulnerability of permafrost to climate change, Can. J. For. Res., 40,
1219–1236, https://doi.org/10.1139/X10-060, 2010.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas, Sci.
Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth’s land surface areas V2.1, EnviDat [data set], https://doi.org/10.16904/envidat.228.v2.1, 2018.
Karst, A. L. and Turner, N. J.: Local ecological knowledge and importance of
bakeapple (Rubus chamaemorus L.) in a southeast Labrador Métis
community, Ethnobiol. Lett., 2, 6–18,
https://doi.org/10.14237/ebl.2.2011.28, 2011.
Mamet, S. D., Chun, K. P., Kershaw, G. G. L., Loranty, M. M., and Kershaw,
G. P.: Recent increases in permafrost thaw rates and areal loss of palsas in
the western Northwest Territories, Canada: Non-linear palsa degradation,
Permafr. Periglac. Process., 28, 619–633, https://doi.org/10.1002/ppp.1951,
2017.
McLaughlin, J. and Webster, K.: Effects of climate change on peatlands in
the far north of Ontario, Canada: A synthesis, Arct. Antarct. Alp. Res., 46,
84–102, https://doi.org/10.1657/1938-4246-46.1.84, 2014.
Natural Resources Canada: Standards and Specifications of the National Topographic Data Base, Edition 3.1, https://ftp.maps.canada.ca/pub/nrcan_rncan/vector/ntdb_bndt/doc/stdntdb3_en.pdf (last access: 26 November 2022), 2005.
Norton, C. H., Cuerrier, A., and Hermanutz, L.: People and plants in
Nunatsiavut (Labrador, Canada): Examining plants as a foundational aspect of
culture in the Subarctic, Econ. Bot., 75, 287–301,
https://doi.org/10.1007/s12231-021-09530-7, 2021.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Occhietti, S., Parent, M., Lajeunesse, P., Robert, F., and Govare, É.:
Late Pleistocene–early Holocene decay of the Laurentide Ice Sheet in
Québec–Labrador, in: Developments in Quaternary Sciences, vol. 15,
Elsevier, 601–630, https://doi.org/10.1016/B978-0-444-53447-7.00047-7,
2011.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043,
2016.
Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J., Connolly, J., Crill, P., Euskirchen, E. S., Finkelstein, S. A., Genet, H., Grosse, G., Harris, L. I., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M. J., Malhotra, A., Manies, K., McGuire, A. D., Natali, S. M., O'Donnell, J. A., Parmentier, F.-J. W., Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S. E., Treat, C., Varner, R. K., Virtanen, T., Warren, R. K., and Watts, J. D.: The Boreal–Arctic Wetland and Lake Dataset (BAWLD), Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, 2021.
O'Neill, H. B., Wolfe, S. A., and Duchesne, C.: New ground ice maps for Canada using a paleogeographic modelling approach, The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, 2019.
Ou, C., LaRocque, A., Leblon, B., Zhang, Y., Webster, K., and McLaughlin,
J.: Modelling and mapping permafrost at high spatial resolution using
Landsat and Radarsat-2 images in Northern Ontario, Canada: Part 2 –
regional mapping, Int. J. Remote Sens., 37, 2751–2779,
https://doi.org/10.1080/01431161.2016.1151574, 2016.
Parviainen, M. and Luoto, M.: Climate envelopes of mire complex types in
fennoscandia, Geogr. Ann. Ser. Phys. Geogr., 89, 137–151,
https://doi.org/10.1111/j.1468-0459.2007.00314.x, 2007.
Payette, S.: The forest tundra and present tree-lines of the northern Québec-Labrador peninsula, Nordicana, 47, 3–23, 1983.
Payette, S.: Chapitre 9: Les processus et les formes périglaciaires, in: Écologie des tourbières du Québec-Labrador, edited by: Payette, S. and Rochefort, L., Presses de l’Université Laval, ISBN 2-7637-7773-2, 2001.
