Articles | Volume 17, issue 9
https://doi.org/10.5194/tc-17-3695-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3695-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley
CORRESPONDING AUTHOR
Center for Fluid Mechanics, Brown University, Providence, RI, USA
Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, USA
Sinéad L. Farrell
Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, USA
Department of Geographical Sciences, University of Maryland, College Park, MD, USA
Ute C. Herzfeld
Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
Melinda A. Webster
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Polar Science Center, University of Washington, Seattle, WA, USA
Thomas Trantow
Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
Oliwia N. Baney
Department of Geographical Sciences, University of Maryland, College Park, MD, USA
Kyle A. Duncan
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Huilin Han
Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
Matthew Lawson
Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
Related authors
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024, https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Christopher Horvat, Ellen Buckley, Madelyn Stewart, Poom Yoosiri, and Monica M. Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2023-2312, https://doi.org/10.5194/egusphere-2023-2312, 2023
Preprint withdrawn
Short summary
Short summary
The decline of sea ice area variability is a leading indicator of climate change, and accurate measurement of sea ice area are of high importance. We develop new measurement of sea ice area coverage using the ICESat-2 laser altimeter, typically used to measure the height of the ice surface. The new method performs as well or better than typical passive microwave measurements, especially for sea ice populated with thin fractures in winter.
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024, https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
EGUsphere, https://doi.org/10.5194/egusphere-2024-1977, https://doi.org/10.5194/egusphere-2024-1977, 2024
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snow melt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a Central Arctic field campaign in 2020 to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Kennedy A. Lange, Alice C. Bradley, Kyle Duncan, and Sinéad L. Farrell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1885, https://doi.org/10.5194/egusphere-2024-1885, 2024
Short summary
Short summary
Grounded sea ice ridges stabilize nearshore sea ice by anchoring it in the seafloor. In this study, we develop a method to identify grounded ridges in satellite data, and measure the height, depth, distance from shore, and width of a thousand ridges across the Alaskan Arctic, finding regional differences in these metrics across the coastline. This method lays the groundwork for a better understanding of nearshore ice stability, holding importance for Arctic community food security and safety.
Christopher Horvat, Ellen Buckley, Madelyn Stewart, Poom Yoosiri, and Monica M. Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2023-2312, https://doi.org/10.5194/egusphere-2023-2312, 2023
Preprint withdrawn
Short summary
Short summary
The decline of sea ice area variability is a leading indicator of climate change, and accurate measurement of sea ice area are of high importance. We develop new measurement of sea ice area coverage using the ICESat-2 laser altimeter, typically used to measure the height of the ice surface. The new method performs as well or better than typical passive microwave measurements, especially for sea ice populated with thin fractures in winter.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021, https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Short summary
As the most reflective and most insulative natural material, snow has important climate effects. For snow on sea ice, its high reflectivity reduces ice melt. However, its high insulating capacity limits ice growth. These counteracting effects make its net influence on sea ice uncertain. We find that with increasing snow, sea ice in both hemispheres is thicker and more extensive. However, the drivers of this response are different in the two hemispheres due to different climate conditions.
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021, https://doi.org/10.5194/tc-15-4517-2021, 2021
Short summary
Short summary
During summer, Arctic sea ice melts on its surface and bottom and lateral edges. Some of this fresh meltwater is stored on the ice surface in features called melt ponds. The rest flows into the ocean. The meltwater flowing into the upper ocean affects ice growth and melt, upper ocean properties, and ocean ecosystems. Using field measurements, we found that the summer meltwater was equal to an 80 cm thick layer; 85 % of this meltwater flowed into the ocean and 15 % was stored in melt ponds.
Sean Horvath, Linette Boisvert, Chelsea Parker, Melinda Webster, Patrick Taylor, and Robyn Boeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-297, https://doi.org/10.5194/tc-2021-297, 2021
Preprint withdrawn
Short summary
Short summary
Arctic sea ice has been experiencing a dramatic decline since the late 1970s. A database is presented that combines satellite observations with daily sea ice parcel drift tracks. This dataset consists of daily time series of sea ice parcel locations, sea ice and snow conditions, and atmospheric states. This has multiple applications for the scientific community that can shed light on the atmosphere-snow-sea ice interactions in the changing Arctic environment.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Related subject area
Discipline: Sea ice | Subject: Remote Sensing
Pan-Arctic sea ice concentration from SAR and passive microwave
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
The AutoICE Challenge
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Snow Depth Estimation on Lead-less Landfast ice using Cryo2Ice satellite observations
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
The Variability of CryoSat-2 derived Sea Ice Thickness introduced by modelled vs. empirical snow thickness, sea ice density and water density
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Aerial observations of sea ice breakup by ship waves
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Inter-comparison and evaluation of Arctic sea ice type products
A simple model for daily basin-wide thermodynamic sea ice thickness growth retrieval
Ice ridge density signatures in high-resolution SAR images
Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Quantifying the effects of background concentrations of crude oil pollution on sea ice albedo
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements
Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Satellite altimetry detection of ice-shelf-influenced fast ice
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning
An improved sea ice detection algorithm using MODIS: application as a new European sea ice extent indicator
Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024, https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Short summary
Here, we present ASIP: a new and comprehensive deep-learning-based methodology to retrieve high-resolution sea ice concentration with accompanying well-calibrated uncertainties from satellite-based active and passive microwave observations at a pan-Arctic scale for all seasons. In a comparative study against pan-Arctic ice charts and well-established passive-microwave-based sea ice products, we show that ASIP generalizes well to the pan-Arctic region.
