Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-2119-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/tc-17-2119-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Michel Legrand
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, 38402 Grenoble, France
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Cité and Univ Paris Est Creteil, CNRS, 75013 Paris, France
Theo M. Jenk
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Susanne Preunkert
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, 38402 Grenoble, France
Camilla Andersson
Swedish Meteorological and Hydrological Institute, 60176 Norrköping, Sweden
Sabine Eckhardt
Department of Atmospheric and Climate Research, NILU – Norwegian Institute for Air Research, Kjeller, Norway
Magnuz Engardt
Environment and Health Administration, City of Stockholm, 10420 Stockholm, Sweden
Andreas Plach
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Margit Schwikowski
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
Related authors
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
David Wachs, Azzurra Spagnesi, Pascal Bohleber, Andrea Fischer, Martin Stocker-Waldhuber, Alexander Junkermann, Carl Kindermann, Linus Langenbacher, Niclas Mandaric, Joshua Marks, Florian Meienburg, Theo Jenk, Markus Oberthaler, and Werner Aeschbach
EGUsphere, https://doi.org/10.5194/egusphere-2025-3681, https://doi.org/10.5194/egusphere-2025-3681, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents an age profile of the summit glacier of Weißseespitze in the Austrian Alps. The ages were obtained by combining 14C dating with the novel atom trap trace analysis for 39Ar. The data was used to constrain glacier age models. The results show that the surface ice is ~400 a old due to recent ice loss. The remaining ice continuously covers ages up to 6000 a. This work underscores the utility of 39Ar dating in glaciology, enabling precise reconstruction of age-depth relationships.
Hannes Juchem, Fabian Maier, Ingeborg Levin, Armin Jordan, Denis Pöhler, Claudius Rosendahl, Julian Della Coletta, Susanne Preunkert, and Samuel Hammer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2374, https://doi.org/10.5194/egusphere-2025-2374, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study explores how in situ NOx observations can be used to estimate fossil fuel CO2 (ffCO2) concentration enhancements in an urban context. Even with a simple approach to account for atmospheric chemistry and ratio variability, a strong correlation could be observed, allowing the construction of a high temporal resolution NOx-based ffCO2 record with uncertainties comparable to the use of CO as a proxy. Comparisons with independent records showed a good agreement between them.
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
Atmos. Chem. Phys., 25, 7719–7739, https://doi.org/10.5194/acp-25-7719-2025, https://doi.org/10.5194/acp-25-7719-2025, 2025
Short summary
Short summary
High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution at this high Arctic station, with a persistent smoke layer extending over the whole troposphere in summer.
Paolo Gabrielli, Theo M. Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2174, https://doi.org/10.5194/egusphere-2025-2174, 2025
Short summary
Short summary
A low latitude-high altitude Alpine ice core record was obtained in 2011 from the glacier Alto dell’Ortles (Eastern Alps, Italy) and provided evidence of one of the oldest Alpine ice core records spanning the last ~7000 years, back to the last Northern Hemisphere Climatic Optimum. Here we provide a new Alto dell’Ortles chronology of improved accuracy that will allow to constrain Holocene climatic and environmental histories emerging from this high-altitude glacial archive of Central Europe.
Nikolaos Evangeliou, Ondřej Tichý, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier A. Hauglustaine
Aerosol Research, 3, 155–174, https://doi.org/10.5194/ar-3-155-2025, https://doi.org/10.5194/ar-3-155-2025, 2025
Short summary
Short summary
The COVID-19 lockdown measures in 2020 reduced emissions of various substances, improving air quality. However, PM2.5 stayed unchanged due to NH3 and related chemical transformations. Higher humidity favoured more SO42- production, as did the accumulated NH3. Excess NH3 reacted with HNO3 to make NO3-. In high-NH3 conditions such as those in 2020, a small reduction in NOx levels drove faster oxidation of NO3- and slower deposition of total inorganic NO3-, causing high secondary PM2.5.
Lucie Bakels, Michael Blaschek, Marina Dütsch, Andreas Plach, Vincent Lechner, Georg Brack, Leopold Haimberger, and Andreas Stohl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-26, https://doi.org/10.5194/essd-2025-26, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Meteorological reanalyses are crucial datasets. Most reanalyses are Eulerian, providing data at specific, fixed points in space and time. When studying how air moves, it is more convenient to follow air masses through space and time, requiring a Lagrangian reanalysis (LARA). We explain how the LARA dataset is organized, and provide four examples of applications. These include studying the evolution of wind patterns, understanding weather systems, and measuring air mass travel time over land.