Payette, S.: Accelerated thawing of subarctic peatland permafrost over the
last 50 years, Geophys. Res. Lett., 31, L18208,
https://doi.org/10.1029/2004GL020358, 2004.
Pironkova, Z.: Mapping palsa and peat plateau changes in the Hudson Bay
Lowlands, Canada, using historical aerial photography and high-resolution
satellite imagery, Can. J. Remote Sens., 43, 455–467,
https://doi.org/10.1080/07038992.2017.1370366, 2017.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/, last access: 26 November 2022.
Ramsdale, J. D., Balme, M. R., Conway, S. J., Gallagher, C., van Gasselt, S.
A., Hauber, E., Orgel, C., Séjourné, A., Skinner, J. A., Costard,
F., Johnsson, A., Losiak, A., Reiss, D., Swirad, Z. M., Kereszturi, A.,
Smith, I. B., and Platz, T.: Grid-based mapping: A method for rapidly
determining the spatial distributions of small features over very large
areas, Planet. Space Sci., 140, 49–61,
https://doi.org/10.1016/j.pss.2017.04.002, 2017.
Roberts, B. A., Simon, N. P. P., and Deering, K. W.: The forests and
woodlands of Labrador, Canada: Ecology, distribution and future management,
Ecol. Res., 21, 868–880, https://doi.org/10.1007/s11284-006-0051-7, 2006.
Seguin, M. K. and Dionne, J. C.: Modélisation géophysique et caractérisation thermique du pergélisol dans les palses de Blanc-Sablon, Quebec, Geol. Surv. Can. Curr. Res. Part E, 207–216, 1992.
Seppälä, M.: The origin of palsas, Geogr. Ann., 68, 141–147, 1986.
Seppälä, M.: Snow depth controls palsa growth, Permafr. Periglac.
Process., 5, 283–288, https://doi.org/10.1002/ppp.3430050407, 1994.
Smith, J. S.: Shifting sites and shifting sands: A record of prehistoric human/landscape interactions from Porcupine Strand, Labrador, MSc Thesis, Memorial University of Newfoundland, St. John’s, Canada, 288 pp., https://research.library.mun.ca/11445/ (last access: 26 November 2022), 2003.
Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: A
zonal analysis, Permafr. Periglac. Process., 13, 1–15,
https://doi.org/10.1002/ppp.410, 2002.
Tarnocai, C.: The impact of climate change on Canadian peatlands, Can. Water
Resour. J., 34, 453–466, https://doi.org/10.4296/cwrj3404453, 2009.
Tarnocai, C., Kettles, I. M., and Lacelle, B.: Peatlands of Canada, Natural
Resources Canada, Geological Survey of Canada, Open File 6561,
https://doi.org/10.4095/288786, 2011.
Thibault, S. and Payette, S.: Recent permafrost degradation in bogs of the
James Bay area, northern Quebec, Canada, Permafr. Periglac. Process., 20,
383–389, https://doi.org/10.1002/ppp.660, 2009.
Thie, J.: Distribution and thawing of permafrost in the southern part of the
discontinuous permafrost zone in Manitoba, Arctic, 27, 189–200,
https://doi.org/10.14430/arctic2873, 1974.
Vacchi, M., Engelhart, S. E., Nikitina, D., Ashe, E. L., Peltier, W. R.,
Roy, K., Kopp, R. E., and Horton, B. P.: Postglacial relative sea-level
histories along the eastern Canadian coastline, Quaternary Sci. Rev., 201,
124–146, https://doi.org/10.1016/j.quascirev.2018.09.043, 2018.
Vallée, S. and Payette, S.: Collapse of permafrost mounds along a
subarctic river over the last 100 years (northern Québec),
Geomorphology, 90, 162–170, https://doi.org/10.1016/j.geomorph.2007.01.019,
2007.
Wang, Y., Way, R. G., and Beer, J.: Coastal Labrador peatland permafrost
inventory, v. 1.0, Nord. D98 [data set],
https://doi.org/10.5885/45762XD-1DB498A49B864CFB, 2022.