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024, https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023, https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Short summary
To alleviate tedious manual image annotations for training deep learning (DL) models in floe instance segmentation, we employ a classical image processing technique to automatically label floes in images. We then apply a DL semantic method for fast and adaptive floe instance segmentation from high-resolution airborne and satellite images. A post-processing algorithm is also proposed to refine the segmentation and further to derive acceptable floe size distributions at local and global scales.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
EGUsphere, https://doi.org/10.5194/egusphere-2023-2509, https://doi.org/10.5194/egusphere-2023-2509, 2023
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice) but estimating sea surface height from lead-less land-fast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in-situ after adjusting for tides. Realistic snow depths are retrieved but difference in roughness, satellite footprints and snow geophysical properties are identified as challenges.
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-142, https://doi.org/10.5194/tc-2023-142, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Melt water puddles, or melt ponds on top of the Arctic sea ice are a good measure of the Arctic climate state. In the context of the recent climate warming, the Arctic has warmed about 4 times faster than the rest of the world, and a long-term dataset of the melt pond fraction is needed to be able to model the future development of the Arctic climate. We present such a dataset, produce 2002–2023 trends and highlight a potential melt regime shift with drastic regional trends of +20 % per decade.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023, https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Short summary
During winter, storms entering the Arctic region can bring warm air into the cold environment. Strong increases in air temperature modify the characteristics of the Arctic snow and ice cover. The Arctic sea ice cover can be monitored by satellites observing the natural emission of the Earth's surface. In this study, we show that during warm air intrusions the change in the snow characteristics influences the satellite-derived sea ice cover, leading to a false reduction of the estimated ice area.
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-122, https://doi.org/10.5194/tc-2023-122, 2023
Revised manuscript accepted for TC
Short summary
Short summary
To derive sea ice thickness (SIT) from satellite freeboard (FB) observations, assumptions about snow thickness, snow density, sea ice density and water density are needed. These parameters are impossible to observe alongside FB, so many existing products use empirical values. In this study, modeled values are used instead. The modeled values and otherwise commonly used empirical values are evaluated against in situ observations. In a further analysis, the influence on the SIT is quantified.
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023, https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Short summary
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate parameterization of Arctic leads. For the first time, we applied the 30 m resolution data from the Thermal Infrared Spectrometer (TIS) on the emerging SDGSAT-1 to detect Arctic leads. Validation with Sentinel-2 data shows high accuracy for the three TIS bands. Compared to MODIS, the TIS presents more narrow leads, demonstrating its great potential for observing previously unresolvable Arctic leads.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023, https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023, https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Short summary
We try to explore the application of SGDR data in polar sea ice thickness. Through this study, we find that it seems difficult to obtain reasonable results by using conventional methods. So we use the 15 lowest points per 25 km to estimate SSHA to retrieve more reasonable Arctic radar freeboard and thickness. This study also provides reference for reprocessing L1 data. We will release products that are more reasonable and suitable for polar sea ice thickness retrieval to better evaluate HY-2B.
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Short summary
Sea ice maps are produced to cover the MOSAiC Arctic expedition (2019–2020) and divide sea ice into scientifically meaningful classes. We use a high-resolution X-band synthetic aperture radar dataset and show how image brightness and texture systematically vary across the images. We use an algorithm that reliably corrects this effect and achieve good results, as evaluated by comparisons to ground observations and other studies. The sea ice maps are useful as a basis for future MOSAiC studies.
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023, https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023, https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Short summary
The reflectivity of sea ice is crucial for modern climate change and for monitoring sea ice from satellites. The reflectivity depends on the angle at which the ice is viewed and the angle illuminated. The directional reflectivity is calculated as a function of viewing angle, illuminating angle, thickness, wavelength and surface roughness. Roughness cannot be considered independent of thickness, illumination angle and the wavelength. Remote sensors will use the data to image sea ice from space.
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Short summary
Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. This study gives a systematic inter-comparison and evaluation of eight SITY products. Main results include differences in SITY products being significant, with average Arctic multiyear ice extent up to 1.8×106 km2; Ku-band scatterometer SITY products generally performing better; and factors such as satellite inputs, classification methods, training datasets and post-processing highly impacting their performance.
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022, https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Short summary
A prominent part of the polar climate system is sea ice, a better understanding of which would lead to better understanding Earth's climate. Newly published methods for observing the temperature of sea ice have made possible a new method for estimating daily sea ice thickness growth from space using an energy balance. The method compares well with existing sea ice thickness observations.
Mikko Lensu and Markku Similä
The Cryosphere, 16, 4363–4377, https://doi.org/10.5194/tc-16-4363-2022, https://doi.org/10.5194/tc-16-4363-2022, 2022
Short summary
Short summary
Ice ridges form a compressing ice cover. From above they appear as walls of up to few metres in height and extend even kilometres across the ice. Below they may reach tens of metres under the sea surface. Ridges need to be observed for the purposes of ice forecasting and ice information production. This relies mostly on ridging signatures discernible in radar satellite (SAR) images. New methods to quantify ridging from SAR have been developed and are shown to agree with field observations.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Benjamin Heikki Redmond Roche and Martin D. King
The Cryosphere, 16, 3949–3970, https://doi.org/10.5194/tc-16-3949-2022, https://doi.org/10.5194/tc-16-3949-2022, 2022
Short summary
Short summary
Sea ice is bright, playing an important role in reflecting incoming solar radiation. The reflectivity of sea ice is affected by the presence of pollutants, such as crude oil, even at low concentrations. Modelling how the brightness of three types of sea ice is affected by increasing concentrations of crude oils shows that the type of oil, the type of ice, the thickness of the ice, and the size of the oil droplets are important factors. This shows that sea ice is vulnerable to oil pollution.