Martin Vojta, Andreas Plach, Rona L. Thompson, Pallav Purohit, Kieran Stanley, Simon O’Doherty, Dickon Young, Joe Pitt, Xin Lan, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1095, https://doi.org/10.5194/egusphere-2025-1095, 2025
Short summary
Short summary
We determine European emissions of the highly potent greenhouse gas sulfur hexafluoride from 2005 to 2021 – focusing on high-emitting countries and the aggregated EU-27 emissions. Emissions declined in most regions, likely due to EU F-gas regulations. However, our results reveal that most studied countries underestimate their emissions in their national reports. Our sensitivity tests highlight the importance of dense observational networks for reliable inversion-based emission estimates.
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025, https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Short summary
Past atmospheric NH3 pollution in south-eastern Europe was reconstructed by analysing ammonium in an ice core drilled at the Mount Elbrus (Caucasus, Russia). The observed 3.5-fold increase in ice concentrations between 1750 and 1990 CE is in good agreement with estimated past dominant ammonia emissions from agriculture, mainly from south European Russia and Türkiye. In contrast to present-day conditions, the ammonium level observed in 1750 CE indicates significant natural emissions at that time.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 18, 421–430, https://doi.org/10.5194/amt-18-421-2025, https://doi.org/10.5194/amt-18-421-2025, 2025
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a two-dimensional liquid chromatography method to determine the chiral ratios of the monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha Glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Ann-Kristin Kunz, Lars Borchardt, Andreas Christen, Julian Della Coletta, Markus Eritt, Xochilt Gutiérrez, Josh Hashemi, Rainer Hilland, Armin Jordan, Richard Kneißl, Virgile Legendre, Ingeborg Levin, Susanne Preunkert, Pascal Rubli, Stavros Stagakis, and Samuel Hammer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3175, https://doi.org/10.5194/egusphere-2024-3175, 2025
Short summary
Short summary
We present, to our knowledge, the first relaxed eddy accumulation system explicitly tailored to a radiocarbon (14C)-based partitioning of fossil and non-fossil urban CO2 fluxes. Laboratory tests and in-depth quality and performance checks prove that the system meets the technical requirements. A pilot application on a tall-tower in the city of Zurich, Switzerland, demonstrates the ability to separate fossil and non-fossil CO2 fluxes within the typical precision of 14C measurements.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Vladimir Mikhalenko, Stanislav Kutuzov, Pavel Toropov, Michel Legrand, Sergey Sokratov, Gleb Chernyakov, Ivan Lavrentiev, Susanne Preunkert, Anna Kozachek, Mstislav Vorobiev, Aleksandra Khairedinova, and Vladimir Lipenkov
Clim. Past, 20, 237–255, https://doi.org/10.5194/cp-20-237-2024, https://doi.org/10.5194/cp-20-237-2024, 2024
Short summary
Short summary
In this paper, we present a reconstruction of snow accumulation for both summer and winter over the past 260 years using ice-core records obtained from Mt. Elbrus in the Caucasus region. The accumulation record represents the historical precipitation patterns in a vast region encompassing the northern Caucasus, Black Sea, and southeastern Europe. Our findings show that the North Atlantic plays a crucial role in determining precipitation levels in this region.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019, https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
Short summary
Greenhouse gases emissions are contributing to global warming and it is essential to better understand where they originate from and how they are transported. In this study we analyze greenhouse gas observations at a Swiss tall tower where measurements are taken more than 200 m above ground and investigate their origin by looking at the condition of the atmosphere at the time of the observations. We find that most pollution at this site is caused from emissions transported from further away.
