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Abstract. We investigate sea ice conditions during the 2020
melt season, when warm air temperature anomalies in spring
led to early melt onset, an extended melt season, and the
second-lowest September minimum Arctic ice extent ob-
served. We focus on the region of the most persistent ice
cover and examine melt pond depth retrieved from Ice,
Cloud, and land Elevation Satellite-2 (ICESat-2) using two
distinct algorithms in concert with a time series of melt
pond fraction and ice concentration derived from Sentinel-
2 imagery to obtain insights about the melting ice surface
in three dimensions. We find the melt pond fraction derived
from Sentinel-2 in the study region increased rapidly in June,
with the mean melt pond fraction peaking at 16 %± 6 % on
24 June 2020, followed by a slow decrease to 8 %± 6 % by
3 July, and remained below 10 % for the remainder of the
season through 15 September. Sea ice concentration was con-
sistently high (> 95 %) at the beginning of the melt season
until 4 July, and as floes disintegrated, it decreased to a min-
imum of 70 % on 30 July and then became more variable,
ranging from 75 % to 90 % for the remainder of the melt sea-
son. Pond depth increased steadily from a median depth of
0.40 m± 0.17 m in early June and peaked at 0.97 m± 0.51 m
on 16 July, even as melt pond fraction had already started
to decrease. Our results demonstrate that by combining high-
resolution passive and active remote sensing we now have the

ability to track evolving melt conditions and observe changes
in the sea ice cover throughout the summer season.

1 Introduction

During the summer, highly reflective snow-covered Arctic
sea ice with an albedo> 0.7 decreases due to both the dis-
integration of the ice cover exposing the low-albedo open
ocean (albedo< 0.1) and melt ponding on the ice surface
(albedo 0.1 to 0.3) (Perovich and Polashenski, 2012; Light
et al., 2022). This rapid change in albedo drives the posi-
tive ice–albedo feedback (Curry et al., 1995), enabling addi-
tional uptake of shortwave radiation, enhancing melt. Melt-
water percolation through the ice freshens the underlying
ocean (Perovich et al., 2021) and further promotes ice disin-
tegration and weakening of the ice cover (Polashenski et al.,
2012; Parkinson and Comiso, 2013), making it more vul-
nerable to breakup in summer storms. The melt season con-
cludes when freezing temperatures are sustained, the timing
of which is geographically dependent. In mid-September the
Arctic-wide ice cover reaches its lowest extent. The 44-year
passive microwave record (1979–2022) reveals the Septem-
ber minimum extent is decreasing at a rate of −13 % per
decade (Fetterer et al., 2017) and this rate is accelerating
(Comiso et al., 2008). The trend is −4.8 % per decade from
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1978–1996 and −14.9 % per decade from 1997–2021 (Fet-
terer et al., 2017). Markus et al. (2009) found the melt season
lengthened at a rate of 6.4 d per decade from 1979 to 2007
based on the analysis of the timing of melt onset and freeze-
up across the Arctic. Stammerjohn et al. (2012) also found a
2-month-earlier retreat of the ice edge at the beginning of the
melt season and 1-month-later advance at the end of the melt
season in regions where sea ice decrease is fastest (based on
the 1979 to 2010 mean). Models predict an ice-free Arctic
in late summer sometime this century (e.g., Wang and Over-
land, 2012; Arias et al., 2021). With observations of a declin-
ing summer sea ice cover (Druckenmiller et al., 2021) and a
lengthening of the summer melt season (Markus et al., 2009;
Stammerjohn et al., 2012; Stroeve et al., 2014), it is essential
that we better understand changes occurring throughout the
summer on an Arctic-wide scale.

Sea ice melt processes have been studied during several
dedicated field campaigns including the Surface Heat Budget
of the Arctic Ocean (SHEBA) experiment in 1998 (Eicken
et al., 2002; Perovich et al., 2002a, b, 2003) and during the
Multidisciplinary drifting Observatory for the Study of Arc-
tic Climate (MOSAiC) expedition in 2020 (Webster et al.,
2022b), as well as through measurements on landfast ice
near Utqiaġvik, Alaska (Perovich and Polashenski, 2012;
Polashenski et al., 2012), and within the Canadian Arctic
Archipelago (Yackel et al., 2000; Landy et al., 2014). Each
of these studies describes stages of melt which we briefly
summarize here: melt onset is geographically dependent but
typically occurs in May or June (Markus et al., 2009). After
the onset of melt, peak aerial coverage of melt ponds occurs
lasting only a few days (Perovich and Polashenski, 2012).
During this time period, on level first-year ice, meltwater
spreads across the smooth ice surface, resulting in a maxi-
mum melt pond fraction as high as ∼ 50 %–70 % (Grenfell
and Perovich, 2004; Eicken et al., 2004; Polashenski et al.,
2012), while on the rough topography of multiyear ice, lat-
eral meltwater spread is prevented (Eicken et al., 2004; Pet-
rich et al., 2012), resulting in a lower melt pond aerial frac-
tion peaking at∼ 30 % (Fetterer and Untersteiner, 1998; Per-
ovich et al., 2002b). Drainage channels form on the ice to
efficiently route meltwater either to existing ponds, deepen-
ing them, or to channels that run off ice floes (Eicken et al.,
2002). Following the maximum pond fraction, the meltwa-
ter can eventually drain through pores or macroscopic flaws
that develop in the ice, and ponds decrease in area. Ponds
can melt through the sea ice and expose the open ocean, es-
pecially on thinner first-year ice (Fetterer and Untersteiner,
1998; Eicken et al., 2002; Polashenski et al., 2012). At freeze
onset, typically spanning mid-August to early September de-
pending on location (Markus et al., 2009), the pond surface
freezes, forming an ice lid that may accumulate snow (Flocco
et al., 2015).

Remote sensing observations offer the potential to expand
both the spatial and temporal scales over which summer melt
can be studied. Tracking small-scale O (10 m2) melt signa-

tures from satellite platforms has proven challenging in the
past due to limitations in resolution. Nevertheless, there have
been successful observations of the evolution of local regions
of sea ice using high-resolution declassified governmental
and commercial satellite imagery (e.g., Fetterer and Unter-
steiner, 1998; Kwok, 2014; Webster et al., 2022a, b; Niehaus
et al., 2023) The Moderate Resolution Imaging Spectrome-
ter (MODIS) (Rösel et al., 2012), Medium Resolution Imag-
ing Spectrometer (Istomina et al., 2015), Landsat 7 Enhanced
Thematic Mapper (Markus et al., 2002, 2003), and synthetic
aperture radar imagery (Mäkynen et al., 2014; Scharien et al.,
2017) have all proven useful for studying melt ponds at a
pan-Arctic scale, albeit at low resolution. Wright and Po-
lashenski (2020) identify the biases in the low-resolution
MODIS dataset and utilize higher-resolution, but spatially
limited, WorldView imagery to improve the MODIS esti-
mates of melt pond coverage. Several studies have explored
the difference between ponding on first-year ice and multi-
year ice using both satellite observations (e.g., Fetterer and
Untersteiner, 1998; Webster et al., 2015) and airborne ob-
servations (e.g., Buckley et al., 2020; Wright et al., 2020).
Altimetric measurements from the Ice, Cloud, and land Ele-
vation Satellite-2 (ICESat-2) have allowed for characteriza-
tion of the altimeter’s response to a melting surface (Tilling
et al., 2020) and extraction of melt pond depth and width pa-
rameters (Farrell et al., 2020).

In situ and remote sensing observations have been essen-
tial for developing melt parameterizations in sea ice mod-
els (e.g., Flocco et al., 2010; Holland et al., 2012). However,
the melt pond representation varies in complexity between
parameterization schemes (Polashenski et al., 2012; Web-
ster et al., 2022b). Some schemes employ a one-dimensional
thermodynamical model to understand heat and mass trans-
fer within the sea ice (Ebert and Curry, 1993; Taylor and
Feltham, 2004), while others rely on the relationship be-
tween melt pond fraction and depth (Pedersen et al., 2009;
Scott and Feltham, 2010; Hunke et al., 2013). Despite differ-
ences in melt pond parameterizations there is agreement that
inclusion of melt processes in sea ice models significantly
improves the prediction of end-of-summer sea ice thickness
and extent (Flocco et al., 2010; Holland et al., 2012). How-
ever, while observations have served to improve our under-
standing of summer melt processes, data remain limited in
time and space, leading to knowledge gaps (Webster et al.,
2022b) and inadequate model parameterizations. For exam-
ple, the evolution of pond fraction relative to sea ice type
and the spatiotemporal variability in pond depth at Arctic-
wide scales remain key unknowns (Webster et al., 2022b).
Shu et al. (2020) found that although models included in the
Coupled Model Intercomparison Project 6 (CMIP6) can cap-
ture the seasonal cycle of ice extent, most models overes-
timate the September minimum extent, and there is still a
broad spread across simulations, suggesting that sea ice melt
processes are not well represented in models.
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Now, new opportunities to detect and monitor melt ponds
across the Arctic are available with the launch of earth-
observing satellites with high-resolution capabilities that also
provide continuous measurements. This includes ICESat-2,
the first satellite laser altimeter to use photon-counting tech-
nology (Markus et al., 2017). The ICESat-2 observational ap-
proach provides high-resolution surface height from which
details of melt conditions on ice surfaces may be derived
(Fricker et al., 2021; Farrell et al., 2020; Tilling et al., 2020).
Evaluated alongside high-resolution visible and near-infrared
satellite imagery, we can determine surface melt on Arctic
sea ice and track its evolution. This study is motivated by the
initial work observing melt pond evolution at the SHEBA site
from aerial imagery acquired weekly (Perovich et al., 2002b)
and regular melt pond depth measurements (Perovich et al.,
2003) in 1998 in the Beaufort Sea. Here, we extend our un-
derstanding of the evolution of sea ice melt. We use ICESat-
2, Sentinel-2, and Maxar WorldView observations to derive
sea ice concentration (SIC), melt pond fraction (MPF), and
pond depth during the 2020 melt season. We describe two al-
ternate approaches for tracking pond bathymetry and deriv-
ing depth from ICESat-2 observations. We present a timeline
of melt evolution and explore the relationship between melt
pond fraction and depth.