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Short summary
Arctic sea ice has a distribution of ice sizes that provides insight into the physics of the ice. We examine this distribution from satellite imagery from 1999 to 2014 in the Canada Basin. We find that it appears as a power law whose power becomes less negative with increasing ice concentrations and has a seasonality tied to that of ice concentration. Results suggest ice concentration be considered in models of this distribution and are important for understanding sea ice in a warming Arctic.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022, https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Short summary
Ice motion can be used to better understand how weather and climate change affect the ice. Antarctic sea ice extent has shown large variability over the observed period, and dynamical features may also have changed. Our method allows for the quantification of rotational motion caused by wind and how this may have changed with time. Cyclonic motion dominates the Atlantic sector, particularly from 2015 onwards, while anticyclonic motion has remained comparatively small and unchanged.
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022, https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022, https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary
Short summary
This study uses radar satellite data categorized into different sea ice types to detect ice deformation, which is significant for climate science and ship navigation. For this, we examine radar signal differences of sea ice between two similar satellite sensors and show an optimal way to apply categorization methods across sensors, so more data can be used for this purpose. This study provides a basis for future reliable and constant detection of ice deformation remotely through satellite data.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021, https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
Short summary
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker and, in particular conditions, to have a loose mass of platelet ice crystals called a sub‐ice platelet layer beneath. This causes the sea ice freeboard to stand higher above sea level. In this study, we demonstrate for the first time that the signature of ice shelf meltwater in the surface ocean manifesting as higher sea ice freeboard in McMurdo Sound is detectable from space using satellite technology.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Zhixiang Yin, Xiaodong Li, Yong Ge, Cheng Shang, Xinyan Li, Yun Du, and Feng Ling
The Cryosphere, 15, 2835–2856, https://doi.org/10.5194/tc-15-2835-2021, https://doi.org/10.5194/tc-15-2835-2021, 2021
Short summary
Short summary
MODIS thermal infrared (TIR) imagery provides promising data to study the rapid variations in the Arctic turbulent heat flux (THF). The accuracy of estimated THF, however, is low (especially for small leads) due to the coarse resolution of the MODIS TIR data. We train a deep neural network to enhance the spatial resolution of estimated THF over leads from MODIS TIR imagery. The method is found to be effective and can generate a result which is close to that derived from Landsat-8 TIR imagery.
Joan Antoni Parera-Portell, Raquel Ubach, and Charles Gignac
The Cryosphere, 15, 2803–2818, https://doi.org/10.5194/tc-15-2803-2021, https://doi.org/10.5194/tc-15-2803-2021, 2021
Short summary
Short summary
We describe a new method to map sea ice and water at 500 m resolution using data acquired by the MODIS sensors. The strength of this method is that it achieves high-accuracy results and is capable of attenuating unwanted resolution-breaking effects caused by cloud masking. Our resulting March and September monthly aggregates reflect the loss of sea ice in the European Arctic during the 2000–2019 period and show the algorithm's usefulness as a sea ice monitoring tool.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021, https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Short summary
Convergent sea ice motion produces a thick ice cover through ridging. We studied sea ice deformation derived from high-resolution satellite imagery and related it to the corresponding thickness change. We found that deformation explains the observed dynamic thickness change. We show that deformation can be used to model realistic ice thickness distributions. Our results revealed new relationships between thickness redistribution and deformation that could improve sea ice models.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Stephan Paul and Marcus Huntemann
The Cryosphere, 15, 1551–1565, https://doi.org/10.5194/tc-15-1551-2021, https://doi.org/10.5194/tc-15-1551-2021, 2021
Short summary
Short summary
Cloud cover in the polar regions is difficult to identify at night when using only thermal-infrared data. This is due to occurrences of warm clouds over cold sea ice and cold clouds over warm sea ice. Especially the standard MODIS cloud mask frequently tends towards classifying open water and/or thin ice as cloud cover. Using a neural network, we present an improved discrimination between sea-ice, open-water and/or thin-ice, and cloud pixels in nighttime MODIS thermal-infrared satellite data.
Cited articles
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J.,
Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J.,
Storelvmo, T., Thorne, P., Trewin, B., Achutarao, K., Adhikary, B., Allan,
R., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J. G.,
Cassou, C., Cherchi, A., Collins, W. D., Collins, W. J., Connors, S., Corti,
S., Cruz, F., Dentener, F. J., Dereczynski, C., Luca, A. D., Niang, A. D.,
Doblas-Reyes, P., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V.,
Fischer, E. M., Forster, P., Fox-Kemper, B., Fuglestvedt, J., Fyfe, J.,
Gillett, N., Goldfarb, L., Gorodetskaya, I., Gutierrez, J. M., Hamdi, R.,
Hawkins, E., Hewitt, H., Hope, P., Islam, A. S., Jones, C., Kaufmann, D.,
Kopp, R., Kosaka, Y., Kossin, J., Krakovska, S., Li, J., Lee, J.-Y.,
Masson-Delmotte, V., Mauritsen, T., Maycock, T., Meinshausen, M., ki Min, S.,
Duc, T. N., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasighe, R.,
Ruane, A., Ruiz, L., Sallée, J.-B., Samset, B. H., Sathyendranath, S.,
Monteiro, P. S., Seneviratne, S. I., Sörensson, A. A., Szopa, S.,
Takayabu, I., Treguier, A.-M., van den Hurk, B., Vautard, R., Schuckmann,
K. V., Zaehle, S., Zhang, X., and Zickfeld, K.: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change; Technical
Summary, in: The Intergovernmental Panel on Climate Change AR6, edited by
Masson-Delmotte, V., Zhai, P., Pirani, A., Conners, S., Péan, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu,
R., and Zhou, B., https://elib.dlr.de/137584/ (last access: February 2022), 2021. a
Armon, M., Dente, E., Shmilovitz, Y., Mushkin, A., Cohen, T. J., Morin, E., and
Enzel, Y.: Determining Bathymetry of Shallow and Ephemeral Desert
Lakes Using Satellite Imagery and Altimetry, Geophys. Res.