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323, https://doi.org/10.5194/gmd-15-8295-2022, https://doi.org/10.5194/gmd-15-8295-2022, 2022
Short summary
Short summary
In light of recent global warming, we aim to improve methods for modeling greenhouse gas emissions in order to support the successful implementation of the Paris Agreement. In this study, we investigate certain aspects of a Bayesian inversion method that uses computer simulations and atmospheric observations to improve estimates of greenhouse gas emissions. We explore method limitations, discuss problems, and suggest improvements.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Andreas Plach, Bo M. Vinther, Kerim H. Nisancioglu, Sindhu Vudayagiri, and Thomas Blunier
Clim. Past, 17, 317–330, https://doi.org/10.5194/cp-17-317-2021, https://doi.org/10.5194/cp-17-317-2021, 2021
Short summary
Short summary
In light of recent large-scale melting of the Greenland ice sheet
(GrIS), e.g., in the summer of 2012 several days with surface melt
on the entire ice sheet (including elevations above 3000 m), we use
computer simulations to estimate the amount of melt during a
warmer-than-present period of the past. Our simulations show more
extensive melt than today. This is important for the interpretation of
ice cores which are used to reconstruct the evolution of the ice sheet
and the climate.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Cited articles
Abdul-Wahab, S. and Alsubhi, Z.:
Modeling and analysis of hydrogen fluoride pollution from an aluminum smelter located in Oman, Sustain. Cities Soc., 51, 101802, https://doi.org/10.1016/j.scs.2019.101802, 2019.
Andersson, C., Langner, J., and Bergstrom, R.:
Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis, Tellus B, 59, 77–98, https://doi.org/10.1111/j.1600-0889.2006.00231.x, 2007.
Beaudon, E., Moore, J. C., Martma, T., Pohjola, V. A., van de Wal, R. S. W., Kohler, J., and Isaksson, E.:
Lomonosovfonna and Holtedahlfonna ice cores reveal east west disparities of the Spitsbergen environment since AD 1700, J. Glaciol., 59, 1069–1083, https://doi.org/10.3189/2013JoG12J203, 2013.
Belušić, D., de Vries, H., Dobler, A., Landgren, O., Lind, P., Lindstedt, D., Pedersen, R. A., Sánchez-Perrino, J. C., Toivonen, E., van Ulft, B., Wang, F., Andrae, U., Batrak, Y., Kjellström, E., Lenderink, G., Nikulin, G., Pietikäinen, J.-P., Rodríguez-Camino, E., Samuelsson, P., van Meijgaard, E., and Wu, M.:
HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales, Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, 2020.
Biggins, P. D. E. and Harrison, R. M.:
Atmospheric chemistry of automotive lead, Environ. Sci. Technol., 13, 558–565, https://doi.org/10.1021/es60153a017, 1979.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. G., and Trautmann, N. M.:
Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006gb002840, 2007.
Cao, F., Zhang, Y. L., Szidat, S., Zapf, A., Wacker, L., and Schwikowski, M.:
Microgram-level radiocarbon determination of carbonaceous particles in firn and ice samples: Pretreatment and OC/EC separation, Radiocarbon, 55, 383–390, https://doi.org/10.2458/azu_js_rc.55.16291, 2013.
Currie, L. A., Benner, B. A., Kessler, J. D., Klinedinst, D. B., Klouda, G. A., Marolf, J. V., Slater, J. F., Wise, S. A., Cachier, H., Cary, R., Chow, J. C., Watson, J., Druffel, E. R. M., Masiello, C. A., Eglinton, T. I., Pearson, A., Reddy, C. M., Gustafsson, O., Quinn, J. G., Hartmann, P. C., Hedges, J. I., Prentice, K. M., Kirchstetter, T. W., Novakov, T., Puxbaum, H., and Schmid, H.:
A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a, J. Res. Natl. Inst. Stan., 107, 279–298, https://doi.org/10.6028/jres.107.022, 2002.
Döscher, A., Gäggeler, H. W., Schotterer, U., and Schwikowski, M.:
A historical record of ammonium concentrations from a glacier in the Alps, Geophys. Res. Lett., 23, 2741–2744, https://doi.org/10.1029/96gl02615, 1996.
Duan, K. Q., Thompson, L. G., Yao, T., Davis, M. E., and Mosley-Thompson, E.:
A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core, Geophys. Res. Lett., 34, L01810, https://doi.org/10.1029/2006gl027456, 2007.
Eckhardt, S., Cassiani, M., Evangeliou, N., Sollum, E., Pisso, I., and Stohl, A.:
Source–receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode, Geosci. Model Dev., 10, 4605–4618, https://doi.org/10.5194/gmd-10-4605-2017, 2017.
Eichler, A., Schwikowski, M., and Gäggeler, H. W.:
An Alpine ice-core record of anthropogenic HF and HCl emissions, Geophys. Res. Lett., 27, 3225–3228, https://doi.org/10.1029/2000GL012006, 2000a.