2 Study period and region

The 2020 annual mean surface air temperature across the
Arctic was 2.1 ◦C above the 1981–2010 climatological mean,
and warm temperature anomalies persisted from winter into
summer across the Eurasian Arctic (Druckenmiller et al.,
2021). As a result, the summer melt season of 2020 was an
anomalous year of melt. May 2020 temperatures in the mul-
tiyear ice region (Fig. 1, purple) were 1–5 ◦C greater than
average (Ballinger et al., 2020). In the central Arctic, early
melt onset occurred on 3 June 2020, and the date of continu-
ous melt onset occurred on 16 June 2020, both dates 6 d ear-
lier than the average for the time period 1979–2020 (Markus
et al., 2009). The September 2020 average sea ice extent
was 3.92× 106 km2, the second lowest on record (Fetterer
et al., 2017). The 10-year merged CryoSat-2–Soil Moisture
and Ocean Salinity (CryoSat-2/SMOS) data record reveals an
ice volume loss of 15 215 km3 from April to October 2020,
which resulted in the lowest recorded October ice volume
(4627 km3) of the past decade (Perovich et al., 2020). We
focus on the 2020 melt season because of these climate ex-
tremes and analyze the evolution in melt conditions between
1 June and 15 September. Due to a satellite anomaly that re-
sulted in the extensive loss of Arctic sea ice observations in
July 2019, 2020 also marked the first summer when continu-
ous ICESat-2 records were available. The study thus begins
prior to melt onset (Markus et al., 2009) and ends at the sea
ice minimum as derived in the Sea Ice Index dataset (Fetterer

et al., 2017), at which point optical imagery reveals refrozen
leads.

The study region (Fig. 1, purple shading), north of Green-
land and the Canadian Arctic Archipelago, extends from just
west of Banks Island in the Beaufort Sea to northeastern
Greenland and includes the oldest and thickest ice in the
Arctic (Bourke and Garrett, 1987). It was delineated from
the multiyear ice extent on 15 May 2020 prior to melt onset
using a blended passive microwave and scatterometer sea-
ice-type product provided by the EUMETSAT Ocean and
Sea Ice Satellite Application Facility (Breivik et al., 2012).
This was the latest-available observation of multiyear ice ex-
tent since the product is not available through the summer
months due to the presence of surface meltwater that con-
founds the processing algorithm (Breivik et al., 2012). The
study region is contained within the perennial ice area that
persists at the end of the 2020 melt season (Comiso, 2002;
Perovich et al., 2020) and overlaps with the “last ice area”
(Fig. 1, gray shading), an area expected to retain multiyear
ice in summer longer than any other part of the Arctic (Wang
and Overland, 2009; Newton et al., 2021). We focus on this
region since ice persists longest here in the summer and Far-
rell et al. (2020) have demonstrated the feasibility of retriev-
ing melt pond depths on multiyear ice in the Lincoln Sea
with ICESat-2 altimetry. Sentinel-2 imagery is widely avail-
able across the study region (Fig. 1, pink dots) because of
the proximity of multiyear ice to land (hence falling within
the sampling mask used in Sentinel-2 acquisitions). Together
with ICESat-2 elevation measurements, these observations
provide a three-dimensional view of the sea ice surface.

3 Satellite imagery

3.1 Sentinel-2 observations

The Copernicus Sentinel-2 mission comprises two satellites,
A and B, in a sun-synchronous orbit, each carrying the Mul-
tiSpectral Instrument (MSI) (Drusch et al., 2012). The pair of
satellites provide a global revisit time of less than 5 d. We use
the Level-1 C Top-f-Atmosphere products to derive param-
eters that describe changes in the ice cover throughout the
summer. The MSI samples across 13 spectral bands, rang-
ing from 443 to 2190 nm. Four bands are used in our study:
blue (B02, 492 nm), green (B03, 560 nm), red (B04, 665 nm),
and near-infrared (B08, 833 nm). Data are provided at 10 m
resolution. Sentinel-2 acquisitions are ideal for tracking sur-
face melt on Arctic multiyear ice since data are available for
coastal waters within 20 km of the shore to a latitudinal limit
of 84◦ N (Drusch et al., 2012), as illustrated in Fig. 1. To en-
sure high-quality surface observations, we required Sentinel-
2 imagery with cloud-free areas exceeding 90 %, the assess-
ment of which was based on the Sentinel-2 cloud mask (Dr-
usch et al., 2012).
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Figure 1. The study region (purple shading) north of Greenland and the Canadian Arctic Archipelago (inset) is based on the location of
multiyear ice in May 2020 and intersects the last ice area (gray shading). Sentinel-2 tile centroids (pink dots) indicate availability of satellite
image acquisitions. Centroids of a subset of WorldView imagery (black dots) are numbered.

3.2 Maxar WorldView observations

WorldView-2 and WorldView-3 provide higher-resolution
multispectral commercial satellite imagery and are two of
Maxar’s WorldView Legion. The satellites provide surface
imagery across eight multispectral bands spanning 397 to
1039 nm at 1.85 and 1.24 m resolution, respectively. A set
of 18 cloud-free images of summer melt with very high res-
olution (< 2 m) are available in our study region in 2019 and
2020 (Fig. 1, black dots). WorldView images are processed
and provided by the Polar Geospatial Center (PGC) at the
University of Minnesota. Here we analyze data from four
spectral bands: blue (B02, 480 nm), green (B03, 545 nm),
red (B05, 645 nm), and near-infrared (B07, 833 nm). Melt
ponds on sea ice can range from 1 m to hundreds of meters
in diameter (Perovich et al., 2002b), which poses a challenge
when using the Sentinel-2 imagery with 10 m resolution for
surface classification such that there may be several surface
types within a single Sentinel-2 pixel. WorldView imagery
has previously been used to study melt pond distribution and
fraction in the Arctic (e.g., Lee et al., 2020; Li et al., 2020).
The higher-resolution WorldView data are thus well suited
for assessing the advantages and limitations of the Sentinel-2
data for sea ice classification.

3.3 Image classification

Image classification relies on the algorithm described in
Buckley et al. (2020) that exploits natural breaks in the red,
green, and blue channel histograms to classify individual pix-
els as melt pond, sea ice, or open water. Prior to implement-
ing this classification procedure, we introduce a new step
to distinguish water from ice by taking advantage of near-
infrared observations provided in both the Sentinel-2 and
WorldView multispectral data. Because water is very absorp-
tive at near-infrared wavelengths (Curcio and Petty, 1951),
data in the near-infrared channel can be used to discriminate

between water and sea ice. Following McFeeters (1996), we
calculate the normalized difference water index (NDWI):

NDWI= (Cg−CNIR)/(Cg+CNIR), (1)

where Cg is the green band (B03), and CNIR is the near-
infrared band (B08 in Sentinel-2, B07 in WorldView). NDWI
is greater for water than for ice surfaces due to the low re-
flectance of water at infrared wavelengths (McFeeters, 1996).
In the NDWI histogram, water pixels occupy the higher-
value bins. For unimodal histograms, a threshold (H ) is set
as the half maximum to the left of the mode:

H = NDWI_ma_1_hmL. (2)

If the NDWI histogram has more than one mode, we iden-
tify the mode with the highest pixel value (NDWI_ma_m),
and in this case H is the minimum (mi) to the left of
NDWI_ma_m:

H = NDWI_mi_m. (3)

Pixels with NDWI≤H are non-water surfaces, while
those with NDWI>H are classified as water pixels. Pix-
els classified as water are subsequently further separated into
either open-water or melt pond pixels following the open-
water classification approach of Buckley et al. (2020). All
non-water pixels enter the sea ice classification step where
they are classified as sea ice or “other” pixels following
the methodology described in Buckley et al. (2020). Pixels
greater than the threshold (C) in the red band (Cr) are iden-
tified as ice. Pixels less than the threshold are identified as
other pixels (Cr < C; see Buckley et al., 2020). Other pixels
are those that are not as bright in Cr as ice and not as high
in NDWI as water pixels. This includes mixed pixels, pixels
that include more than one surface type, and surface types
such as newly formed ice that is darker than the pixels in the
ice category. We derived melt pond fraction (MPF), sea ice
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concentration (SIC), and open-water fraction from the clas-
sification of individual pixels. SIC is defined as the percent-
age of the sea surface that is covered in ice, and open-water
fraction is the inverse: the percentage of the sea surface not
covered in sea ice. MPF is defined as the ponded percentage
of sea ice (Buckley et al., 2020). Understanding how MPF
and SIC change throughout the summer melt season can pro-
vide insights about the evolution of surface albedo and the
absorption of solar radiation. The errors and uncertainties in
the classification algorithm and the derived parameters are
discussed in Sect. 5.4.1 and 5.4.2.

4 Satellite altimetry

4.1 ICESat-2 observations

NASA’s ICESat-2 satellite, launched in September 2018,
carries a photon-counting laser altimeter, the Advanced To-
pographic Laser Altimeter System (ATLAS), operating at
532 nm, with ground sampling every 0.7 m (Markus et al.,
2017). ICESat-2 obtains surface height measurements across
the Arctic up to 88◦ N with a 91 d repeat track orbit. AT-
LAS has three beam pairs with 90 m spacing within the pairs
and 3.3 km pair separation with the reference ground track
(RGT) falling between the central beam pair. Each beam pair
consists of a strong spot and a weak spot with an energy
ratio of 4 : 1 (Neumann et al., 2019). We refer to the refer-
ence ground track (RGT) and beam as RGT yyyy GTNX,
where yyyy is the track number, N is the beam pair num-
ber, and X is L (left) or R (right) (Herzfeld et al., 2021b). In
this work, we exclusively use the strong beams to map sea
ice topography and detect melt ponds. Previous studies have
shown an elevation precision of 0.01 m can be achieved over
level sea ice surfaces (Farrell et al., 2020). The green laser
is capable of penetrating clear water (Parrish et al., 2019),
enabling measurements of shallow waterbody depth includ-
ing in nearshore bathymetry (Parrish et al., 2019; Babbel
et al., 2021; Thomas et al., 2021), desert lakes (Armon et al.,
2020), melt streams on ice shelves (Fricker et al., 2021), and
sea ice melt ponds (Farrell et al., 2020). We use the ATL03
Global Geolocated Photon Data product which provides pho-
ton height and geolocation above the WGS84 ellipsoid (Neu-
mann et al., 2019, 2021), from which details of the sea ice
surface and its variability can be measured (Duncan and Far-
rell, 2022). Although Farrell et al. (2020) first demonstrated
that the vertical resolution of ICESat-2 data is sufficient to
resolve ponds on multiyear ice and manually estimated their
depth, no operational ICESat-2 data product exists that au-
tomatically includes pond depth measurements. The higher-
level ATL07 Sea Ice Height product (Kwok et al., 2021b)
tracks sea ice surface height but does not have the ability to
bifurcate and track two surfaces simultaneously, a require-
ment for pond depth retrievals.

4.2 Pond depth retrieval algorithms

In this study, we use two unique algorithms specifically de-
signed to track pond depths in the ICESat-2 photon cloud: the
University of Maryland melt pond algorithm (UMD-MPA),
briefly described in Farrell et al. (2020), and the density
dimension algorithm (DDA) “bifurcate-seaice” (Herzfeld
et al., 2017, 2023). Both algorithms operate on the ICESat-2
ATL03 geolocated photon height dataset to track the surface
and bathymetry of individual ponds. We are able to estimate
pond depth, an important characteristic of melt ponds since
it constrains meltwater volume and alters the hydrostatic bal-
ance of the sea ice (Webster et al., 2022b).

4.2.1 University of Maryland melt pond algorithm

The UMD-MPA (Farrell et al., 2020) was developed to iden-
tify pond surfaces and their bathymetry in the ICESat-2
ATL03 photon height product (Neumann et al., 2021). First,
we used a cloud indicator based on the apparent surface re-
flectance parameter (Palm et al., 2021) provided as a flag in
ATL07 (Kwok et al., 2021b) to identify cloud-free sections
of along-track surface height data. If at least 20 % of the
track within the study region was cloud-free, we manually
examined the ATL03 photon height data for evidence of melt
ponds. Figure 2 demonstrates the methodology to determine
the surface and bathymetry of a pond using the UMD-MPA.
Figure 2a shows the ICESat-2 ATL03 photon cloud, where
we see photons outlining the two-dimensional iconic bowl
shape of a melt pond (between 400 and 700 m along track),
with photons returned from both the surface and bottom of
the pond. We manually identified the start and end of ponds
as the points where two surfaces diverge and rejoin, respec-
tively. We defined pond width as the distance between the
start and end points. To determine the surface height hs, we
binned all photons across the width of the pond into 0.1 m
vertical bins (Fig. 2b), and hs is the mode of the distribution:

hs = Pn_ma, (4)

where Pn_ma is the bin containing the maximum count in the
vertically binned histogram for all photons across the width
of the pond; hs was reset to an elevation of 0 m, and all pho-
ton heights were recalculated relative to hs (Fig. 2c). Then
we constructed a new two-dimensional histogram of photon
height data with vertical elevation binned at 0.1 m using 10 m
wide horizontal along-track bins in order to distinguish the
surface photons from the bathymetric photons. For each ver-
tical bin, we added the photons from the bins on either side
to increase the photon count for each bin. In this way, the
vertical bins were overlapping with an effective bin height
of 0.3 m at 0.1 m intervals (Fig. 2d). For each 10 m horizon-
tal along-track segment (as shown in Fig. 2c), we examined
the resulting histogram of vertical elevation (Fig. 2d). We
assumed photons within the two bins on either side of the
identified pond surface mode could be associated with the
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surface and removed all photons in those bins for the sub-
surface analysis (Fig. 2d, green bins), and thus the minimum
retrievable pond depth was 0.3 m (0.23 m after correction for
refraction of light in water). We located modes in the his-
togram below the surface that contained at least 5 % of the
number of surface photons in Pn_ma (Fig. 2d, blue bin). If
there were no modes that met this threshold, pond depth was
not estimated at this location and we moved on to the next
horizontal segment. If there were multiple modes, the one
closest to the surface was defined as the bathymetry of the
pond, as it was unlikely there are modes within a pond be-
cause the green laser is able to penetrate through the water
column. The bathymetric elevation, hb, of the pond was de-
termined as the elevation of the subsurface mode:

hb = Pni_ma1. (5)

Bathymetric elevation was determined for each 10 m hor-
izontal section across the pond (Fig. 2d, blue, Eq. 5). Next,
we estimated pond depth by differencing the pond surface
and bathymetry. We then multiplied this depth by the ratio
of the refractive index of air to water following Parrish et al.
(2019) to derive the true melt pond depth, hmp, as follows:

hmp = hs−hb×
ηa

ηw
, (6)

where hmp is the depth of the melt pond, hs is the elevation
of the pond surface, hb is the elevation of the bathymetry, ηa
is the refractive index of air (1.00029), and ηw is the refrac-
tive index of water (1.33567) (Mobley, 1995). Pond depth
(hmp) was determined for each 10 m along-track segment. To
increase along-track resolution, a linear interpolator with a
5 m length was applied to obtain pond depth at 5 m inter-
vals across the pond. The true elevation within each bin could
be ±0.15 m from the estimated value (half of the 0.3 m bin
width). When the melt pond surface and bathymetry eleva-
tions are differenced to determine the depth, uncertainty dou-
bles because the pond surface and bathymetry uncertainties
are additive (0.3 m), resulting in a total depth uncertainty of
±0.23 m after correction for refraction (0.3× ηa

ηw
). At least

one depth measurement and the melt pond start and end
points are required for pond detection, and thus the minimum
retrievable pond width is 20 m. The advantage of the UMD-
MPA is that individual ponds were manually selected so that
false positives are minimized. However, the manual process
of identifying ponds is arduous and vulnerable to human er-
ror.

4.2.2 Density dimension algorithm for bifurcating sea
ice reflectors

The DDA constitutes a family of fully automated algorithms
designed to track complex surfaces in micro-pulse photon-
counting lidar altimeter data, such as those of ICESat-2
(Herzfeld et al., 2017, 2021a, 2023). The DDA-bifurcate-
seaice algorithm was designed to track height in complex sea

ice topography and has the ability to simultaneously track
two diverging surfaces. A full description of the algorithm
can be found in Herzfeld et al. (2023), but we briefly de-
scribe it here. The DDA utilizes the full geolocated photon
height point cloud as provided in the ATL03 data product
(Neumann et al., 2021). The algorithm employs the calcu-
lation of a density field for data aggregation and principles
of auto-adaptive signal-to-noise thresholding and roughness
determination (as described in Herzfeld et al., 2017). The
DDA has the ability to detect bifurcating reflectors and can
accommodate situations where the stronger reflector can be
the lower or the higher reflector, and the two reflectors may
have different spatial distributions and material and reflec-
tion properties. The DDA includes a layer follower with auto-
mated adaptation to layer roughness. On rough surfaces, the
DDA tracks at 2.5 m intervals to capture the varying surface
and on smooth surfaces at 5 m intervals. These parameters
are adjustable. At least three sequential depth measurements
are required for pond detection, and hence the minimum re-
trievable pond width is 7.5 m on a rough surface and 15 m on
a smooth surface. For comparison and consistency with the
UMD-MPA, we resample the surfaces tracked by the DDA
at 5 m intervals. The minimum elevation difference between
the two tracked surfaces is adjustable within the DDA, and
for the purposes of this work it is set at 0.2 m within the pho-
ton cloud, allowing for a minimum retrievable pond depth
of 0.15 m (after correction for refraction). The DDA is au-
tomated, requiring no manual input, and can be applied in
a systematic way. We use the DDA for comparison with the
UMD-MPA and to extend the time series of the melt pond
depths in summer 2020. The limitations of both the UMD-
MPA and DDA are discussed in Sect. 5.4.3.

5 Results

The stages of melt pond evolution during summer 2020
from formation through freeze-up are demonstrated in a
time series of classified, high-resolution WorldView imagery
(Fig. 3). Figure 3a–f show WorldView RGB imagery and the
surface classifications throughout the melt season. Figure 3g
shows the evolution of SIC and MPF derived from each of
the images in Fig. 3a–f. In the first image (Fig. 3a), acquired
on 9 June 2020, no ponds are visible on the ice surface
(MPF= 0 %; Fig. 3g). At this point, the surface was melt-
ing and snow metamorphosing. By 17 June 2020 (Fig. 3b),
the meltwater had pooled into the lowest topographic areas,
forming melt ponds (MPF= 3 %; Fig. 3g). By 30 June 2020
(Fig. 3c), melt had advanced with a higher fraction of the
ice covered by ponds (MPF= 23 %). Drainage channels had
formed between ponds by 22 July 2020 (Fig. 3d) as ponds
drained into other ponds and into the open ocean, either lat-
erally or vertically, and MPF is 25 %. By 7 August 2020
(Fig. 3e), regions of the ice had melted through, exposing
the ocean. In some ponds, the surface or a portion of the sur-
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Figure 2. Schematic demonstrating the UMD-MPA methodology. (a) ATL03 photon height cloud (gray dots) revealing a melt pond located
in the center of the transect. (b) Histogram of photon heights spanning 1 km along track and binned at 0.1 m vertically. The primary mode
indicates the surface (black). (c) A 300 m long section across the pond in (a) and the horizontal binning at 10 m intervals. The yellow box
marks the horizontal section analyzed in the vertical histogram shown in (d). In (d) the surface bin and two bins on either side are green, and
the subsurface mode is blue. (e) Melt pond surface (black dots), bathymetry (magenta dots), and corrected depth (gray bars) derived using
the UMD-MPA applied to the ATL03 data.

face of the pond had refrozen to form an ice lid, indicated
by a dark gray color, similar to the color of nilas appear-
ing in Fig. 3f. Pond lids increased the albedo of the pond
(Flocco et al., 2015) and restricted ICESat-2’s laser pene-
tration into the pond. Still, a large fraction of the ice was
covered in ponds, and MPF peaked at 32 %. In the image ac-
quired on 3 September (Fig. 3f), the majority of ponds had
frozen ice lids that are classified as ice. At this point, MPF
had decreased (MPF= 6 %; Fig. 3g). The refrozen leads are
classified as other (green) in Fig. 3f.

5.1 Summer melt parameters derived from satellite
imagery

We apply the classification algorithm described in Sect. 3.3 to
1775 Sentinel-2 image tiles spanning the study region from
1 June 2020 to 15 September 2020. The adjustments from
Sect. 5.4.2 have not been applied as we do not have coinci-

dent WorldView imagery corresponding to all the Sentinel-2
tiles to compare MPF and SIC. MPF is calculated for images
with SIC> 15 % so as to reduce the pixel misclassifications
associated with mixed pixels at the sea ice edge and brash
ice. We look at images in a running 15 d period and identify
images with anomalously high melt pond fraction (> 95th
percentile). Anomalously high MPF was identified in 79 im-
ages (4 % of total tile count). Of these, 75 % (59 tiles) either
were contaminated with clouds that evaded the initial cloud
masking procedure (Drusch et al., 2012) or included the pres-
ence of fast ice. These tiles were discarded. The remaining
25 % (20 tiles) were determined to be uncontaminated and
properly classified and were retained for analysis.

5.1.1 Feature classification

We examine the evolution of surface classifications through-
out the melt season (Fig. 4). Vertical gray bars indicate sig-
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Figure 3. Melt evolution in 2020, based on a selection of WorldView imagery (∼ 900 m× 900 m in area) spanning 9 June–3 September 2020.
Panels (a)–(f) show the RGB true-color composite (left) and the classified image (right). (g) MPF (gold) and SIC (red) derived for each image.
These images are from two different locations within the study region; the corresponding image numbers in (g) mark their location in Fig. 1
with more information in Table 2 (WorldView imagery © 2020 Maxar).

nal loss due to the requirement of 90 % cloud-free images
(Sect. 3.1) when there are fewer than 10 images in the 5 d pe-
riod. At the beginning of the melt season a high percentage of
pixels (> 90 %) are classified as ice, and this is followed by
a sharp drop to < 80 % in mid-June. The ice pixel percent-
age decreases through mid-August and then becomes more
variable. Melt pond pixels increase from 3.0 % on 13 June to
10.0 % on 15 June, and the maximum coverage is 15.3 % on
24 June. The percentage of pixels classified as melt ponds re-
mains greater than 10 % until 2 July and makes up less than
5 % of each image from 23 July through the end of the study
period (15 September). The open-water percentage is low
(< 5 %) at the beginning of the season and then increases and
becomes more variable later in the season, with the highest
open-water percentage from mid-July through mid-August.
This indicates an increase in lateral melting of floes and a
more dynamic, divergent ice cover. On average, open wa-
ter makes up 14 % of the surface pixels in July and 17 %
in August. The open-water percentage decreases in late Au-

gust and September as leads begin to refreeze. Throughout
the season, the pixels classified as other remain below 10 %.
Towards the end of the season, refrozen leads appear in the
Sentinel-2 scenes, and the algorithm classifies these areas as
other, explaining the increase in other pixel percentages in
September (Fig. 4).

5.1.2 Sea ice concentration

We examine the SIC derived from Sentinel-2 data in the
study region. Mean SIC in the region was 91.6 % with a
standard deviation of 15.0 %, and the median was 97.2 %.
The difference between the median and mean indicates that
there are some Sentinel-2 tiles with very low SIC or entirely
open water. The SIC values ranged from 0 %–100 %, with
75 % of the SIC values greater than 92.8 % and 25 % greater
than 99.0 %. As the melt season progressed, individual im-
ages had more variable SIC and the median SIC value de-
creased. Figure 5 shows the seasonal evolution of the melt
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Figure 4. The 5 d mean aerial fraction of surface types from the classification of Sentinel-2 imagery throughout the 2020 Arctic melt season.
Surface pixels are classified as ice (red), melt pond (yellow), open water (blue), or other (green). The gray bars indicate that there are fewer
than 10 images in the 5 d period.

parameters with SIC shown in Fig. 5a. SIC was consistently
greater than 90 % through mid-June. On 27–28 June, im-
agery shows the ice separated from the landfast ice in the
Lincoln Sea and along the western coasts of the Canadian
Arctic Archipelago (Vermote and Wolfe, 2021). At the same
time, sea ice drift data indicate westward ice drift (OSI-SAF,
2022). These dynamics opened leads and reduced local ice
concentration. Throughout July, the sea ice continued to sep-
arate from the coast, leaving large areas of open water. As
the ice cover receded, Sentinel-2 images along the edge of
the pack ice captured lower SIC (< 80 %), and in the lowest
latitudes of the study region, SIC values dropped below 20 %
(Fig. 5a). The consolidated ice cover evolved into a mosaic of
smaller floes with leads that grew in size as the floes melted
laterally. Median SIC dropped below 80 % in late July, con-
sistent with Perovich et al. (2002b), who observed a sharp
decrease from 95 % to 80 % SIC in early August in aerial
observations of the SHEBA site.

5.1.3 Melt pond fraction

We calculated MPF from the Sentinel-2 images in the study
region with SIC > 15 % (Fig. 5b). The average MPF in the
region in summer 2020 was 6.5 % with a standard deviation
of 6.5 %. The highest MPF for an individual Sentinel-2 scene
was 31.6 %. This image is located just outside of the mouth
of Nansen Sound at 82.3◦ N, 95.3◦W but is far enough from
that coastline that it does not contain landfast ice. Median
MPF remains low, < 5 %, through 17 June. We then see a
sharp increase to 12.1 % in MPF on 18 June. The imagery is

scarce between 18 and 22 June due to widespread cloud cov-
erage. This weather system likely enhanced the melt (Mortin
et al., 2016), and when it passed, MPF was high, averaging
15.2 % between 24 and 29 June. The peak 5 d running mean
MPF was 15.9 % on 24 June (Fig. 5b). MPF slowly decreased
in July, and by August, MPF remained below 5 % for the re-
mainder of the season. The evolution of melt in WorldView
images, presented in Fig. 3f, follows a similar pattern: a sharp
increase in MPF earlier in the season and a decrease in MPF
by September. However, the images show a sustained high
MPF (> 20 %) through early August (Fig. 3f), indicative of
the variability in MPF regionally and at smaller scales.

5.2 Melt pond depth

Of the 1107 ICESat-2 tracks that traversed the study re-
gion between 1 June 2020 and 15 September 2020, only
850 tracks met the cloud cover requirements described in
Sect. 4.2.1. Upon examination of the ATL03 data acquired
along these tracks, we identified 477 individual melt ponds
(Fig. 6a). The UMD-MPA was applied to these ponds, re-
sulting in over 11 000 individual pond depth measurements.
We applied the DDA to 87 of 850 (10 % of the available
ICESat-2 tracks in the study region and period) cloud-free
tracks that are representative in time and space of the study
region throughout the melt season. We do not apply the DDA
to the central beam (beam GT2L) as the central beam is more
susceptible to specular returns and the “dead-time” effect in
the summer (Kwok et al., 2021a). For the DDA postprocess-
ing, we discard all anomalies associated with the heavily de-
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Figure 5. Evolution of melt features from 1 June 2020 to 15 September 2020 in the study region. (a) Box plot showing the median sea ice
concentration for a 5 d window centered on the plotted date. The box shows the interquartile range. The gray bar plot in the background
shows the total area of Sentinel-2 imagery analyzed per 5 d window. (b) Same as in (a) but for melt pond fraction. (c) Same as in (a) and (b)
but the median pond depth from merged DDA-bifurcate-seaice and UMD-MPA tracked ponds for a 5 d window centered on the plotted date.

formed and/or ridged sea ice and those arising due to the
detector dead-time effects. These effects and postprocessing
steps are detailed in Sect. 5.4.3. This process discards 5319
of 94 543 individual pond measurements, corresponding to
5.6 % of the available measurements. The DDA tracked 7329
ponds with a total of 89 224 individual depth measurements
after the postprocessing steps (Figs. 5c, 6a).

We located 113 ponds that were tracked by both algo-
rithms and found a strong correlation between the mean pond
depths (r = 0.77; Fig. 6b). We found a mean residual differ-
ence of −0.04 m (DDA−UMD-MPA) with a standard devi-
ation of 0.22 m (Herzfeld et al., 2023). Although there is a
small mean difference between the two algorithms, the stan-
dard deviation demonstrates some variability signifying re-
maining uncertainties when tracking the location of the true
melt pond bottom. Because of the good agreement between
the two tracking algorithms, we combine the pond depths re-
trieved from both the UMD-MPA and DDA to analyze melt
pond evolution throughout the summer (Sect. 6). Further dis-

cussion of the comparison of the two algorithms is provided
in Herzfeld et al. (2023).

The DDA median pond depth evolution (not shown) is
very close to the evolution of the full dataset (UMD-MPA
and DDA combined) because there are many more ponds
tracked by the DDA than the UMD-MPA. The melt pond
depth evolution, Fig. 5c, is not representative of a single pond
but the evolution of the parameters of all ponds in the study
region. Individual ponds have complex meltwater accumu-
lation and vertical and lateral drainage processes, which are
not captured in the evolution of the entire study region pre-
sented in Fig. 5. Throughout the season, we see a widening
of the interquartile range (IQR), suggesting ponds across the
area were in different stages of melt. Freeze onset in August
caused the ponds to form ice lids, preventing laser penetra-
tion into the pond for pond depth retrieval, although there
may have been liquid water beneath the ice lid. Freeze condi-
tions occur at different points in this region at the end of sum-
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Figure 6. Melt ponds measured by both algorithms. (a) Locations of the ponds measured with the DDA-bifurcate-seaice algorithm (green
circles), UMD-MPA (black circles), and both algorithms (orange diamonds) in the study region (black outline). (b) Mean depth of melt ponds
measured by both algorithms: DDA-bifurcate-seaice (green) and UMD-MPA (black).

mer, and there are fewer pond depth measurements through-
out the month of August.

Although ponds were observed in Sentinel-2 imagery in
early June, the first melt pond depth measurements from the
UMD-MPA are on 22 June 2020. This indicates that the
ponds present early in the season were shallow ponds and
ICESat-2 measurements of any individual pond did not ex-
ceed the minimum retrievable pond depth (0.23 m), and thus
pond depth was not retrieved. The DDA has the ability to
track smaller, shallower ponds, whereas the UMD-MPA re-
lies on manual identification of ponds that biases the results
towards larger ponds.

While the ATL07 algorithm (Kwok et al., 2021b) is de-
signed to track only one sea ice surface height, the algorithms
presented in this study are designed specifically to account
for a melting sea ice surface and track two reflecting lay-
ers. Figure 8 shows three examples of melt ponds in ATL03
data and the performance of the UMD-MPA and DDA com-
pared to the ATL07 surface tracking. Figure 8a–c (top pan-
els) show the ATL07 ICESat-2 product. Figure 8a shows that
ATL07 tracks between the surface and the bathymetry of the
two ponds, while in Fig. 8b ATL07 tracks just the surface
of the pond, and in Fig. 8c, ATL07 follows the bathymetry
of the pond. This demonstrates the inconsistency of ATL07
tracking over a melted sea ice surface. The bottom panels of
Fig. 8a–c show the results of the UMD-MPA and the DDA
tracking of the surface. This demonstrates not only the ability
to track two surfaces but also the consistent tracking despite
the differences in algorithm methodology.

5.3 Melt pond size distribution

We conduct an analysis of the melt pond size distribution
and the evolution of the circularity of ponds in the 18 high-
resolution WorldView images. For each WorldView image,
we calculate the number of ponds, total pond area, mean
pond perimeter, mean and median pond area, 5th and 95th
percentile pond size, and mean circularity (C). Circularity

(C) is measured for each individual pond following Perovich
et al. (2002b):

C =
P 2

A
, (7)

where P is the individual pond perimeter (m), and A is the
individual pond area (m2). The minimum circularity (a cir-
cle) is 4π ∼ 12.57. The higher the circularity value, the more
complex the pond perimeter. The results are tabulated in Ta-
ble 1. Figure 9 shows the melt pond area distribution from the
18 WorldView images. We limit our analysis to melt ponds
of at least nine pixels (3× 3 pixels), or 24.5 m2 (30.8 m2) in
size, for WorldView-3 (WorldView-2), as smaller scales of
melt ponds are indistinguishable from noise.

Although these WorldView images are not all from the
same melt season or same location, we see patterns related to
the stage of melt evolution. The monthly average pond area
decreased from 227 m2 in June to 163 m2 in July and subse-
quently decreased from 156 m2 in August to a low of 55 m2

by early September. Pond perimeter averaged 71 m in June,
decreased to an average of 64 m in July, increased slightly to
67 m in August, and finally decreased to a low of 38 m on
average. The total pond area and number of ponds per image
increase throughout the season until the end of August. In
September both pond area and number of ponds per image
decrease to the minimum value as freeze-up occurs, as seen
in the WorldView image on 3 September 2020.

Mean pond circularity of all ponds in the WorldView im-
ages is 31.5 and ranges from 16.9 on 12 June to 40.7 on
9 August per image (Table 1). For comparison, a 1 : 7 rect-
angle has a circularity of 32.7. The high end of the range is
similar to the value of 41.2 found on 7 August on multiyear
ice in Perovich et al. (2002b). However, they found a mean
pond circularity of 38.5 on 10 June. This difference could be
due to our pixel-based algorithm detecting small melt ponds
which tend to have a lower circularity. We find that the mean
pond circularity per month increases as melt progresses: cir-
cularity averaged 29.9 in June, increased slightly to an av-
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Table 1. Melt pond area distribution derived from WorldView imagery.

Date Number of Total melt Mean melt pond Mean melt 5th percentile melt Median melt 95th percentile melt Mean melt pond
ponds pond area perimeter pond area pond area pond area pond area circularity

(m2) P (m) A (m2) (m2) (m2) (m2) C

9 June 2020 972 58 110.6 37.4 59.8 34.2 47.9 124.8 24.7
11 June 2020 13 644 1 318 542.1 55.1 96.6 34.2 58.2 277.2 33.8
12 June 2020 877 66 143.2 34.2 75.4 34.2 51.3 172.5 16.9
14 June 2020 6249 423 921.1 36.3 67.8 34.2 51.3 160.9 20.9
15 June 2020 10 130 816 281.7 43.0 80.6 27.2 49.0 231.4 26.3
17 June 2020 34 839 3 451 221.6 43.8 99.1 34.2 61.6 284.1 21.0
30 June 2020 168 405 47 213 983.0 81.5 280.4 34.2 71.9 633.2 32.1
2 July 2020 177 058 34 206 970.3 62.3 193.2 34.2 68.5 441.5 26.4
22 July 2020 36 733 3 594 007.6 49.3 97.8 27.2 54.4 304.9 28.1
24 July 2019 119 124 16 611 644.5 56.5 139.4 34.2 75.3 438.1 25.5
24 July 2019 95 524 12 228 537.7 50.9 128.0 34.2 71.9 362.8 23.6
26 July 2019 155 825 39 487 319.6 81.2 253.4 34.2 75.3 742.7 30.4
27 July 2020 304 298 38 099 628.8 61.3 125.2 27.2 57.2 397.5 34.8
31 July 2019 236 057 39 536 174.9 67.6 167.5 27.2 79.0 536.3 32.2
4 August 2019 164 640 29 114 310.8 73.3 176.8 34.2 75.3 585.2 34.1
7 August 2020 232 460 29 996 627.5 67.4 129.0 27.2 57.2 400.2 40.7
9 August 2020 122 476 22 072 722.4 56.5 180.2 34.2 65.0 400.4 25.4
3 September 2020 785 42 863.4 38.0 54.6 34.2 44.5 112.9 27.5

erage of 30.2 in July, increased slightly to 35.0 in August,
and finally decreased to a low of 27.5 on average in Septem-
ber. This indicates increasing pond complexity throughout
the melt season. However, we note that due to ice drift the
images analyzed do not depict the same ice throughout the
season, and although the melt ponds loosely follow the ex-
pected evolution of melt pond circularity, other factors such
as ice topography and local ice and atmosphere conditions
affect the evolution of melt ponds and their geometric fea-
tures.

Figure 9a demonstrates the prevalence of small ponds in
the WorldView imagery. The distributions from the 3 months
show similar pond size distributions, but there is a slightly
higher probability of larger ponds in July and August as com-
pared to June, consistent with the findings of Perovich et al.
(2002b). We estimate the complete range of possible melt
pond sizes on the surface and determine what pond sizes may
not be detected in the lower-resolution imagery and profiled
by the altimeter algorithms (Sect. 5.4). In Sect. 5.4.2 we dis-
cuss how the subpixel-size melt ponds affect the Sentinel-2-
derived melt pond fraction.

5.4 Algorithm limitations

5.4.1 Image pixel misclassification and mixed pixels

Small features on sea ice pose a challenge for satellite-
derived classifications. We discuss the potential for misclas-
sification of pixels and how the algorithm handles pixels
containing multiple surface types (mixed pixels). When the
algorithm encounters uncommon surfaces that do not fall
squarely into the classification categories, the pixels may
be misclassified. This includes ridge shadows, submerged
sea ice, and very light melt ponds as previously discussed
in Buckley et al. (2020). Misclassifications occur more fre-

quently as the image resolution is lowered because each pixel
covers more surface area. Given ponds can range in size
from less than 1 m to hundreds of meters in diameter (Per-
ovich et al., 2002b), there may be several surfaces within a
Sentinel-2 10 m pixel. Mixed pixels are those pixels with a
combination of surface conditions, whether the edge of an
ice floe, containing ice and open water, or small melt ponds
and drainage channels surrounded by sea ice. In these cases,
it is difficult to robustly determine the pixel designation since
the reflectance signature is not indicative of one particular
surface type. So to mitigate the pixel misclassification errors,
we introduce a category labeled other.

We examine the classification of Sentinel-2 imagery and
temporally near-coincident (12 min time difference), but
higher-resolution, WorldView commercial satellite imagery
in the Canada Basin as the surface undergoes melt on
27 July 2020 (Fig. 10) to demonstrate the occurrences of
mixed pixels and pixel misclassification. We set the Sentinel-
2 image to the bounds of the WorldView image applying the
same classification algorithm as described above and com-
pare results. In Fig. 10c–f, we show a segment of the World-
View and Sentinel-2 images and their classification masks.
Figure 10e illustrates the high-resolution features visible in
the WorldView-2 imagery. In the center of Fig. 10e, small
melt ponds are connected by long, narrow drainage chan-
nels. As these drainage channels are on the order of 5–10 m
in width, the Sentinel-2 imagery does not resolve these fea-
tures, and pixels in this area are composed of both ice and
meltwater (Fig. 10c). Here, pixels consisting of small melt
ponds and drainage channels are classified as ice or other
(Fig. 10d). Also, along the sea ice edge, where pixels contain
both ice and water, the pixels are classified as other (Fig. 10d,
green, center bottom). The other category includes complex
ice types such as new ice, which appears gray in imagery and
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is not bright enough to be classified as ice. This occurrence is
rare and happens towards the end of the melt season as leads
and areas of open water start to freeze. Pixels categorized as
other are not considered in the calculation of the derived pa-
rameters of MPF and SIC. Our analysis suggests that other
pixels represent on average less than 10 % of all image pixels
(see Sect. 3.1 and Fig. 4, green).

We estimate MPF of 7.6 % and 25.5 % from the Sentinel-2
image (Fig. 10d) and WorldView image (Fig. 10f), respec-
tively, a difference of 18 percentage points. The underes-
timation of MPF (especially as the ice reaches the maxi-
mum MPF) in the lower-resolution image is consistent with
previous studies (Buckley et al., 2020; Sivaraj et al., 2022;
Niehaus et al., 2023). We also find SIC is 6.2 percentage
points higher in the Sentinel-2 image than in the WorldView
image. The next section further discusses the impact of these
errors on the derived parameters.

5.4.2 Quantifying error in derived parameters

Given the biases revealed between the Sentinel-2 and World-
View analysis shown in Fig. 10 and described in the previ-
ous section, we investigate the robustness of the parameters
derived during the Sentinel-2 classification. In Sect. 5.4.1
we discussed the ability to resolve small melt features in
WorldView imagery that are not resolvable in Sentinel-2 and
showed an example in Fig. 10. Our goal is to assess the level
to which MPF may be biased low due to the 10 m pixel reso-
lution. In Sect. 5.3 we discussed the distribution of melt pond
sizes detected in the WorldView imagery. The cumulative
probability distribution (Fig. 9b) illustrates the prevalence of
small ponds, showing that 73 % of ponds are smaller than
100 m2. This implies that approximately 73 % of individual
ponds are not captured by the Sentinel-2 imagery, which has
a 100 m2 pixel area (10 m pixel size). However, since these
are small ponds, they account for only 38 % of the total pond
area in the WorldView scenes, and Sentinel-2 imagery is able
to capture approximately 62 % of the total pond area.

We compare MPF and SIC derived from Sentinel-2 with
MPF and SIC derived from the higher-resolution WorldView
imagery (Fig. 11). We identify Sentinel-2 imagery captured
within 24 h of the same 18 WorldView images (Sect. 5.3),
and we subsample the Sentinel-2 tiles to the extent of the
WorldView image by matching ice features in the imagery.
Although the imagery spans 2 years, we organize the findings
by day of year to understand if there is a seasonal trend in the
bias.

A comparison of the derived melt parameters from the
classification of coincident images is shown in Fig. 11 and
Table 2. In the beginning of the melt season, both datasets
show consolidated ice with few or no signs of melt. The
classification of the images results in a good agreement in
the derived MPF and SIC. In the five scenes in the first half
of June, MPF is less than 1 % in all Sentinel-2 and World-
View images. SIC is high in all the images (> 90 %), and

the Sentinel-2 SIC agrees to within 3 percentage points of
the coincident WorldView SIC (Fig. 11 and Table 2). As the
melt season progresses, sea ice floes are more susceptible to
breakup due to structural weakening induced by melt pond
formation (Arntsen et al., 2015) and enhanced dynamics as
sea ice is in free drift. For this reason, there are smaller fea-
tures that appear in the imagery scenes: smaller floes, brash
ice, melt ponds, and drainage channels. Small features are
not as well resolved by the lower resolution of Sentinel-
2 imagery, and thus misclassification and mixed pixels are
more common. This leads to weaker agreement of the de-
rived parameters in Sentinel-2 versus those from the higher-
resolution WorldView imagery, which still may be able to re-
solve these small features. The Sentinel-2 MPF is lower than
MPF derived from WorldView images, as small ponds can go
undetected or are classified as other pixels. From the end of
June through mid-September, Sentinel-2 MPF is on average
12 % lower than the equivalent MPF derived from coincident
WorldView imagery. There are two cases where MPF cal-
culated for the Sentinel-2 image is greater than that of the
WorldView image. In the imagery collected on 17 June 2020
the calculated MPF is 8.4 % and 2.4 % for the Sentinel-2 and
WorldView images, respectively (Table 2). In this scene (see
Fig. 3b), there is level bare ice that appears blue in color,
classified as melt pond in the Sentinel-2 imagery and ice in
the WorldView imagery, resulting in a higher MPF for the
Sentinel-2 scene than the WorldView scene. In the imagery
captured on 3 September 2020 (WorldView subset shown in
Fig. 3f), there are many ice fragments smaller than Sentinel-
2’s pixel size (10 m) classified as other or melt ponds in the
Sentinel-2 imagery, falsely increasing the melt pond frac-
tion. Our analysis shows that MPF can be biased low in the
Sentinel-2 results by up to 20.7 % and averaging 7.2 % when
small ponds are widespread across the surface. SIC is biased
high by up to 16 % and averaging 4.3 %, increasing as the
melt season progresses (Table 2). The WorldView images
better resolve these features and properly classify pixels as
ice or open water.

In order to quantify the impact of pixel size on derived
MPF, we look at the melt pond size distribution for each
WorldView image with a coincident Sentinel-2 image. With
knowledge of the WorldView pixel size, we can determine
the area of each object in the binary image (as in Sect. 5.3).
For each WorldView image, we determine the total area of
ponds with a size smaller than the Sentinel-2 pixel area
(100 m2). The Sentinel-2 classification cannot resolve these
small features as they are smaller than the pixel size. To quan-
tify this, we calculate an adjusted Sentinel-2 MPF that adds
the area of unresolved melt ponds into the MPF calculation
for each pair of coincident Sentinel-2 (S2) and WorldView
(WV) images:

S2_MPFadj =
S2_MPA+WV100_MPA

S2surf_A×S2_SIC
, (8)
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Table 2. Derived melt pond fraction (MPF) and sea ice concentration (SIC) from coincident WorldView and Sentinel-2 images.

Image Date Central Central S2 SIC WV SIC 1 SIC S2 MPF WV MPF 1 MPF S2 MPF adj 1 MPF (S2 adj-WV)
number latitude longitude (%) (%) (S2-WV) (%) (%) (S2-WV) (%) (%)

(%) (%)

1 9 June 2020 78.0 −125.0 94.7 92.6 2.2 0.4 0.1 0.3 0.5 0.3
2 11 June 2020 80.0 −110.0 99.2 98.2 1.1 0.0 1.1 −1.1 0.6 −0.5
3 12 June 2020 75.0 −138.0 98.2 96.6 1.6 0.0 0.1 −0.1 0.1 0.0
4 14 June 2020 78.0 −125.0 96.4 95.3 1.2 0.0 0.5 −0.5 0.3 −0.2
5 15 June 2020 80.0 −110.0 99.0 98.0 0.9 0.0 0.5 −0.5 0.5 0.0
6 17 June 2020 78.0 −125.0 96.0 95.5 0.5 8.4 2.4 6.0 9.4 7.0
7 30 June 2020 80.0 −110.0 98.5 96.6 1.9 17.0 28.5 −11.5 21.1 −7.4
8 2 July 2020 78.0 −125.0 90.7 85.7 5.0 3.6 21.9 −18.3 9.4 −12.6
9 22 July 2020 80.0 −110.0 94.6 88.2 6.4 5.3 10.9 −5.6 11.9 1.0
10 24 July 2019 80.0 −119.8 91.6 88.3 3.3 0.9 8.8 −7.9 3.7 −5.1
11 24 July 2019 80.0 −119.8 93.9 93.0 0.9 0.5 9.7 −9.1 3.8 −5.9
12 26 July 2019 80.0 −110.0 93.0 91.1 1.8 1.1 21.8 −20.7 4.5 −17.4
13 27 July 2020 80.0 −110.0 95.4 85.8 9.6 5.2 19.4 −14.3 14.5 −5.0
14 31 July 2019 82.0 −139.7 94.7 88.4 6.3 0.0 19.1 −19.1 7.6 −11.5
15 4 August 2019 80.0 −110.0 93.2 89.8 3.5 1.4 17.1 −15.7 5.2 −11.9
16 7 August 2020 80.0 −110.0 94.5 79.0 15.6 9.3 19.1 −9.8 20.5 1.5
17 9 August 2020 80.0 −135.0 96.7 90.4 6.3 4.3 7.1 −2.8 7.5 0.4
18 3 September 2020 78.0 −125.0 95.5 86.9 8.6 1.9 0.2 1.6 2.1 1.8

where S2_MPFadj is the adjusted Sentinel-2 MPF, S2_MPA
is the Sentinel-2 melt pond area, WV100_MPA is the area of
ponds less than 100 m2 in size in the coincident WorldView
image, S2surf_A is the surface area in the Sentinel-2 image,
and S2_SIC is the Sentinel-2 SIC. The denominator on the
right-hand side is a calculation of the total area of sea ice and
melt ponds in the Sentinel-2 scene. We make the assump-
tion that melt ponds smaller than the Sentinel-2 pixel size are
classified as ice, so when making this adjustment, we hold
the sea ice concentration constant, and the area of WorldView
melt ponds less than 100 m2 replaces sea ice in the original
Sentinel-2 classification. Table 2 provides the adjusted MPF
results for each pair of WorldView and coincident Sentinel-
2 images. Figure 11b shows the adjusted Sentinel-2 MPF as
the sum of the royal blue and light blue bars.

Although the addition of ponds smaller than the Sentinel-
2 pixel size through this adjustment increases the S2 MPF,
making it more comparable to the WorldView-derived MPF,
it does not account for the entire discrepancy between MPF
derived from Sentinel-2 and WorldView (Fig. 11b, Table 2).
The average difference between MPF derived from Sentinel-
2 and WorldView decreased from 7.2 % to 3.6 % when
the subpixel-size WorldView ponds were accounted for. Al-
though this methodology accounts for individual small ponds
identified in WorldView imagery, we have not accounted for
subpixel-size areas that are connected to larger ponds. Where
the Sentinel-2 pixels may be classified as ice along the edges
of ponds, a portion of that pixel may be a melt pond and
properly classified as such in the WorldView classification.
This scenario was not accounted for in the adjusted Sentinel-
2 MPF and may account for some of the remaining bias
between Sentinel-2 and WorldView imagery. We also note
that the Sentinel-2-derived SIC is on average 4.3 percentage
points greater than that derived from WorldView, and with a

higher SIC and sea ice area per scene, this contributes to a
lower MPF.

5.4.3 Melt pond depth tracking limitations

We also consider the minimum resolvable pond area when
the UMD-MPA and DDA are used to map pond depths, based
on our melt pond size distribution analysis in Sect. 5.3. The
algorithm capabilities are linked to the minimum pond width
that can be detected, which is 20 m for the UMD-MPA track-
ing (Sect. 4.2.1) and 7.5 m for the DDA tracking (Sect. 4.2.2).
To estimate the approximate area of ponds with such widths,
we assume a circular melt pond, resulting in the minimum
detectable melt pond area being 314 and 44 m2 for the UMD-
MPA and DDA, respectively. Figure 9b shows the cumulative
distribution of individual melt pond area, with the minimum
retrievable pond areas marked in magenta for the UMD-MPA
and green for the DDA. Note that the cumulative distribution
is shown for individual ponds, not total ponded area. Accord-
ing to the WorldView imagery, approximately 83 % of the
total ponded area is made up of ponds with an area smaller
than the UMD-MPA minimum resolvable size, suggesting
the UMD-MPA is missing a large majority of ponds. How-
ever, the WorldView imagery melt pond distribution suggests
that only 14 % of the total ponded area is made up of ponds
smaller than 44 m2, the minimum detectable area for the
DDA. The divergence in the UMD-MPA and DDA results is
due to the inability of the UMD-MPA to track ponds smaller
than 20 m in width, which make up 96 % of the melt ponds
by number based on the WorldView imagery classification.

The primary advantage of the DDA over the UMD-MPA is
that it can be run over any segment of ICESat-2 ATL03 data.
The DDA includes an algorithm module that avoids clouds,
including low-lying clouds down to 150 m above the digi-
tal elevation model (DEM). The DDA does not rely on the
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cloud flag reported in the atmospheric data product ATL09
(Palm et al., 2021), which is more restrictive; thus the DDA
increases the amount of data where sea ice surfaces and
melt ponds can be detected. The DDA is fully automated
without any manual user input beyond prescribed parameters
(Herzfeld et al., 2023). However, as a result of this automa-
tion, two scenarios associated with complex sea ice topog-
raphy can result in false positive melt pond detection by the
DDA. These cases are discussed in more detail in Herzfeld
et al. (2023), but here we illustrate two cases (Fig. 7) and
briefly describe our approach to reduce the impact of these
issues. In the first case, complex surface topography associ-
ated with heavily deformed and ridged ice can result in the
DDA tracking two surfaces between sea ice ridges (Fig. 7a–
b). Here, the surface tracking is not across a level pond sur-
face, but instead the algorithm bifurcates, and the first pass
connects ridge sails and the second pass tracks rubble be-
tween the ridges. Anomalies such as these can be detected
and discarded by flagging ponds that have surfaces with a
standard deviation> 0.05 m. This scenario has been elimi-
nated with updates to the algorithm described in Herzfeld
et al. (2023).

The second type of false positive pond detection occurs
due to the dead time of the ATLAS photon detectors when a
strong surface return results in saturation of the detectors and
a period of 3.2 ns when no additional photons can be detected
(Smith et al., 2019; Lu et al., 2021). Following the detector
dead time, photons are once again reported, resulting in a sec-
ondary “surface return” 0.5 m below the true surface. Over
sea ice surfaces, detector saturation commonly occurs over
very bright surfaces such as specular leads and melt ponds
(Kwok et al., 2019; Tilling et al., 2020). In this scenario,
the DDA tracks the secondary return as the bathymetry of
a pond as seen in Fig. 7c–d. To detect these occurrences, we
look at the mean density of the surface return. The distribu-
tion of the mean density of the surface returns reveals a bi-
modal histogram. We have determined that the higher mode
may correspond to a scenario where the surface is saturated
and a secondary surface return results in false positives in the
DDA tracking algorithm. Retracking anomalies due to dead
time can be identified by depth measurements corresponding
to the dead-time effect (0.5–0.6 m), where the surface mean
density is greater than the minimum between the two modes
in the mean density distribution.

6 Discussion

Factors controlling melt progression include end-of-winter
snow depth, ice topography, solar radiation, latitude, and
weather events (Eicken et al., 2004). In this section we dis-
cuss our results in the context of existing literature, under-
standing that melt pond evolution varies based on seasonal
surface conditions and regional atmospheric events.

6.1 Evolution of sea ice conditions

6.1.1 Early melt

From 1 June through 17 June, MPF was less than 5 % and
SIC greater than 99 % (Fig. 5a–b). Figure 3 shows an exam-
ple of an unponded ice surface on 9 June (Fig. 3a), and early
melt occurred in the image observed on 17 June (Fig. 3b).
During this time the median DDA-derived depth remained
below 0.5 m, and there were no ponds tracked by the UMD-
MPA. At the MOSAiC site in the same melt season as our
study but in the Fram Strait east of our study region, con-
tinuous melt started in mid-June 2020 expanding existing
ponds and increasing the pond areal coverage (Webster et al.,
2022b).

6.1.2 Maximum melt

Our results show a sharp increase in MPF in mid-June
(Fig. 5b), consistent with Perovich et al. (2002b) where aerial
observations over the field site show a rapid increase in pond
fraction over the study area from 5 % to 20 % in just a few
days. Scott and Feltham (2010) also find a sharp increase
in the modeled MPF early in the melt season in their stan-
dard multiyear case. We found MPF greater than 10 % from
23 June through 2 July, with a maximum MPF of 16 %
on 24 June. At the MOSAiC site on primarily second-year
ice, ponds greater than 100 m in diameter were observed on
1 July 2020 (Webster et al., 2022b). Maximum pond cover-
age occurred later in the season at SHEBA in 1998 (24 % on
7 August) (Perovich et al., 2002b) and at the MOSAiC site
in 2020 (21 % on 26 July) (Webster et al., 2022b). In the sec-
ond half of June, the first ponds were tracked by the UMD-
MPA (22 June), and both UMD-MPA and DDA median pond
depths increased through the end of June. Similarly, at MO-
SAiC, melt pond depths increased through early July. Scott
and Feltham (2010) found gradually increasing pond depth
in their model. Morassutti and Ledrew (1996) analyzed 220
pond depth measurements on multiyear ice within the Cana-
dian Arctic Archipelago from 27 May to 26 June 1994. These
ponds had a mean depth of 0.27 m with a standard deviation
of 0.13 m. The UMD-MPA measurements revealed a higher
mean melt pond depth for this time period (0.75 m± 0.66 m),
but this is likely due to the part of the melt pond size distri-
bution sampled by ICESat-2 and the UMD-MPA minimum
observable depth of 0.23 m. From 4–26 June 2020, the DDA-
tracked ponds had a mean pond depth of 0.54 m with a stan-
dard deviation of 0.4 m.

6.1.3 Late season evolution

Following the maximum MPF on 24 June, there was a de-
crease in MPF, consistent with Eicken et al. (2002) and Po-
lashenski et al. (2012), who both described a decrease in
pond coverage as meltwater was efficiently routed through
drainage channels, ice permeability increased, and meltwa-
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Figure 7. Anomalous melt pond detections from the automated DDA-bifurcate-seaice tracking algorithm. Examples (a) and (b) show the
result of DDA bifurcation in regions of heavily deformed ice, where the surface heights of ice blocks scattered across a rubble field are
tracked as the primary surface (red), and the height of the consolidated ice is the secondary surface (green). Examples (c) and (d) show the
subsurface dead-time effect. The inset maps the location of the four surfaces shown in (a) through (d).

ter percolated through the sea ice. At MOSAiC, a drainage
event that occurred in mid-July reduced the pond area by 5 %
(Webster et al., 2022b). Eicken et al. (2002) and Perovich
et al. (2002b) suggest a second mode of MPF as melt ponds
spread laterally and connect through drainage channels, but
we did not see this in our results. This could be a result of the
low resolution of the Sentinel-2 imagery where the smaller
drainage channels that occurred later in the melt season were
not resolved well in the imagery, and melt pond pixels were
classified as ice pixels instead. The UMD-MPA median pond
depth increased throughout July, from 0.32 m on 1 July to
0.93 on 30 July, whereas the DDA depth increased through
16 July, reached a median depth of 0.78, and then was less
than 0.5 m from 19 July through 14 August. These contrast-
ing results demonstrate the bias of the UMD-MPA towards
the identification of larger melt ponds. However, evolution
is highly dependent on local weather and sea ice conditions
(Webster et al., 2022b), and it is likely that the UMD-MPA
and DDA were tracking ponds under different atmospheric
and sea ice conditions. The simulated pond depth in Scott
and Feltham (2010) surpassed 1 m in early July and remained
above 1 m for the remainder of the melt season, agreeing well
with the UMD-MPA observations. The gradual increase in
melt pond depth throughout the season was also observed
at SHEBA (Perovich et al., 2003). Observations at MOSAiC
show that pond depth increased over time and melted through
the first-year ice by late July (Webster et al., 2022b).

6.1.4 Refreeze

The formation of ice lids on melt ponds is a sudden process,
as temperatures below freezing will quickly freeze the top
layer of the pond, drastically reducing pond fraction (Webster
et al., 2022b). Small, shallow ponds form lids before larger,
deeper ponds (Webster et al., 2022b). The MOSAiC obser-
vatory was relocated to the central Arctic (approximately at
89◦ N) in mid-August, and although MPF was greater than
30 % on 4 September, all ponds had refrozen by 6 Septem-
ber 2020, effectively reducing MPF to 0 %. The number of
melt ponds tracked by the UMD-MPA and DDA (gray his-
togram in Fig. 5c) significantly decreased towards the end of
August, indicating either that ponds had drained or that a lid
had formed preventing laser penetration into the pond. This is
consistent with our findings of low MPF during this period.
The WorldView image observed on 3 September (Fig. 3e)
shows light gray ponds, indicative of pond lid formation.

6.2 Relationship between pond depth and fraction

We consider our MPF and depth evolution results in the con-
text of the existing depth–area relationship used to parame-
terize ponds in the Community Earth System Model (CESM)
and level-ice formulation available in the Community Ice
CodE (CICE) (Holland et al., 2012; Hunke et al., 2013):

hp = 0.8×MPF, (9)

where MPF is melt pond fraction as a percent (%), and hp is
pond depth in centimeters.
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Figure 8. Surface tracking algorithms over ponded sea ice surfaces. Panels show surface height results from three algorithms applied to
the ATL03 photon height data: ATL07 (blue), DDA-bifurcate-seaice primary surface (red), DDA-bifurcate-seaice secondary surface (green),
UMD-MPA surface (black), and UMD-MPA bathymetry (magenta), along ICESat-2 reference ground tracks (RGT) (a) 0018, (b) 0044, and
(c) 0090.