Lett., 47, e2020GL087367, https://doi.org/10.1029/2020GL087367, 2020. a
Arntsen, A. E., Song, A. J., Perovich, D. K., and Richter-Menge, J. A.:
Observations of the Summer Breakup of an Arctic Sea Ice Cover,
Geophys. Res. Lett., 42, 8057–8063, https://doi.org/10.1002/2015GL065224,
2015. a
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken,
G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F.,
Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K.,
Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka,
A., Mitchell, B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S.,
Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens,
M., and Swift, J. H.: Massive Phytoplankton Blooms Under Arctic Sea Ice,
Science, 336, 1408–1408, https://doi.org/10.1126/science.1215065, 2012. a
Babbel, B. J., Parrish, C. E., and Magruder, L. A.: ICESat-2 Elevation
Retrievals in Support of Satellite-Derived Bathymetry for Global
Science Applications, Geophys. Res. Lett., 48, e2020GL090629,
https://doi.org/10.1029/2020GL090629, 2021. a
Ballinger, T., Overland, J., Wang, M., Bhatt, U., Hanna, E., Hanssen-Bauer, I.,
Kim, S.-J., Thoman, R., and Walsh, J.: Arctic report card 2020: surface air
temperature, United States, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Physical Sciences Laboratory (U.S.), Cooperative Institute for Research in the Atmosphere, Fort Collins, Colo., https://doi.org/10.25923/gcw8-2z06, 2020. a
Bourke, R. H. and Garrett, R. P.: Sea ice thickness distribution in the Arctic
Ocean, Cold Reg. Sci. Technol., 13, 259–280, 1987. a
Breivik, L.-A., Eastwood, S., and Lavergne, T.: Use of C-Band Scatterometer
for Sea Ice Edge Identification, IEEE T. Geosci.
Remote, 50, 2669–2677, https://doi.org/10.1109/TGRS.2012.2188898, 2012. a, b
Buckley, E. M.: 2020 Multiyear Ice Region Summer Melt Data, Zenodo [data set], https://doi.org/10.5281/zenodo.7568995, 2023. a
Buckley, E. and Eun, J.: ellenbuckley/MeltEvolution: R1 Melt Evolution Repo (firstrealease), Zenodo [code], https://doi.org/10.5281/zenodo.8280332, 2023. a
Comiso, J. C.: A rapidly declining perennial sea ice cover in the Arctic,
Geophys. Res. Lett., 29, 17–20, https://doi.org/10.1029/2002GL015650, 2002. a
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated
decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, e2022GL100272, https://doi.org/10.1029/2022GL100272, 2008. a
Curcio, J. A. and Petty, C. C.: The Near Infrared Absorption Spectrum of
Liquid Water, J. Opt. Soc. Am., 41, 302–304, https://doi.org/10.1364/JOSA.41.000302, 1951. a
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea Ice-Albedo Climate
Feedback Mechanism, J. Climate, 8, 240–247,
https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995. a
Druckenmiller, M. L., Moon, T. A., Thoman, R. L., Ballinger, T. J., Berner,
L. T., Bernhard, G. H., Bhatt, U. S., Bjerke, J. W., Box, J. E., Brown, R.,
Cappelen, J., Christiansen, H. H., Decharme, B., Derksen, C., Divine, D., Drozdov, D. S., Chereque, A. E., Epstein, H. E., Farquharson, L.M., Farrell, S. L., Fausto, R.S., Fettweis, X., Fioletov, V.E., Forbes, B.C., Frost, G. V., Gargulinski, E., Gerland, S., Goetz, S.J., Grabinski, Z., Grooß, J.-U., Haas, C., Hanna, E., Hanssen-Bauer, I., Hendricks, S., Holmes, R. M., Ialongo, I., Isaksen, K., Jain, P., Johnsen, B., Kaleschke, L., Kholodov, A. L., Kim, S.-J., Korsgaard, N. J., Labe, Z., Lakkala, K., Lara, M. J., Loomis, B., Luojus, K., Macander, M.J., Malkova, G.V., Mankoff, K. D., Manney, G.L., McClelland, J. W., Meier, W. N., Mote, T., Mudryk, L., Müller, R., Nyland, K. E., Overland, J. E., Park, T., Pavlova, O., Perovich, D., Petty, A., Phoenix, G. K., Raynolds, M.K., Reijmer, C.H., Richter-Menge, J., Ricker, R., Romanovsky, V. E., Scott, L., Shapiro, H., Shiklomanov, A. I., Shiklomanov, N.I., P. P. Smeets, C. J., Smith, S.L., Soja, A., M. Spencer, R. G., Starkweather, S., Streletskiy, D. A., Suslova, A., Svendby, T., Tank, S. E., Tedesco, M., Tian-Kunze, X., Timmermans, M.-L., Tømmervik, H., Tretiakov, M., Tschudi, M., Vakhutinsky, S., As, D. van, W. van de Wal, R. S., Veraverbeke, S., Walker, D. A., Walsh, J.E., Wang, M., Webster, M., Winton, Ø., Wood, K., York, A., and Ziel, R.: The Arctic, B. Am. Meteorol. Soc., 102,
S263–S316, 2021. a, b, c
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012. a, b, c, d
Duncan, K. and Farrell, S. L.: Determining Variability in Arctic Sea Ice
Pressure Ridge Topography With ICESat-2, Geophys. Res. Lett., 49,
e2022GL100272, https://doi.org/10.1029/2022GL100272, 2022. a
Ebert, E. E. and Curry, J. A.: An Intermediate One-Dimensional Thermodynamic
Sea Ice Model for Investigating Ice-Atmosphere Interactions, J.