Eichler, A., Schwikowski, M., Gäggeler, H. W., Furrer, V., Synal, H. A., Beer, J., Saurer, M., and Funk, M.:
Glaciochemical dating of an ice core from upper Grenzgletscher (4200 ), J. Glaciol., 46, 507–515, https://doi.org/10.3189/172756500781833098, 2000b.
Eichler, A., Schwikowski, M., and Gäggeler, H. W.:
Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192–203, https://doi.org/10.1034/j.1600-0889.2001.d01-15.x, 2001.
Eichler, A., Schwikowski, M., Furger, M., Schotterer, U., and Gäggeler, H. W.:
Sources and distribution of trace species in Alpine precipitation inferred from two 60-year ice core paleorecords, Atmos. Chem. Phys. Discuss., 4, 71–108, https://doi.org/10.5194/acpd-4-71-2004, 2004.
Eichler, A., Brütsch, S., Olivier, S., Papina, T., and Schwikowski, M.:
A 750 year ice core record of past biogenic emissions from Siberian boreal forests, Geophys. Res. Lett., 36, L18813, https://doi.org/10.1029/2009gl038807, 2009.
Eichler, A., Tobler, L., Eyrikh, S., Gramlich, G., Malygina, N., Papina, T., and Schwikowski, M.:
Three centuries of Eastern European and Altai lead emissions recorded in a Belukha ice core, Environ. Sci. Technol., 46, 4323–4330, https://doi.org/10.1021/es2039954, 2012.
Eichler, A., Tobler, L., Eyrikh, S., Malygina, N., Papina, T., and Schwikowski, M.:
Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union, Environ. Sci. Technol., 48, 2635–2642, https://doi.org/10.1021/es404861n, 2014.
Eichler, A., Legrand, M., Jenk, T. M., Preunkert, S., and Schwikowski, M.: Swiss and French Alps Black Carbon, Ion and Trace Element Concentration Ice Core Data from 1755–2015 CE, NOAA World Data Service for Paleoclimatology (WDS-Paleo) [data set], https://doi.org/10.25921/rcsw-2625, 2023.
Engardt, M., Simpson, D., Schwikowski, M., and Granat, L.:
Deposition of sulphur and nitrogen in Europe 1900-2050. Model calculations and comparison to historical observations, Tellus B, 69, 1328945, https://doi.org/10.1080/16000889.2017.1328945, 2017.
Fagerli, H., Legrand, M., Preunkert, S., Vestreng, V., Simpson, D., and Cerqueira, M.:
Modeling historical long-term trends of sulfate, ammonium, and elemental carbon over Europe: A comparison with ice core records in the Alps, J. Geophys. Res.-Atmos., 112, D23S13, https://doi.org/10.1029/2006jd008044, 2007.
Fang, L., Cao, F., Henne, S., Szidat, S., Schwikowski, M., and Jenk, T. M.:
Carbonaceous aerosol trends and sources from an Alpine ice core, Annual Report 2019, Laboratory of Environmental Chemistry, Paul Scherrer Institute, 2019.
Fischer, H., Wagenbach, D., and Kipfstuhl, J.:
Sulfate and nitrate firn concentrations on the Greenland ice sheet – 2. Temporal anthropogenic deposition changes, J. Geophys. Res.-Atmos., 103, 21935–21942, https://doi.org/10.1029/98jd01886, 1998.
Gabrieli, J.:
Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs) in snow and ice sampled at Colle Gnifetti, Monte Rosa(4450 m), during the last 10,000 years: Environmental and climatic implications, Applied geology, Université Joseph-Fourier-Grenoble I, 2008.
Gabrieli, J. and Barbante, C.:
The Alps in the age of the Anthropocene: the impact of human activities on the cryosphere recorded in the Colle Gnifetti glacier, Rend. Fis. Acc. Lincei, 25, 71–83, https://doi.org/10.1007/s12210-014-0292-2, 2014.
Gabrielli, P., Wegner, A., Sierra-Hernandez, M. R., Beaudon, E., Davis, M., Barker, J. D., and Thompson, L. G.:
Early atmospheric contamination on the top of the Himalayas since the onset of the European Industrial Revolution, P. Natl. Acad. Sci. USA, 117, 3967–3973, https://doi.org/10.1073/pnas.1910485117, 2020.
