Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3553-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3553-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heterogeneous grain growth and vertical mass transfer within a snow layer under a temperature gradient
Lisa Bouvet
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, France
Neige Calonne
Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France
Frédéric Flin
Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France
Christian Geindreau
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, France
Related authors
Lisa Bouvet, Nicolas Allet, Neige Calonne, Frédéric Flin, and Christian Geindreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2903, https://doi.org/10.5194/egusphere-2025-2903, 2025
Short summary
Short summary
A quasi-static model is used to simulate the distribution of liquid water in the pore space of snow for various water contents. Liquid water is gradually introduced and then removed from a set of 34 3D tomography snow images by capillarity during wetting and drying simulations. This work constitutes an exploratory numerical work (i) to study the water retention curves and (ii) the effective transport properties of wet snow and how they are influenced by the water distribution at the pore scale.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 18, 4285–4313, https://doi.org/10.5194/tc-18-4285-2024, https://doi.org/10.5194/tc-18-4285-2024, 2024
Short summary
Short summary
Four different macroscopic heat and mass transfer models have been derived for a large range of condensation coefficient values by an upscaling method. A comprehensive evaluation of the models is presented based on experimental datasets and numerical examples. The models reproduce the trend of experimental temperature and density profiles but underestimate the magnitude of the processes. Possible causes of these discrepancies and potential improvements for the models are suggested.
Lisa Bouvet, Nicolas Allet, Neige Calonne, Frédéric Flin, and Christian Geindreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2903, https://doi.org/10.5194/egusphere-2025-2903, 2025
Short summary
Short summary
A quasi-static model is used to simulate the distribution of liquid water in the pore space of snow for various water contents. Liquid water is gradually introduced and then removed from a set of 34 3D tomography snow images by capillarity during wetting and drying simulations. This work constitutes an exploratory numerical work (i) to study the water retention curves and (ii) the effective transport properties of wet snow and how they are influenced by the water distribution at the pore scale.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 18, 4285–4313, https://doi.org/10.5194/tc-18-4285-2024, https://doi.org/10.5194/tc-18-4285-2024, 2024
Short summary
Short summary
Four different macroscopic heat and mass transfer models have been derived for a large range of condensation coefficient values by an upscaling method. A comprehensive evaluation of the models is presented based on experimental datasets and numerical examples. The models reproduce the trend of experimental temperature and density profiles but underestimate the magnitude of the processes. Possible causes of these discrepancies and potential improvements for the models are suggested.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Neige Calonne, Alexis Burr, Armelle Philip, Frédéric Flin, and Christian Geindreau
The Cryosphere, 16, 967–980, https://doi.org/10.5194/tc-16-967-2022, https://doi.org/10.5194/tc-16-967-2022, 2022
Short summary
Short summary
Modeling gas transport in ice sheets from surface to close-off is key to interpreting climate archives. Estimates of the diffusion coefficient and permeability of snow and firn are required but remain a large source of uncertainty. We present a new dataset of diffusion coefficients and permeability from 20 to 120 m depth at two Antarctic sites. We suggest predictive formulas to estimate both properties over the entire 100–850 kg m3 density range, i.e., anywhere within the ice sheet column.
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021, https://doi.org/10.5194/tc-15-4381-2021, 2021
Short summary
Short summary
In this study on temperature gradient metamorphism in snow, we investigate the hypothesis that there exists a favourable crystal orientation relative to the temperature gradient. We measured crystallographic orientations of the grains and their microstructural evolution during metamorphism using in situ time-lapse diffraction contrast tomography. Faceted crystals appear during the evolution, and we observe higher sublimation–deposition rates for grains with their c axis in the horizontal plane.
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Short summary
The role of snow microstructure in snow optical properties is only partially understood despite the importance of snow optical properties for the Earth system. We present a dataset combining bidirectional reflectance measurements and 3D images of snow. We show that the snow reflectance is adequately simulated using the distribution of the ice chord lengths in the snow microstructure and that the impact of the morphological type of snow is especially important when ice is highly absorptive.