Geophys. Res.-Oceans, 98, 10085–10109, https://doi.org/10.1029/93JC00656,
1993. a
Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A., and Frey,
K.: Hydraulic Controls of Summer Arctic Pack Ice Albedo, J.
Geophys. Res.-Oceans, 109, C08007, https://doi.org/10.1029/2003JC001989, 2004. a, b, c
ESA: Copernicus Sentinel-2, MSI Level-1C TOA Reflectance Product, Collection 1. European Space Agency [data set], https://doi.org/10.5270/S2_-742ikth, 2021. a
Fetterer, F., Knowles, K., Meier, W., and Savoie, M., and Windnagel, A.: Sea
Ice Index, Version 3, National Snow & Ice Data Center [data set], https://doi.org/10.7265/N5K072F8, 2017. a, b, c, d
Flocco, D., Feltham, D. L., and Turner, A. K.: Incorporation of a Physically
Based Melt Pond Scheme into the Sea Ice Component of a Climate Model, J. Geophys. Res.-Oceans, 115, C08012, https://doi.org/10.1029/2009JC005568, 2010. a, b
Flocco, D., Feltham, D. L., Bailey, E., and Schroeder, D.: The Refreezing of
Melt Ponds on Arctic Sea Ice, J. Geophys. Res.-Oceans,
120, 647–659, https://doi.org/10.1002/2014JC010140, 2015. a, b
Fricker, H. A., Arndt, P., Brunt, K. M., Datta, R. T., Fair, Z., Jasinski,
M. F., Kingslake, J., Magruder, L. A., Moussavi, M., and Pope, A.: ICESat-2
Meltwater Depth Estimates: Application to Surface Melt on Amery
Ice Shelf, East Antarctica, Geophys. Res. Lett., 48,
e2020GL090550, https://doi.org/10.1029/2020GL090550, 2021. a, b
Grenfell, T. C. and Perovich, D. K.: Seasonal and Spatial Evolution of Albedo
in a Snow-Ice-Land-Ocean Environment, J. Geophys. Res.-Oceans, 109, C01001, https://doi.org/10.1029/2003JC001866, 2004. a
Herzfeld, U. C., Trantow, T. M., Harding, D., and Dabney, P. W.:
Surface-Height Determination of Crevassed
Glaciers – Mathematical Principles of an Autoadaptive
Density-Dimension Algorithm and Validation Using ICESat-2 Simulator
(SIMPL) Data, IEEE T. Geosci. Remote, 55,
1874–1896, https://doi.org/10.1109/TGRS.2016.2617323, 2017. a, b, c, d
Herzfeld, U., Hayes, A., Palm, S., Hancock, D., Vaughan, M., and Barbieri, K.:
Detection and Height Measurement of Tenuous Clouds and Blowing Snow in
ICESat-2 ATLAS Data, Geophys. Res. Lett., 48, e2021GL093473, https://doi.org/10.1029/2021GL093473,
2021a. a
Herzfeld, U. C., Trantow, T., Lawson, M., Hans, J., and Medley, G.: Surface
heights and crevasse morphologies of surging and fast-moving glaciers from
ICESat-2 laser altimeter data-Application of the density-dimension algorithm
(DDA-ice) and evaluation using airborne altimeter and Planet SkySat data,
Science of Remote Sensing, 3, 100013, https://doi.org/10.1016/j.srs.2020.100013, 2021b. a
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.:
Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact
of Melt Ponds and Aerosols on Arctic Sea Ice, J. Climate,
25, 1413–1430, https://doi.org/10.1175/JCLI-D-11-00078.1, 2012. a, b, c
Horvat, C., Flocco, D., Rees Jones, D., Roach, L., and Golden, K.: The Effect
of Melt Pond Geometry on the Distribution of Solar Energy Under First-Year
Sea Ice, Geophys. Res. Lett., 47, e2019GL085956, https://doi.org/10.1029/2019GL085956, 2020. a
Hunke, E. C., Hebert, D. A., and Lecomte, O.: Level-Ice Melt Ponds in the Los
Alamos Sea Ice Model, CICE, Ocean Model., 71, 26–42,
https://doi.org/10.1016/j.ocemod.2012.11.008, 2013. a, b
Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., Polashenski, C., Perovich, D., Zege, E., Malinka, A., Prikhach, A., and Katsev, I.: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 1: Validation against in situ, aerial, and ship cruise data, The Cryosphere, 9, 1551–1566, https://doi.org/10.5194/tc-9-1551-2015, 2015. a
Kwok, R.: Declassified High-Resolution Visible Imagery for Arctic Sea Ice
Investigations: An Overview, Remote Sens. Environ., 142, 44–56,
https://doi.org/10.1016/j.rse.2013.11.015, 2014. a
Kwok, R., Markus, T., Kurtz, N., Petty, A., Neumann, T., Farrell, S.,
Cunningham, G., Hancock, D., Ivanoff, A., and Wimert, J.: Surface height and
sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and
early results, J. Geophys. Res.-Oceans, 124, 6942–6959,
2019. a
Kwok, R., Petty, A. A., Bagnardi, M., Kurtz, N. T., Cunningham, G. F., Ivanoff, A., and Kacimi, S.: Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products, The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, 2021a. a
Kwok, R., Petty, A. A., Cunningham, G., Markus, T., Hancock, D., Ivanoff, A.,
Wimert, J., Bagnardi, M., Kurtz, N., and and the ICESat-2 Science Team:
ATLAS/ICESat-2 L3A Sea Ice Height, Version 5, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set]
https://doi.org/10.5067/ATLAS/ATL07.005, 2021b. a, b, c, d
Landy, J., Ehn, J., Shields, M., and Barber, D.: Surface and melt pond
evolution on landfast first-year sea ice in the Canadian Arctic Archipelago,
J. Geophys. Res.-Oceans, 119, 3054–3075, 2014. a
Lee, S., Stroeve, J., Tsamados, M., and Khan, A. L.: Machine learning
approaches to retrieve pan-Arctic melt ponds from visible satellite imagery,
Remote Sens. Environ., 247, 111919, https://doi.org/10.1016j.rse.2020.111919, 2020. a
Li, Q., Zhou, C., Zheng, L., Liu, T., and Yang, X.: Monitoring evolution of
melt ponds on first-year and multiyear sea ice in the Canadian Arctic
Archipelago with optical satellite data, Ann. Glaciol., 61, 154–163,
2020. a
Light, B., Grenfell, T. C., and Perovich, D. K.: Transmission and Absorption of
Solar Radiation by Arctic Sea Ice during the Melt Season, J.