Giannakis, E., Kushta, J., Bruggeman, A., and Lelieveld, J.:
Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations, Environ. Sci. Eur., 31, 1–13, https://doi.org/10.1186/s12302-019-0275-0, 2019.
Gross, B. H., Kreutz, K. J., Osterberg, E. C., McConnell, J. R., Handley, M., Wake, C. P., and Yalcin, K.:
Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes, J. Geophys. Res.-Atmos., 117, D16307, https://doi.org/10.1029/2011jd017270, 2012.
Hersbach, H., Rosnay, P. d., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford, P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A. J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.:
Operational global reanalysis: progress, future directions and synergies with NWP, ERA Report, European Centre for Medium Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, England, https://doi.org/10.21957/tkic6g3wm, 2018.
Höglund-Isaksson, L., Gomez-Sanabria, A., Klimont, Z., Rafaj, P., and Schopp, W.:
Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe-results from the GAINS model, Environmental Research Communications, 2, 025004, https://doi.org/10.1088/2515-7620/ab7457, 2020.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.:
Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hoffmann, H., Preunkert, S., Legrand, M., Leinfelder, D., Bohleber, P., Friedrich, R., and Wagenbach, D.:
A new sample preparation system for micro-C-14 dating of glacier ice with a first application to a high Alpine ice core from Colle Gnifetti (Switzerland), Radiocarbon, 60, 517–533, https://doi.org/10.1017/rdc.2017.99, 2018.
Jenk, T. M.:
Ice core based reconstruction of past climate conditions and air pollution in the Alps using radiocarbon, Departement für Chemie und Biochemie, Universität Bern, Bern, https://biblio.unibe.ch/download/eldiss/06jenk_tabs.pdf (last access: 1 April 2022), 2006.
Jenk, T. M., Szidat, S., Schwikowski, M., Gäggeler, H. W., Brütsch, S., Wacker, L., Synal, H.-A., and Saurer, M.:
Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940), Atmos. Chem. Phys., 6, 5381–5390, https://doi.org/10.5194/acp-6-5381-2006, 2006.
Jenk, T. M., Szidat, S., Bolius, D., Sigl, M., Gäggeler, H. W., Wacker, L., Ruff, M., Barbante, C., Boutron, C. F., and Schwikowski, M.:
A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages, J. Geophys. Res.-Atmos., 114, D14305, https://doi.org/10.1029/2009jd011860, 2009.
Kaspari, S., Mayewski, P. A., Handley, M., Osterberg, E., Kang, S. C., Sneed, S., Hou, S. G., and Qin, D. H.:
Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350-year Mount Everest ice core record, J. Geophys. Res.-Atmos., 114, D04302, https://doi.org/10.1029/2008jd011088, 2009.
Koch, D., Bauer, S. E., Del Genio, A., Faluvegi, G., McConnell, J. R., Menon, S., Miller, R. L., Rind, D., Ruedy, R., Schmidt, G. A., and Shindell, D.:
Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses, J. Climate, 24, 2693–2714, https://doi.org/10.1175/2011jcli3582.1, 2011.
Kupper, T., Bonjour, C., and Menzi, H.:
Evolution of farm and manure management and their influence on ammonia emissions from agriculture in Switzerland between 1990 and 2010, Atmos. Environ., 103, 215–221, https://doi.org/10.1016/j.atmosenv.2014.12.024, 2015.
Legrand, M., de Angelis, M., and Delmas, R. J.:
Ion chromatographic determination of common ions at ultratrace levels in antarctic snow and ice, Anal. Chim. Acta, 156, 181–192, https://doi.org/10.1016/S0003-2670(00)85549-X, 1984.
Legrand, M., de Angelis, M., and Maupetit, F.:
Field investigation of major and minor ions along Summit (Central Greenland) ice cores by ion chromatography, J. Chromatogr., 640, 251–258, https://doi.org/10.1016/0021-9673(93)80188-E, 1993.
Legrand, M., Preunkert, S., May, B., Guilhermet, J., Hoffman, H., and Wagenbach, D.: Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: Implications for the long-term change of organic aerosol over Europe, J. Geophys. Res.-Atmos., 118, 3879–3890, https://doi.org/10.1002/jgrd.50202, 2013.