Way, R. G.: Field and modelling investigations of permafrost conditions in Labrador, northeast Canada, PhD Thesis, University of
Ottawa, Ottawa, Canada, 293 pp., https://ruor.uottawa.ca/handle/10393/36678 (last access: 26 November 2022), 2017.
Way, R. G. and Lewkowicz, A. G.: Investigations of discontinuous permafrost in coastal Labrador with DC electrical resistivity
tomography, Proc. 68th Can. Geotech. Conf. 7th Can. Permafr. Conf., Quebec City, Canada, 20–23 September 2015, 8 pp., https://doi.org/10.13140/RG.2.1.1647.8803, 2015.
Way, R. G. and Lewkowicz, A. G.: Environmental controls on ground
temperature and permafrost in Labrador, northeast Canada, Permafr. Periglac.
Process., 29, 73–85, https://doi.org/10.1002/ppp.1972, 2018.
Way, R. G. and Viau, A. E.: Natural and forced air temperature variability
in the Labrador region of Canada during the past century, Theor. Appl.
Climatol., 121, 413–424, https://doi.org/10.1007/s00704-014-1248-2, 2015.
Way, R. G., Lewkowicz, A. G., and Bonnaventure, P. P.: Development of
moderate-resolution gridded monthly air temperature and degree-day maps for
the Labrador-Ungava region of northern Canada: High-resolution air
temperature and degree-day maps for Labrador, Int. J. Climatol., 37,
493–508, https://doi.org/10.1002/joc.4721, 2017.
Way, R. G., Lewkowicz, A. G., and Zhang, Y.: Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada, The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, 2018.
Way, R. G., Wang, Y., Bevington, A. R., Bonnaventure, P. P., Burton, J. R., Davis, E., Garibaldi, M. C., Lapalme, C. M., Tutton,
R., and Wehbe, M. A.: Consensus-Based Rock Glacier Inventorying in the Torngat Mountains, Northern Labrador, Proc. 2021
Reg. Conf. Permafr. 19th Int. Conf. Cold Reg. Eng., Virtual, 24–29 October 2021, 130–141, https://doi.org/10.1061/9780784483589.012, 2021a.
Way, R. G., Lewkowicz, A. G., Wang, Y., and McCarney, P.: Permafrost investigations below the marine limit at Nain, Nunatsiavut, Canada, Proc. 2021 Reg. Conf. Permafr. 19th Int. Conf. Cold Reg. Eng., Virtual, 24–29 October 2021, 38–48, https://doi.org/10.1061/9780784483589.004, 2021b.
Wenner, C.-G.: Pollen diagrams from Labrador, Geogr. Ann., 29, 137–374,
1947.
Williams, P. J. and Smith, M. W.: The Frozen Earth: Fundamentals of Geocryology, Cambridge University Press, https://doi.org/10.1017/CBO9780511564437, 1989.
Zoltai, S. C.: Palsas and peat plateaus in central Manitoba and
Saskatchewan, Can. J. For. Res., 2, 291–302,
https://doi.org/10.1139/x72-046, 1972.
Zoltai, S. C. and Tarnocai, C.: Perennially frozen peatlands in the western
Arctic and Subarctic of Canada, Can. J. Earth Sci., 12, 28–43,
https://doi.org/10.1139/e75-004, 1975.
Zuidhoff, F. S. and Kolstrup, E.: Palsa development and associated
vegetation in northern Sweden, Arct. Antarct. Alp. Res., 37, 49–60,
https://doi.org/10.1657/1523-0430(2005)037[0049:PDAAVI]2.0.CO;2, 2005.
Short summary
Peatland permafrost in northeastern Canada has been misrepresented by models, leading to significant underestimates of peatland permafrost and permafrost distribution along the Labrador Sea coastline. Our multi-stage, multi-mapper, consensus-based inventorying process, supported by field- and imagery-based validation efforts, identifies peatland permafrost complexes all along the coast. The highest density of complexes is found to the south of the current sporadic discontinuous permafrost limit.
Peatland permafrost in northeastern Canada has been misrepresented by models, leading to...