Geophys. Res.-Oceans, 113, C03023, https://doi.org/10.1029/2006JC003977, 2008. a, b
Light, B., Smith, M. M., Perovich, D. K., Webster, M. A., Holland, M. M.,
Linhardt, F., Raphael, I. A., Clemens-Sewall, D., Macfarlane, A. R., Anhaus,
P., and Bailey, D.: Arctic sea ice albedo: Spectral composition, spatial
heterogeneity, and temporal evolution observed during the MOSAiC drift, Elem.
Sci. Anth., 10, 000103, https://doi.org/10.1525/elementa.2021.000103, 2022. a
Lu, X., Hu, Y., Yang, Y., Vaughan, M., Palm, S., Trepte, C., Omar, A., Lucker,
P., and Baize, R.: Enabling value added scientific applications of ICESat-2
data with effective removal of afterpulses, Earth and Space Science, 8,
e2021EA001729, https://doi.org/10.1029/2021EA001729, 2021. a
Mäkynen, M., Kern, S., Rösel, A., and Pedersen, L. T.: On the
Estimation of Melt Pond Fraction on the Arctic Sea Ice With ENVISAT
WSM Images, IEEE T. Geosci. Remote, 52,
7366–7379, https://doi.org/10.1109/TGRS.2014.2311476, 2014. a
Markus, T., Cavalieri, D. J., and Ivanoff, A.: The Potential of Using
Landsat 7 ETM+ for the Classification of Sea-Ice Surface Conditions
during Summer, Ann. Glaciol., 34, 415–419,
https://doi.org/10.3189/172756402781817536, 2002. a
Markus, T., Cavalieri, D. J., Tschudi, M. A., and Ivanoff, A.: Comparison of
Aerial Video and Landsat 7 Data over Ponded Sea Ice, Remote Sens.
Environ., 86, 458–469, https://doi.org/10.1016/S0034-4257(03)00124-X, 2003. a
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith,
B., Yang, Y., and Zwally, J.: The Ice, Cloud, and Land Elevation
Satellite-2 (ICESat-2): Science Requirements, Concept, and
Implementation, Remote Sens. Environ., 190, 260–273,
https://doi.org/10.1016/j.rse.2016.12.029, 2017. a, b
McFeeters, S. K.: The Use of the Normalized Difference Water Index
(NDWI) in the Delineation of Open Water Features, Int. J.
Remote Sens., 17, 1425–1432, https://doi.org/10.1080/01431169608948714, 1996. a, b
Mobley, C. D.: The Optical Properties of Water, in: Handbook of Optics Vol.
I, McGraw-Hill, New York, NY, USA, 43.3–43.56, ISBN 0-07-047740-X, 1995. a
Morassutti, M. P. and Ledrew, E. F.: Albedo and Depth of Melt Ponds on
Sea-Ice, Int. J. Climatol., 16, 817–838,
https://doi.org/10.1002/(SICI)1097-0088(199607)16:7<817::AID-JOC44>3.0.CO;2-5, 1996. a, b, c
Mortin, J., Svensson, G., Graversen, R. G., Kapsch, M.-L., Stroeve, J. C., and
Boisvert, L. N.: Melt Onset over Arctic Sea Ice Controlled by Atmospheric
Moisture Transport, Geophys. Res. Lett., 43, 6636–6642,
https://doi.org/10.1002/2016GL069330, 2016. a
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner,
A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W.,
Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder,
L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and
Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite
– 2 Mission: A Global Geolocated Photon Product Derived from
the Advanced Topographic Laser Altimeter System, Remote Sens.