Legrand, M., McConnell, J. R., Preunkert, S., Arienzo, M., Chellman, N., Gleason, K., Sherwen, T., Evans, M. J., and Carpenter, L. J.: Alpine ice evidence of a three-fold increase in atmospheric iodine deposition since 1950 in Europe due to increasing oceanic emissions, P. Natl. Acad. Sci. USA, 115, 12136–12141, https://doi.org/10.1073/pnas.1809867115, 2018.
Legrand, M., McConnell, J. R., Lestel, L., Preunkert, S., Arienzo, M., Chellman, N. J., Stohl, A., and Eckhardt, S.:
Cadmium pollution from Zinc-smelters up to fourfold higher than expected in Western Europe in the 1980s as revealed by Alpine ice, Geophys. Res. Lett., 47, 1–10, https://doi.org/10.1029/2020gl087537, 2020.
Lehner, F., Deser, C., and Terray, L.:
Toward a New Estimate of “Time of Emergence” of Anthropogenic Warming: Insights from Dynamical Adjustment and a Large Initial-Condition Model Ensemble, J. Climate, 30, 7739–7756, https://doi.org/10.1175/jcli-d-16-0792.1, 2017.
Lim, S., Faïn, X., Zanatta, M., Cozic, J., Jaffrezo, J.-L., Ginot, P., and Laj, P.:
Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement, Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, 2014.
Lind, P., Belusic, D., Medus, E., Dobler, A., Pedersen, R. A., Wang, F. X., Matte, D., Kjellstrom, E., Landgren, O., Lindstedt, D., Christensen, O. B., and Christensen, J. H.:
Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model, Clim. Dynam., 1–23, https://doi.org/10.1007/s00382-022-06589-3, 2022.
Liu, L., Zhang, X. Y., Xu, W., Liu, X. J., Li, Y., Wei, J., Gao, M., Bi, J., Lu, X. H., Wang, Z., and Wu, X. D.:
Challenges for Global Sustainable Nitrogen Management in Agricultural Systems, J. Agr. Food. Chem., 68, 3354–3361, https://doi.org/10.1021/acs.jafc.0c00273, 2020.
Liu, L., Xu, W., Lu, X. K., Zhong, B. Q., Guo, Y. X., Lu, X., Zhao, Y. H., He, W., Wang, S. H., Zhang, X. Y., Liu, X. J., and Vitousek, P.:
Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980, P. Natl. Acad. Sci. USA, 119, https://doi.org/10.1073/pnas.2121998119, 2022.
McConnell, J. R., Chellman, N. J., Wilson, A. I., Stohl, A., Arienzo, M. M., Eckhardt, S., Fritzsche, D., Kipfstuhl, S., Opel, T., Place, P. F., and Steffensen, J. P.:
Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict, P. Natl. Acad. Sci. USA, 116, 14910–14915, https://doi.org/10.1073/pnas.1904515116, 2019.
More, A. F., Spaulding, N. E., Bohleber, P., Handley, M. J., Hoffmann, H., Korotkikh, E. V., Kurbatov, A. V., Loveluck, C. P., Sneed, S. B., McCormick, M., and Mayewski, P. A.:
Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death, Geohealth, 1, 211–219, https://doi.org/10.1002/2017gh000064, 2017.
Nickus, U., Kuhn, M., Baltensperger, U., Delmas, R., Gäggeler, H., Kasper, A., KrompKolb, H., Maupetit, F., Novo, A., Pichlmayer, F., Preunkert, S., Puxbaum, H., Rossi, G., Schoner, W., Schwikowski, M., Seibert, P., Staudenger, M., Trockner, V., Wagenbach, D., and Winiwarter, W.:
SNOSP: Ion deposition and concentration in high alpine snow packs, Tellus B, 49, 56–71, https://doi.org/10.3402/tellusb.v49i1.15950, 1997.
Olivier, S., Blaser, C., Brütsch, S., Frolova, N., Gäggeler, H. W., Henderson, K. A., Palmer, A. S., Papina, T., and Schwikowski, M.:
Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai, J. Geophys. Res.-Atmos., 111, D05309, https://doi.org/10.1029/2005jd005830, 2006.
Osmont, D., Wendl, I. A., Schmidely, L., Sigl, M., Vega, C. P., Isaksson, E., and Schwikowski, M.:
An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard, Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, 2018.