Cited articles
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric
ice crystals: confirmation from the laboratory, AIRS II, and other field
studies, J. Atmos. Sci., 66, 2888–2899,
https://doi.org/10.1175/2009JAS2883.1, 2009. a
Brzoska, J., Coléou, C., Lesaffre, B., Borel, S., Brissaud, O., Ludwig, W.,
Boller, E., and Baruchel, J.: 3D visualization of snow samples by
microtomography at low temperature, ESRF Newsletter, 32, 22–23,
https://www.umr-cnrm.fr/IMG/pdf/brzoska_1999_esrf.pdf (last access: 2 August 2023), 1999. a
Cabanes, A., Legagneux, L., and Dominé, F.: Rate of evolution of the
specific surface area of surface snow layers, Environ. Sci.
Technol., 37, 661–666, https://doi.org/10.1021/es025880r, 2003. a
Calonne, N., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and
Geindreau, C.: Numerical and experimental investigations of the effective
thermal conductivity of snow, Geophys. Res. Lett., 38, L23501,
https://doi.org/10.1029/2011GL049234, 2011. a
Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014, 2014. a, b
Calonne, N., Flin, F., Lesaffre, B., Dufour, A., Roulle, J., Puglièse, P.,
Philip, A., Lahoucine, F., Geindreau, C., Panel, J.-M., Rolland du Roscoat,
S., and Charrier, P.: CellDyM: A room temperature operating cryogenic cell
for the dynamic monitoring of snow metamorphism by time-lapse X-ray
microtomography, Geophys. Res. Lett., 42, 3911–3918,
https://doi.org/10.1002/2015GL063541, 2015a. a
Calonne, N., Geindreau, C., and Flin, F.: Macroscopic modeling of heat and
water vapor transfer with phase change in dry snow based on an upscaling
method: Influence of air convection, J. Geophys. Res.-Earth, 120, 2476–2497, https://doi.org/10.1002/2015JF003605, 2015b. a
Chen, S. and Baker, I.: Evolution of individual snowflakes during metamorphism,
J. Geophys. Res.-Atmos., 115, D21114,
https://doi.org/10.1029/2010JD014132, 2010. a
Domine, F., Taillandier, A.-S., Cabanes, A., Douglas, T. A., and Sturm, M.: Three examples where the specific surface area of snow increased over time, The Cryosphere, 3, 31–39, https://doi.org/10.5194/tc-3-31-2009, 2009. a
Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J.-B., and Langlois,
A.: Major issues in simulating some arctic snowpack properties using current
detailed snow physics models: consequences for the thermal regime and water
budget of permafrost, J. Adv. Model. Earth Sy., 11,
34–44, https://doi.org/10.1029/2018MS001445, 2019. a, b, c, d, e
Dumont, M., Flin, F., Malinka, A., Brissaud, O., Hagenmuller, P., Lapalus, P., Lesaffre, B., Dufour, A., Calonne, N., Rolland du Roscoat, S., and Ando, E.: Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure, The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, 2021. a
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung,
D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The
international classification for seasonal snow on the ground, IHP-VII
Technical Documents in Hydrology, IACS Contribution no. 1, 83,
https://unesdoc.unesco.org/ark:/48223/pf0000186462 (last access: 2 August 2023), 2009. a, b, c, d
Flin, F. and Brzoska, J.-B.: The temperature-gradient metamorphism of snow:
vapour diffusion model and application to tomographic images, Ann.
Glaciol., 49, 17–21, https://doi.org/10.3189/172756408787814834, 2008. a
Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C., and Pieritz, R. A.: Full
three-dimensional modelling of curvature-dependent snow metamorphism: first
results and comparison with experimental tomographic data, J. Phys.
D Appl. Phys., 36, A49–A54, https://doi.org/10.1088/0022-3727/36/10A/310, 2003. a
Flin, F., Lesaffre, B., Dufour, A., Gillibert, L., Hasan, A., Rolland du
Roscoat, S., Cabanes, S., and Puglièse, P.: On the computations of
specific surface area and specific grain contact area from snow 3D images,
in: Physics and Chemistry of Ice, edited by: Furukawa, Y.,
Hokkaido University Press, Sapporo, Japan, 321–328,
http://www.umr-cnrm.fr/IMG/pdf/flin_etal_2011_ssa_sgca_published_color.pdf (last access: 2 August 2023),
2011. a
Fukuzawa, T. and Akitaya, E.: Depth-hoar crystal growth in the surface layer
under high temperature gradient, Ann. Glaciol., 18, 39–45,
https://doi.org/10.3189/S026030550001123X, 1993. a, b, c
Furukawa, Y. and Wettlaufer, J. S.: Snow and ice crystals, Phys. Today, 60,
70–71, https://doi.org/10.1063/1.2825081, 2007. a
Granger, R., Flin, F., Ludwig, W., Hammad, I., and Geindreau, C.: Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography, The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021, 2021. a, b, c, d, e
Hagenmuller, P., Chambon, G., Lesaffre, B., Flin, F., and Naaim, M.:
Energy-based binary segmentation of snow microtomographic images, J.
Glaciol., 59, 859–873, https://doi.org/10.3189/2013JoG13J035, 2013. a
Hagenmuller, P., Calonne, N., Chambon, G., Flin, F., Geindreau, C., and Naaim,
M.: Characterization of the snow microstructural bonding system through the
minimum cut density, Cold Reg. Sci. Technol., 108, 72–79,
https://doi.org/10.1016/j.coldregions.2014.09.002, 2014. a
Hallett, J. and Mason, B. J.: The influence of temperature and supersaturation
on the habit of ice crystals grown from the vapour, P. Roy.
Soc. Lond. A Mat., 247,
440–453, https://doi.org/10.1098/rspa.1958.0199, 1958. a
Hammonds, K., Lieb-Lappen, R., Baker, I., and Wang, X.: Investigating the
thermophysical properties of the ice–snow interface under a controlled
temperature gradient: Part I: Experiments & Observations, Cold Reg.
Sci. Technol., 120, 157–167,
https://doi.org/10.1016/j.coldregions.2015.09.006, 2015. a
Ishimoto, H., Adachi, S., Yamaguchi, S., Tanikawa, T., Aoki, T., and Masuda,
K.: Snow particles extracted from X-ray computed microtomography imagery and
their single-scattering properties, J. Quant. Spectrosc.
Ra., 209, 113–128, https://doi.org/10.1016/j.jqsrt.2018.01.021, 2018. a
Kaempfer, T. U. and Schneebeli, M.: Observation of isothermal metamorphism of
new snow and interpretation as a sintering process, J. Geophys.
Res.-Atmos., 112, D24101, https://doi.org/10.1029/2007JD009047, 2007. a
Kamata, Y. and Sato, A.: Water-vapor transport in snow with high temperature gradient, in: Physics and Chemistry of Ice, edited by: Kuhs, W. F., Royal Society of Chemistry, Cambridge, UK, 281–288, http://www.umr-cnrm.fr/IMG/pdf/kamata_and_sato_2007_high_tg.pdf (last access: 2 August 2023), 2007. a, b, c, d, e, f, g, h, i
Kamata, Y., Sokratov, S. A., and Sato, A.: Temperature and temperature gradient
dependence of snow recrystallization in depth hoar snow, in: Advances in
Cold-Region Thermal Engineering and Sciences, edited by: Hutter, K., Wang, Y.,
and Beer, H., Springer Berlin Heidelberg, 395–402,
https://doi.org/10.1007/BFb0104197, 1999. a, b
Kobayashi, T.: The growth of snow crystals at low supersaturations,
Philos. Mag., 6, 1363–1370, https://doi.org/10.1080/14786436108241231, 1961. a
Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model
for the Swiss avalanche warning: Part III: meteorological forcing, thin
layer formation and evaluation, Cold Reg. Sci. Technol., 35, 169–184,
https://doi.org/10.1016/S0165-232X(02)00072-1, 2002. a, b
Li, Y. and Baker, I.: Metamorphism observation and model of snow from summit,
Greenland under both positive and negative temperature gradients in a micro
computed tomography, Hydrol. Process., 36, e14696, https://doi.org/10.1002/hyp.14696,
2022. a
Libbrecht, K. G.: A Taxonomy of Snow Crystal Growth Behaviors: 1. Using c-axis
Ice Needles as Seed Crystals, arXiv [preprint], https://doi.org/10.48550/arxiv.2109.00098, 31 August 2021. a, b
Marbouty, D.: An experimental study of temperature-gradient metamorphism,
J. Glaciol., 26, 304–312, https://doi.org/10.3189/S0022143000010844, 1980. a, b, c
Nakaya, U.: Snow Crystals, natural and artificial, Harvard University Press, Cambridge,
510 pp., ISBN 10: 0674811518, 1954. a
Ozeki, T., Tsuda, M., Yashiro, Y., Fujita, K., and Adachi, S.: Development of
artificial surface hoar production system using a circuit wind tunnel and
formation of various crystal types, Cold Reg. Sci. Technol., 169, 102889,
https://doi.org/10.1016/j.coldregions.2019.102889, 2020. a
Pfeffer, W. T. and Mrugala, R.: Temperature gradient and initial snow density
as controlling factors in the formation and structure of hard depth hoar,
J. Glaciol., 48, 485–494, https://doi.org/10.3189/172756502781831098, 2002. a, b, c, d
Pinzer, B. R. and Schneebeli, M.: Snow metamorphism under alternating
temperature gradients: Morphology and recrystallization in surface snow,
Geophys. Res. Lett., 36, L23503, https://doi.org/10.1029/2009GL039618, 2009. a
Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography, The Cryosphere, 6, 1141–1155, https://doi.org/10.5194/tc-6-1141-2012, 2012. a, b
Riche, F., Montagnat, M., and Schneebeli, M.: Evolution of crystal orientation
in snow during temperature gradient metamorphism, J. Glaciol., 59,
47–55, https://doi.org/10.3189/2013JoG12J116, 2013. a
Rottner, D. and Vali, G.: Snow crystal habit at small excess of vapor density
over ice saturation, J. Atmos. Sci., 31, 560–569,
https://doi.org/10.1175/1520-0469(1974)031<0560:SCHASE>2.0.CO;2, 1974. a
Satyawali, P. K., Singh, A. K., Dewali, S. K., Kumar, P., and Kumar, V.: Time
dependence of snow microstructure and associated effective thermal
conductivity, Ann. Glaciol., 49, 43–50,
https://doi.org/10.3189/172756408787814753, 2008. a
Schweizer, J., Bruce Jamieson, J., and Schneebeli, M.: Snow avalanche
formation, Rev. Geophys., 41, 1016, https://doi.org/10.1029/2002RG000123, 2003. a
Srivastava, P., Mahajan, P., Satyawali, P., and Kumar, V.: Observation of
temperature gradient metamorphism in snow by X-ray computed
microtomography: measurement of microstructure parameters and simulation of
linear elastic properties, Ann. Glaciol., 51, 73–82,
https://doi.org/10.3189/172756410791386571, 2010. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b
Wang, X. and Baker, I.: Evolution of the specific surface area of snow during
high-temperature gradient metamorphism, J. Geophys. Res.-Atmos., 119, 13690–13703, https://doi.org/10.1002/2014JD022131, 2014. a, b
Wautier, A., Geindreau, C., and Flin, F.: Linking snow microstructure to its
macroscopic elastic stiffness tensor: A numerical homogenization method and
its application to 3‐D images from X‐ray tomography, Geophys.
Res. Lett., 42, 8031–8041, https://doi.org/10.1002/2015GL065227, 2015.
a
Yokoyama, E. and Kuroda, T.: Pattern formation in growth of snow crystals
occurring in the surface kinetic process and the diffusion process, Phys.
Rev. A, 41, 2038, https://doi.org/10.1103/PhysRevA.41.2038, 1990. a
Short summary
This study presents two new experiments of temperature gradient metamorphism in a snow layer using tomographic time series and focusing on the vertical extent. The results highlight two little known phenomena: the development of morphological vertical heterogeneities from an initial uniform layer, which is attributed to the temperature range and the vapor pressure distribution, and the quantification of the mass loss at the base caused by the vertical vapor fluxes and the dry lower boundary.
This study presents two new experiments of temperature gradient metamorphism in a snow layer...