Environ., 233, 111325, https://doi.org/10.1016/j.rse.2019.111325, 2019. a, b, c
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K.,
Gibbons, A., Lee, J., Luthcke, S. B., and Rebold, T.: ATLAS/ICESat-2
L2A Global Geolocated Photon Data, Version 5, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/ATLAS/ATL03.005, 2021. a, b, c, d
Newton, R., Pfirman, S., Tremblay, L. B., and DeRepentigny, P.: Defining the
“ice shed” of the Arctic Ocean's Last Ice Area and its future evolution,
Earth's Future, 9, e2021EF001988, https://doi.org/10.1029/2021EF001988, 2021. a
Niehaus, H., Spreen, G., Birnbaum, G., Istomina, L., Jäkel, E., Linhardt,
F., Neckel, N., Fuchs, N., Nicolaus, M., Sperzel, T., Tao, R., Webster, M., and Wright N.: Sea Ice Melt
Pond Fraction Derived From Sentinel-2 Data: Along the MOSAiC Drift and
Arctic-Wide, Geophys. Res. Lett., 50, e2022GL102102, https://doi.org/10.1029/2022GL102102, 2023. a, b
OSI-SAF: Global Sea Ice Type (netCDF) – Multimission, EUMETSAT SAF on Ocean and Sea Ice [data set], https://doi.org/10.15770/EUM_SAF_OSI_NRT, 2022. a, b
Palm, S. P., Yang, Y., Herzfeld, U., Hancock, D., Hayes, A., Selmer, P., Hart,
W., and Hlavka, D.: ICESat-2 Atmospheric Channel Description, Data
Processing and First Results, Earth and Space Science, 8,
e2020EA001470, https://doi.org/10.1029/2020EA001470, 2021. a, b
Parkinson, C. L. and Comiso, J. C.: On the 2012 Record Low Arctic Sea Ice
Cover: Combined Impact of Preconditioning and an August Storm,
Geophys. Res. Lett., 40, 1356–1361, https://doi.org/10.1002/grl.50349, 2013. a
Parrish, C. E., Magruder, L. A., Neuenschwander, A. L., Forfinski-Sarkozi,
N., Alonzo, M., and Jasinski, M.: Validation of ICESat-2 ATLAS Bathymetry
and Analysis of ATLAS's Bathymetric Mapping Performance, Remote
Sensing, 11, 1634, https://doi.org/10.3390/rs11141634, 2019. a, b, c
Pedersen, C. A., Roeckner, E., Lüthje, M., and Winther, J.-G.: A new sea
ice albedo scheme including melt ponds for ECHAM5 general circulation model,
J. Geophys. Res.-Atmos., 114, D08101, https://doi.org/10.1029/2008JD010440, 2009. a
Perovich, D. K. and Polashenski, C.: Albedo Evolution of Seasonal Arctic
Sea Ice, Geophys. Res. Lett., 39, L08501, https://doi.org/10.1029/2012GL051432, 2012. a, b, c, d
Perovich, D. K., Grenfell, T. C., Light, B., and Hobbs, P. V.: Seasonal
Evolution of the Albedo of Multiyear Arctic Sea Ice, J.
Geophys. Res.-Oceans, 107, 8044, https://doi.org/10.1029/2000JC000438,
2002a. a
Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A. A., Divine, D.,
Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Ricker, R.,
Tian-Kunze, X., Wood, K., and Webster, M.: Arctic Report Card 2020:
Sea Ice, United States. National Oceanic and Atmospheric Administration. Office of Oceanic and Atmospheric Research, Physical Sciences Laboratory (U.S.), Cooperative Institute for Research in the Atmosphere (Fort Collins, Colo.), https://doi.org/10.25923/N170-9H57, 2020. a, b
Perovich, D., Smith, M., Light, B., and Webster, M.: Meltwater sources and sinks for multiyear Arctic sea ice in summer, The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021, 2021. a, b
Petrich, C., Eicken, H., Polashenski, C. M., Sturm, M., Harbeck, J. P.,
Perovich, D. K., and Finnegan, D. C.: Snow Dunes: A Controlling Factor of
Melt Pond Distribution on Arctic Sea Ice, J. Geophys.
Res.-Oceans, 117, C09029, https://doi.org/10.1029/2012JC008192, 2012. a
Rösel, A. and Kaleschke, L.: Exceptional Melt Pond Occurrence in the Years
2007 and 2011 on the Arctic Sea Ice Revealed from MODIS Satellite
Data, J. Geophys. Res.-Oceans, 117, C05018,
https://doi.org/10.1029/2011JC007869, 2012. a
Rösel, A., Kaleschke, L., and Birnbaum, G.: Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network, The Cryosphere, 6, 431–446, https://doi.org/10.5194/tc-6-431-2012, 2012. a
Scharien, R. K., Segal, R., Nasonova, S., Nandan, V., Howell, S. E., and Haas,
C.: Winter Sentinel-1 backscatter as a predictor of spring Arctic sea ice
melt pond fraction, Geophys. Res. Lett., 44, 12–262, 2017. a
Scott, F. and Feltham, D. L.: A Model of the Three-Dimensional Evolution of
Arctic Melt Ponds on First-Year and Multiyear Sea Ice, J.
Geophys. Res.-Oceans, 115, C12064, https://doi.org/10.1029/2010JC006156, 2010. a, b, c, d
Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., and Li, X.:
Assessment of Sea Ice Extent in CMIP6 With Comparison to
Observations and CMIP5, Geophys. Res. Lett., 47,
e2020GL087965, https://doi.org/10.1029/2020GL087965, 2020. a
Shupe, M. D., Rex, M., Dethloff, K., Damm, E., Fong, A. A., Gradinger, R.,
Heuze, C., Loose, B., Makarov, A., Maslowski, W., Nicolaus, M., Perovich, D.,
Rabe, B., Rinke, A., Sokolov, V., and Sommerfeld, A.: The MOSAiC
Expedition: A Year Drifting with the Arctic Sea Ice, Arctic Report
Card, United States, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Physical Sciences Laboratory (U.S.), Cooperative Institute for Research in the Atmosphere (Fort Collins, Colo.), https://doi.org/10.25923/9g3v-xh92, 2020. a
Sivaraj, K., Solander, K., Abolt, C., Hunke, E., and Whelsky, A.:
Characterization of Arctic Sea Ice Melt Pond Dynamics with Remote
Sensing, in: American Geophysical Union Fall Meeting, C22A-46, 12–16 December 2022, Chicago, IL, USA, https://ui.adsabs.harvard.edu/abs/2022AGUFM.C22A..46S/abstract (last access: February 2022), 2022. a
Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S., Brunt,
K. M., Csatho, B., Harbeck, K., Huth, A., Neumann, T., Nilsson, J., and
Siegfried, M. R.: Land Ice Height-Retrieval Algorithm for NASA's
ICESat-2 Photon-Counting Laser Altimeter, Remote Sens. Environ.,
233, 111352, https://doi.org/10.1016/j.rse.2019.111352, 2019. a
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of Rapid Sea
Ice Change: An Inter-Hemispheric Seasonal Comparison, Geophys.
Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874, 2012. a, b
Stroeve, J., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in
Arctic melt season and implications for sea ice loss, Geophys. Res.
Lett., 41, 1216–1225, 2014. a
Taylor, P. D. and Feltham, D. L.: A Model of Melt Pond Evolution on Sea Ice,
J. Geophys. Res.-Oceans, 109, C12007, https://doi.org/10.1029/2004JC002361,
2004. a
Thomas, N., Pertiwi, A. P., Traganos, D., Lagomasino, D., Poursanidis, D.,
Moreno, S., and Fatoyinbo, L.: Space-Borne Cloud-Native Satellite-Derived
Bathymetry (SDB) Models Using ICESat-2 And Sentinel-2, Geophys.
Res. Lett., 48, e2020GL092170, https://doi.org/10.1029/2020GL092170, 2021. a
Tilling, R., Kurtz, N. T., Bagnardi, M., Petty, A. A., and Kwok, R.: Detection
of Melt Ponds on Arctic Summer Sea Ice From ICESat-2, Geophys.
Res. Lett., 47, e2020GL090644, https://doi.org/10.1029/2020GL090644, 2020. a, b, c, d
Valgur, M., Jonas, Kersten, Delucchi, L., Baier, G., Malte, unnic, Staniewicz, S., Leonard Kioi kinyanjui, Bahr, V., Salembier, P., martinber, Keller, G., dwlsalmeida, Castro, C., and Raspopov, A.: sentinelsat/sentinelsat: v0.13 (v0.13), Zenodo [code], https://doi.org/10.5281/zenodo.2629555, 2019.
a
Vermote, E. and Wolfe, R.: MODIS/Terra Surface Reflectance Daily L2G Global 250m SIN Grid V061, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD09GQ.061, 2021. a
Wang, M. and Overland, J. E.: A sea ice free summer Arctic within 30 years?,
Geophys. Res. Lett., 36, L07502, https://doi.org/10.1029/2009GL037820, 2009. a
Wang, M. and Overland, J. E.: A Sea Ice Free Summer Arctic within 30 Years:
An Update from CMIP5 Models, Geophys. Res. Lett., 39, L18501,
https://doi.org/10.1029/2012GL052868, 2012. a
Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-Menge, J. A.,
Polashenski, C. M., and Light, B.: Seasonal Evolution of Melt Ponds on
Arctic Sea Ice, J. Geophys. Res.-Oceans, 120, 5968–5982,
https://doi.org/10.1002/2015JC011030, 2015. a
Webster, M., Rigor, I., and Wright, N.: Observing Arctic Sea Ice,
Oceanography, 35, 29–37, https://doi.org/10.5670/oceanog.2022.115, 2022a. a
Webster, M. A., Holland, M., Wright, N. C., Hendricks, S., Hutter, N., Itkin,
P., Light, B., Linhardt, F., Perovich, D. K., Raphael, I. A., Smith, M. M.,
von Albedyll, L., and Zhang, J.: Spatiotemporal Evolution of Melt Ponds on
Arctic Sea Ice: MOSAiC Observations and Model Results, Elementa:
Science of the Anthropocene, 10, 000072, https://doi.org/10.1525/elementa.2021.000072,
2022b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Wright, N. C. and Polashenski, C. M.: How machine learning and high-resolution
imagery can improve melt pond retrieval from MODIS over current spectral
unmixing techniques, J. Geophys. Res.-Oceans, 125,
e2019JC015569, https://doi.org/10.1029/2019JC015569, 2020. a
Wright, N. C., Polashenski, C. M., McMichael, S. T., and Beyer, R. A.: Observations of sea ice melt from Operation IceBridge imagery, The Cryosphere, 14, 3523–3536, https://doi.org/10.5194/tc-14-3523-2020, 2020. a
Yackel, J., Barber, D., and Hanesiak, J.: Melt ponds on sea ice in the Canadian
Archipelago: 1. Variability in morphological and radiative properties,
J. Geophys. Res.-Oceans, 105, 22049–22060, 2000. a
Zhang, J., Schweiger, A., Webster, M., Light, B., Steele, M., Ashjian, C.,
Campbell, R., and Spitz, Y.: Melt Pond Conditions on Declining Arctic
Sea Ice Over 1979–2016: Model Development, Validation,
and Results, J. Geophys. Res.-Oceans, 123, 7983–8003,
https://doi.org/10.1029/2018JC014298, 2018. a
Short summary
In this study, we use satellite observations to investigate the evolution of melt ponds on the Arctic sea ice surface. We derive melt pond depth from ICESat-2 measurements of the pond surface and bathymetry and melt pond fraction (MPF) from the classification of Sentinel-2 imagery. MPF increases to a peak of 16 % in late June and then decreases, while depth increases steadily. This work demonstrates the ability to track evolving melt conditions in three dimensions throughout the summer.
In this study, we use satellite observations to investigate the evolution of melt ponds on the...