Osterberg, E., Mayewski, P., Kreutz, K., Fisher, D., Handley, M., Sneed, S., Zdanowicz, C., Zheng, J., Demuth, M., Waskiewicz, M., and Bourgeois, J.:
Ice core record of rising lead pollution in the North Pacific atmosphere, Geophys. Res. Lett., 35, L05810, https://doi.org/10.1029/2007gl032680, 2008.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.:
Recommendations for reporting “black carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.:
The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.
Preunkert, S. and Legrand, M.:
Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores, Clim. Past, 9, 1403–1416, https://doi.org/10.5194/cp-9-1403-2013, 2013.
Preunkert, S., Wagenbach, D., Legrand, M., and Vincent, C.:
Col du Dome (Mt Blanc Massif, French Alps) suitability for ice-core studies in relation with past atmospheric chemistry over Europe, Tellus B, 51, 993–1012, https://doi.org/10.3402/tellusb.v52i3.17081, 2000.
Preunkert, S., Legrand, M., and Wagenbach, D.:
Sulfate trends in a Col du Dome (French Alps) ice core: A record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century, J. Geophys. Res.-Atmos., 106, 31991–32004, https://doi.org/10.1029/2001JD000792, 2001a.
Preunkert, S., Legrand, M., and Wagenbach, D.:
Causes of enhanced fluoride levels in Alpine ice cores over the last 75 years: Implications for the atmospheric fluoride budget, J. Geophys. Res.-Atmos., 106, 12619–12632, https://doi.org/10.1029/2000JD900755, 2001b.
Preunkert, S., Wagenbach, D., and Legrand, M.:
A seasonally resolved alpine ice core record of nitrate: Comparison with anthropogenic inventories and estimation of preindustrial emissions of NO in Europe, J. Geophys. Res.-Atmos., 108, 4681, https://doi.org/10.1029/2003JD003475, 2003.
Preunkert, S., Legrand, M., Kutuzov, S., Ginot, P., Mikhalenko, V., and Friedrich, R.:
The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe, Atmos. Chem. Phys., 19, 14119–14132, https://doi.org/10.5194/acp-19-14119-2019, 2019a.
Preunkert, S., McConnell, J. R., Hoffmann, H., Legrand, M., Wilson, A. I., Eckhardt, S., Stohl, A., Chellman, N. J., Arienzo, M. M., and Friedrich, R.:
Lead and Antimony in Basal Ice From Col du Dome (French Alps) Dated With Radiocarbon: A Record of Pollution During Antiquity, Geophys. Res. Lett., 46, 4953–4961, https://doi.org/10.1029/2019gl082641, 2019b.
Robertson, L., Langner, J., and Engardt, M.:
An Eulerian limited-area atmospheric transport model, J. Appl. Meteorol., 38, 190–210, https://doi.org/10.1175/1520-0450(1999)038<0190:Aelaat>2.0.Co;2, 1999.
Samyn, D., Vega, C. P., Motoyama, H., and Pohjola, V. A.:
Nitrate and Sulfate Anthropogenic Trends in the 20th Century from Five Svalbard Ice Cores, Arct. Antarct. Alp. Res., 44, 490–499, https://doi.org/10.1657/1938-4246-44.4.490, 2012.
Schwikowski, M.:
Reconstruction of European Air Pollution from Alpine Ice Cores, in: Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers, edited by: DeWayne Cecil, L., Green, J. R., and Thompson, L. G., Springer Netherlands, Dordrecht, 95–119, https://doi.org/10.1007/1-4020-2146-1_6, 2004.
Schwikowski, M., Brütsch, S., Gäggeler, H. W., and Schotterer, U.:
A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps, J. Geophys. Res.-Atmos., 104, 13709–13719, https://doi.org/10.1029/1998jd100112, 1999a.
Schwikowski, M., Döscher, A., Gäggeler, H. W., and Schotterer, U.:
Anthropogenic versus natural sources of atmospheric sulphate from an Alpine ice core, Tellus B, 51, 938–951, https://doi.org/10.3402/tellusb.v51i5.16506, 1999b.
Schwikowski, M., Barbante, C., Doering, T., Gaeggeler, H. W., Boutron, C., Schotterer, U., Tobler, L., Van De Velde, K. V., Ferrari, C., Cozzi, G., Rosman, K., and Cescon, P.:
Post-17th-century changes of European lead emissions recorded in high-altitude alpine snow and ice, Environ. Sci. Technol., 38, 957–964, https://doi.org/10.1021/es034715o, 2004.