The ratio is based on a time series of depth and fraction
observations from a 200 m albedo line at SHEBA in 1998.
The SHEBA observations reveal a constant linear relation-
ship between pond fraction and pond depth (Perovich et al.,
2003). However, Polashenski et al. (2012) show that in their
study over landfast ice in northern Alaska in 2009, the re-
lationship between the pond fraction and depth cannot be
described by any function. Similarly, there was no clear re-
lationship observed between pond fraction and depth at the

MOSAiC field campaign (Webster et al., 2022b); MPF in-
creased as the depth increased until early July, and then MPF
increased but the mean pond depth remained fairly constant.
In this study, the median melt pond depth and MPF increase
through June, but as MPF began to decrease, the depth con-
tinued to increase (Fig. 12). Our results suggest that there is
no simple relationship between pond depth and fraction, but
nevertheless we hope these findings can provide insight into
how pond depth and fraction evolve.
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Figure 9. Melt pond size distribution calculated from 2019 and 2020 WorldView imagery. (a) Melt pond area distribution colored by month:
June (green), July (blue), and August (magenta). Area bins of size 10 m2 were used. (b) Cumulative individual melt pond area distribution.
The Sentinel-2 individual melt pond area resolution (100 m2) is shown as a solid black line. The melt pond areas corresponding to the
minimum resolvable UMD-MPA and DDA-bifurcate-seaice widths (20, 7.5 m, respectively) and assuming circular melt ponds are shown in
magenta and green, respectively.

The study presented here shows the feasibility of conduct-
ing such analyses over large regions of the ice cover. More
work is needed to understand the evolution of these param-
eters both at local scales and Arctic-wide. We have only ap-
plied the DDA to a small subset of available ICESat-2 tracks,
and further analysis may provide additional information to
better characterize the relationship.

7 Summary and conclusions

Arctic sea ice conditions in summer 2020 were anomalous
with above-average May surface temperatures, a near-record-
setting end of September ice extent, and record ice volume
loss over the melt season (Druckenmiller et al., 2021). Satel-
lite measurements of summer sea ice provide a time series
of Arctic-wide observations, a scale unobtainable from in
situ and airborne studies. Using new, high-resolution remote
sensing observations, we tracked changes in melt pond frac-
tion and depth across perennial sea ice. We adapted algo-
rithms developed in previous work (Herzfeld et al., 2017;
Buckley et al., 2020; Farrell et al., 2020) to analyze a larger
dataset and provided new details about the evolution of melt-
ing sea ice conditions during the 2020 melt season. Melt
pond fractions increased from melt onset until 24 June,
peaked at ∼ 16 %, and then decreased for the remainder of
the summer with variability between the Sentinel-2 scenes.
These results were consistent with previous studies con-
ducted on multiyear ice that showed rapid MPF increase in
mid-June (Perovich et al., 2002b) and maximum MPF at the
end of June (Rösel and Kaleschke, 2012). However, resolu-
tion is limited, introducing errors and biases into the derived
parameters. Comparisons with higher-resolution WorldView
images suggested that MPF estimates derived from Sentinel-

2 are biased low by 7.2 % on average and up to 20 % at the
peak of the melt season (Sect. 5.3 and 5.1.3). Using these data
for the derivation of albedo may lead to an overestimation of
sea ice surface albedo, as an unponded surface has a higher
albedo than a ponded surface. The bias can be quantified and
corrected using higher-resolution WorldView imagery when
available (Sect. 5.3). We also note that the Sentinel-2-derived
SIC is on average 4.3 percentage points greater than that de-
rived from WorldView.

The UMD-MPA and DDA pond depth retrieval algorithms
show good agreement (Fig. 8; Herzfeld et al., 2023), and
the datasets were combined to increase sampling for anal-
ysis. The combined results revealed that median and mean
pond depths remained below 0.50 m until mid-June when
they slowly increased through July. The evolution of melt
pond depth is consistent with previous studies (Sect. 6.1).
The UMD-MPA manual identification of ponds favored
large ponds and resulted in the derived depths from the
UMD-MPA being biased high compared to previous studies
(Morassutti and Ledrew, 1996; Perovich et al., 2003; Web-
ster et al., 2022b). On the other hand, the DDA has the abil-
ity to automatically track multiple surfaces in situations of
complex spatial data distributions and mathematically dif-
ficult signal-to-noise ratios. In this study, we demonstrated
the ability of the DDA to track ponds on multiyear ice but
only on a subset (10 %) of the available data. The automated
DDA can be applied to all summer sea ice tracks to efficiently
extract important melt pond information. Still, 14 % of the
ponded area is not sampled due to the minimum width re-
quirement of 7.5 m for the DDA. Despite these limitations,
this study demonstrates the ability to track small-scale fea-
tures of summer sea ice over long time periods and large
areas from satellites. With a higher density of pond obser-
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Figure 10. Classification of satellite images of sea ice at 80◦ N, 110◦W acquired on 27 July 2020. (a) True-color Sentinel-2 image. (b) A
10 km× 10 km subset of the Sentinel-2 image outlined by the white box in (a) showing circular ice floes of different sizes. An area of sea ice
1 km× 0.8 km in size outlined in white shows the location of images (c)–(f). (c) The 1 km× 0.8 km subset of the Sentinel-2 image illustrating
ice floes undergoing surface melt. (d) Classification of image pixels in (c) showing sea ice (red), melt ponds (yellow), open water (blue), and
other pixels (green). (e) WorldView image of sea ice that is spatially and temporally coincident with (c) (tile 13 in Fig. 1). (f) Classification
of image pixels in (e); color-coding same as in (d). Melt pond fraction (MPF) and sea ice sea ice concentration (SIC) derived from classified
data (in units of %; WorldView imagery © 2020 Maxar).

vations spread through time and space, we will be able to
analyze these observations at multiple scales and better un-
derstand spatial and temporal patterns.

While we have demonstrated the ability to derive melt pa-
rameters from the region of thick, predominantly multiyear
ice, there is potential to extend the investigations of sum-
mer melt by including ICESat-2 and Sentinel-2 observations
over seasonal ice. However, tracking ponds on first-year ice
presents additional challenges. Ponds on thin ice are shal-
lower and melt through the ice faster than they would on mul-
tiyear ice (Morassutti and Ledrew, 1996). Our ability to track
shallow ponds is limited by ICESat-2’s 0.2 m pulse width
(Neumann et al., 2019; Tilling et al., 2020). Sentinel-2 data
over first-year ice is also limited because during the summer,
the first-year-ice area retreats off the coast of western Canada
and Alaska, and imagery is only available within 20 km of
the coast. Despite these challenges, it is important to study

the evolution of melt ponds on first-year ice, as it is the dom-
inant ice type in the Arctic. We suggest further development
of algorithms that can systematically be applied to summer
ICESat-2 ATL03 data to track melt ponds.

These findings can be put in the context of the in situ and
airborne measurements conducted as part of the MOSAiC
campaign during this same time period (Shupe et al., 2020).
Although the study region here did not overlap with the MO-
SAiC drift locations, there may be similar patterns in the
evolution of melt parameters. The ICESat-2 measurements
of melt pond depth presented in this study will benefit from
in situ and airborne validation campaigns. Dedicated in situ
campaigns are required for better understanding the melt-
ing sea ice surface and structure of the complex pond bot-
tom. Airborne measurements of melt ponds, with coincident
or near-coincident ICESat-2 passes, can further validate the
melt pond depth retrievals and quantify the uncertainty from
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Figure 11. Comparison of derived melt parameters in coincident WorldView and Sentinel-2 images. (a) SIC Sentinel-2 (green) and World-
View (gold). (b) WorldView images (red), MPF Sentinel-2 (blue), and the adjusted Sentinel-2 MPF (shown as sum of light blue and blue
bar).

Figure 12. Relationship between observed pond fraction and pond depth during the multiyear ice region in the 2020 melt season colored by
time. The 5 d median pond depth and fraction are shown.

ICESat-2 measurements over the melting sea ice surface. For
example, in July 2022, NASA conducted an airborne vali-
dation campaign to survey perennial ice north of Greenland.
Six flights mapped sea ice beneath coincident ICESat-2 or-
bits, and these data will be used for the assessment of the
accuracy of ICESat-2 observations of summer sea ice.

The melt parameters derived in this study may be useful
for advancing the parameterization of melt ponds in sea ice
models. These products can enhance our understanding of

the under-ice light and biology (Horvat et al., 2020; Light
et al., 2008), as light transmission through melt ponds pene-
trates to the upper ocean during summer (Light et al., 2008),
stimulating biological activity (Arrigo et al., 2012). Pond
depth and area measurements provide a three-dimensional
view of surface ponding and are valuable for quantifying
the volume of meltwater stored on perennial ice (Zhang
et al., 2018). Melt ponds reduce the overall albedo of sea ice
(Fetterer and Untersteiner, 1998; Perovich and Polashenski,
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2012), and meltwater drainage affects the freshwater budget
of the upper ocean (Perovich et al., 2021). Pond volume can
also be used to estimate how the presence of ponds alters the
hydrostatic balance assumed when deriving sea ice thickness
from altimeter measurements of sea ice freeboard. This study
demonstrates the feasibility of using high-resolution remote
sensing observations to understand summer sea ice evolution.
Expanding this study to other melt seasons can provide infor-
mation on the interannual variability in the melt evolution.

Code and data availability. The image classification algorithm is
available at https://github.com/ellenbuckley/MeltEvolution (last ac-
cess: February 2022) and https://doi.org/10.5281/zenodo.8280332
(Eun and Buckley, 2023). The image classification re-
sults and melt pond depth database are archived on
Zenodo, DOI: https://doi.org/10.5281/zenodo.7568995
(Buckley, 2023). ICESat-2 ATL03 data are available
at https://doi.org/10.5067/ATLAS/ATL03.005 (Neu-
mann et al., 2021), ATL07 data are available at
https://doi.org/10.5067/ATLAS/ATL07.005 (Kwok et al.,
2021b), Sentinel-2 data were downloaded from Sci-Hub
(https://doi.org/10.5270/S2_-742ikth, ESA, 2021) using the
Sentinelsat API (https://sentinelsat.readthedocs.io/, last access:
February 2022, https://doi.org/10.5281/zenodo.2629555, Valgur et
al., 2019), WorldView imagery is courtesy of the Polar Geospatial
Center, and the OSI SAF Global Sea Ice Type product is available at
https://doi.org/10.15770/EUM_SAF_OSI_NRT_2006 (OSI-SAF,
2022).
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