Seinfeld, J. H. and Pandis, S. N.:
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, J ohn Wiley & Sons, Hoboken, ISBN 978-1-118-94740-1, 2016.
Shotyk, W., Zheng, J. C., Krachler, M., Zdanowicz, C., Koerner, R., and Fisher, D.:
Predominance of industrial Pb in recent snow (1994-2004) and ice (1842-1996) from Devon Island, Arctic Canada, Geophys. Res. Lett., 32, L21814, https://doi.org/10.1029/2005gl023860, 2005.
Sierra-Hernandez, M. R., Gabrielli, P., Beaudon, E., Wegner, A., and Thompson, L. G.:
Atmospheric depositions of natural and anthropogenic trace elements on the Guliya ice cap (northwestern Tibetan Plateau) during the last 340 years, Atmos. Environ., 176, 91–102, https://doi.org/10.1016/j.atmosenv.2017.11.040, 2018.
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., and Schwikowski, M.:
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers, The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, 2018a.
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M, Osmont, D., and Schwikowski, M.: Record of black carbon (rBC), bismuth, lead and others from 1741 to 2015 AD from Colle Gnifetti ice cores GC15 and GC03B (Swiss/Italian Alps), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.894787, 2018b.
Skjøth, C. A. and Geels, C.:
The effect of climate and climate change on ammonia emissions in Europe, Atmos. Chem. Phys., 13, 117–128, https://doi.org/10.5194/acp-13-117-2013, 2013.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.:
Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J., Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D., Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne, E., Coheur, P. F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C., Skjoth, C. A., Geels, C., Hertel, O., Kruit, R. J. W., Pinder, R. W., Bash, J. O., Walker, J. T., Simpson, D., Horvath, L., Misselbrook, T. H., Bleeker, A., Dentener, F., and de Vries, W.:
Towards a climate-dependent paradigm of ammonia emission and deposition, Philos. T. Roy. Soc. B, 368, 20130166, https://doi.org/10.1098/rstb.2013.0166, 2013.
Theobald, M. R., Vivanco, M. G., Aas, W., Andersson, C., Ciarelli, G., Couvidat, F., Cuvelier, K., Manders, A., Mircea, M., Pay, M.-T., Tsyro, S., Adani, M., Bergström, R., Bessagnet, B., Briganti, G., Cappelletti, A., D'Isidoro, M., Fagerli, H., Mar, K., Otero, N., Raffort, V., Roustan, Y., Schaap, M., Wind, P., and Colette, A.:
An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010, Atmos. Chem. Phys., 19, 379–405, https://doi.org/10.5194/acp-19-379-2019, 2019.
Vincent, C., Vallon, M., Pinglot, J. F., Funk, M., and Reynaud, L.:
Snow accumulation and ice flow at Dome du Gouter (4300 m), Mont Blanc, French Alps, J. Glaciol., 43, 513–521, https://doi.org/10.3189/S0022143000035127, 1997.
Wagenbach, D., Bohleber, P., and Preunkert, S.:
Cold, Alpine ice bodies revisited: What may we learn from their impurity and isotope content?, Geogr. Ann. A, 94A, 245–263, https://doi.org/10.1111/j.1468-0459.2012.00461.x, 2012.
Wendl, I. A., Menking, J. A., Färber, R., Gysel, M., Kaspari, S. D., Laborde, M. J. G., and Schwikowski, M.:
Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer, Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, 2014.
Williams, C. R. and Harrison, R. M.:
Cadmium in the atmosphere, Experientia, 40, 29–36, https://doi.org/10.1007/bf01959099, 1984.
WMO GAW:
The Global Atmosphere Watch Programme 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses, WMO-No. 1143, World Meteorological Organization, Geneva, 48 pp., ISBN 978-92-63-11143-2, 2014.
Zdanowicz, C. M., Proemse, B. C., Edwards, R., Feiteng, W., Hogan, C. M., Kinnard, C., and Fisher, D.:
Historical black carbon deposition in the Canadian High Arctic: a < 250-year long ice-core record from Devon Island, Atmos. Chem. Phys., 18, 12345–12361, https://doi.org/10.5194/acp-18-12345-2018, 2018.
Zhao, H. B., Xu, B. Q., Yao, T. D., Tian, L. D., and Li, Z.:
Records of sulfate and nitrate in an ice core from Mount Muztagata, Central Asia, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2011jd015735, 2011.
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol...