Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1935-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1935-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of atmospheric forcing uncertainties on Arctic and Antarctic sea ice simulations in CMIP6 OMIP models
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, 1348, Belgium
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai, 519000, China
François Massonnet
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, 1348, Belgium
Thierry Fichefet
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, 1348, Belgium
Martin Vancoppenolle
Laboratoire d'Océanographie et du Climat, CNRS/IRD/MNHN, Sorbonne
Université, 75252, Paris, France
Related authors
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021, https://doi.org/10.5194/gmd-14-6331-2021, 2021
Short summary
Short summary
This study introduces a new Sea Ice Evaluation Tool (SITool) to evaluate the model skills on the bipolar sea ice simulations by providing performance metrics and diagnostics. SITool is applied to evaluate the CMIP6 OMIP simulations. By changing the atmospheric forcing from CORE-II to JRA55-do data, many aspects of sea ice simulations are improved. SITool will be useful for helping teams managing various versions of a sea ice model or tracking the time evolution of model performance.
Annelies Sticker, François Massonnet, Thierry Fichefet, Patricia DeRepentigny, Alexandra Jahn, David Docquier, Christopher Wyburn-Powell, Daphne Quint, Erica Shivers, and Makayla Ortiz
The Cryosphere, 19, 3259–3277, https://doi.org/10.5194/tc-19-3259-2025, https://doi.org/10.5194/tc-19-3259-2025, 2025
Short summary
Short summary
Our study analyzes rapid ice loss events (RILEs) in the Arctic, which are significant reductions in sea ice extent. RILEs are expected throughout the year, varying in frequency and duration with the seasons. Our research gives a year-round analysis of their characteristics in climate models and suggests that summer RILEs could begin before the middle of the century. Understanding these events is crucial as they can have profound impacts on the Arctic environment.
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Florian Sauerland, Pierre-Vincent Huot, Sylvain Marchi, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, François Klein, François Massonnet, Bianca Mezzina, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Charles Pelletier, Deborah Verfaillie, Lars Zipf, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2889, https://doi.org/10.5194/egusphere-2025-2889, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We simulated the Antarctic climate from 1985 to 2014. Our model is driven using the ERA-5 reanalysis for one simulation and the EC-Earth global climate model for three others. Most of the simulated trends, such as sea ice extent and precipitation over land, have opposite signs for the two drivers, but agree between the three EC-Earth driven simulations. We conclude that these opposing trends must be due to the different drivers, and that the climate over land is less predictable than over sea.
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083, https://doi.org/10.5194/egusphere-2025-3083, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The earth system model variables needed for studies of the ocean and sea ice are prioritized and requested.
Hugues Goosse, Stephy Libera, Alberto C. Naveira Garabato, Benjamin Richaud, Alessandro Silvano, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1837, https://doi.org/10.5194/egusphere-2025-1837, 2025
Short summary
Short summary
The position of the winter sea ice edge in the Southern Ocean is strongly linked to the one of the Antarctic Circumpolar Current and thus to ocean bathymetry. This is due to the influence of the Antarctic Circumpolar Current on the southward heat flux that limits sea ice expansion, directly through oceanic processes and indirectly through its influence on atmospheric heat transport.
Benjamin Richaud, François Massonnet, Thierry Fichefet, Dániel Topál, Antoine Barthélemy, and David Docquier
EGUsphere, https://doi.org/10.5194/egusphere-2025-886, https://doi.org/10.5194/egusphere-2025-886, 2025
Short summary
Short summary
Sea ice covers in the Arctic and Antarctic experienced intense reduction during specific recent years. Using an ocean-sea ice model, we found similarities between hemispheres and years to explain the ice reduction, such as ice melt (or lack of growth) at the ice-ocean interface. Differences between years and regions are also evident, such as increased ice transport or snow precipitation. This highlights the importance of heat stored by the ocean to explain ice melt in a warming climate.
Jerome Sauer, François Massonnet, Giuseppe Zappa, and Francesco Ragone
Earth Syst. Dynam., 16, 683–702, https://doi.org/10.5194/esd-16-683-2025, https://doi.org/10.5194/esd-16-683-2025, 2025
Short summary
Short summary
An obstacle in studying climate extremes is the lack of robust statistics. We use a rare event algorithm to gather robust statistics on extreme Arctic sea ice lows with probabilities below 0.1 % and to study drivers of events with amplitudes larger than observed in 2012. The work highlights that the most extreme sea ice reductions result from the combined effects of preconditioning and weather variability, emphasizing the need for thoughtful ensemble design when turning to real applications.
Letizia Tedesco, Giulia Castellani, Pedro Duarte, Meibing Jin, Sebastien Moreau, Eric Mortenson, Benjamin Tobey Saenz, Nadja Steiner, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1107, https://doi.org/10.5194/egusphere-2025-1107, 2025
Short summary
Short summary
Sea ice is home to tiny algae that support polar marine life, but understanding how they grow and interact with their environment remains challenging. We compared six computer models that simulate these algae and nutrients in sea ice, testing them against real-world data from Arctic sea ice. Our results show that while models can capture algal growth, they struggle to represent nutrient changes. Improving these models will help in understanding how climate change affects polar marine ecosystems.
Théo Brivoal, Virginie Guemas, Martin Vancoppenolle, Clément Rousset, and Bertrand Decharme
EGUsphere, https://doi.org/10.5194/egusphere-2024-3220, https://doi.org/10.5194/egusphere-2024-3220, 2025
Short summary
Short summary
Snow in polar regions is key to sea ice formation and the Earth's climate, but current climate models simplify snow cover on sea ice. This study integrates an intermediate complexity snow-physics scheme into a sea-ice model designed for climate applications. We show that modelling the temporal changes in properties such as the density and thermal conductivity of the snow layers leads to a more accurate representation of heat transfer between the underlying sea ice and the atmosphere.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Steve Delhaye, Rym Msadek, Thierry Fichefet, François Massonnet, and Laurent Terray
EGUsphere, https://doi.org/10.5194/egusphere-2023-1748, https://doi.org/10.5194/egusphere-2023-1748, 2023
Preprint archived
Short summary
Short summary
The climate impact of Arctic sea ice loss may depend on the region of sea ice loss and the methodology used to study this impact. This study uses two approaches across seven climate models to investigate the winter atmospheric circulation response to regional sea ice loss. Our findings indicate a consistent atmospheric circulation response to pan-Arctic sea ice loss in most models and across both approaches. In contrast, more uncertainty emerges in the responses linked to regional sea ice loss.
Max Thomas, Briana Cate, Jack Garnett, Inga J. Smith, Martin Vancoppenolle, and Crispin Halsall
The Cryosphere, 17, 3193–3201, https://doi.org/10.5194/tc-17-3193-2023, https://doi.org/10.5194/tc-17-3193-2023, 2023
Short summary
Short summary
A recent study showed that pollutants can be enriched in growing sea ice beyond what we would expect from a perfectly dissolved chemical. We hypothesise that this effect is caused by the specific properties of the pollutants working in combination with fluid moving through the sea ice. To test our hypothesis, we replicate this behaviour in a sea-ice model and show that this type of modelling can be applied to predicting the transport of chemicals with complex behaviour in sea ice.
Mukesh Gupta, Leandro Ponsoni, Jean Sterlin, François Massonnet, and Thierry Fichefet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1560, https://doi.org/10.5194/egusphere-2023-1560, 2023
Preprint archived
Short summary
Short summary
We explored the relationship of Arctic September minimum sea ice extent with mid-summer melt pond area fraction, under the present-day climate. We confirm through the advanced numerical modelling, with an explicit melt pond scheme in the global climate model, EC-EARTH3, that melt pond fraction in mid-summer (June–July, not May) shows a strong relationship with the Arctic September sea ice extent. Satellite-based inferences validated our findings of this association.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021, https://doi.org/10.5194/gmd-14-6331-2021, 2021
Short summary
Short summary
This study introduces a new Sea Ice Evaluation Tool (SITool) to evaluate the model skills on the bipolar sea ice simulations by providing performance metrics and diagnostics. SITool is applied to evaluate the CMIP6 OMIP simulations. By changing the atmospheric forcing from CORE-II to JRA55-do data, many aspects of sea ice simulations are improved. SITool will be useful for helping teams managing various versions of a sea ice model or tracking the time evolution of model performance.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions being seasonally ice free during two recent decades. This has implications for the coming decades as the thinning of Arctic sea ice continues.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat
The Cryosphere, 14, 3479–3486, https://doi.org/10.5194/tc-14-3479-2020, https://doi.org/10.5194/tc-14-3479-2020, 2020
Short summary
Short summary
We document the spatio-temporal internal variability of Arctic sea ice thickness and its changes under anthropogenic forcing, which is key to understanding, and eventually predicting, the evolution of sea ice in response to climate change.
The patterns of sea ice thickness variability remain more or less stable during pre-industrial, historical and future periods, despite non-stationarity on short timescales. These patterns start to change once Arctic summer ice-free events occur, after 2050.
Eduardo Moreno-Chamarro, Pablo Ortega, and François Massonnet
Geosci. Model Dev., 13, 4773–4787, https://doi.org/10.5194/gmd-13-4773-2020, https://doi.org/10.5194/gmd-13-4773-2020, 2020
Short summary
Short summary
Climate models need to capture sea ice complexity to represent it realistically. Here we assess how distributing sea ice in discrete thickness categories impacts how sea ice variability is simulated in the NEMO3.6–LIM3 model. Simulations and satellite observations are compared by using k-means clustering of sea ice concentration in winter and summer between 1979 and 2014 at both poles. Little improvements in the modeled sea ice lead us to recommend using the standard number of five categories.
Cited articles
Barthélemy, A., Goosse, H., Fichefet, T., and Lecomte, O.: On the
sensitivity of Antarctic sea ice model biases to atmospheric forcing
uncertainties, Clim. Dynam., 51, 1585–1603, https://doi.org/10.1007/s00382-017-3972-7,
2018.
Bromwich, D. H., Wilson, A. B., Bai, L. S., Moore, G. W. K., and Bauer, P.:
A comparison of the regional Arctic System Reanalysis and the global
ERA-Interim Reanalysis for the Arctic, Q. J. Roy. Meteor. Soc., 142,
644–658, https://doi.org/10.1002/qj.2527, 2016.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.:
Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive
Microwave Data, Version 1, [1980–2007], Boulder, Colorado USA, NASA
National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
Chaudhuri, A. H., Ponte, R. M., and Forget, G.: Impact of uncertainties in
atmospheric boundary conditions on ocean model solutions, Ocean Model., 100,
96–108, https://doi.org/10.1016/j.ocemod.2016.02.003, 2016.
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S.,
Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.:
Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled
Model, J. Adv. Model. Earth Sy., 11, 185–209,
https://doi.org/10.1029/2018MS001369, 2019.
Chevallier, M., Smith, G. C., Dupont, F., Lemieux, J. F., Forget, G., Fujii,
Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T.,
Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y. S., Ferry,
N., Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina,
S., Tang, Y., Tsujino, H., and Wang, X.: Intercomparison of the arctic sea
ice cover in global ocean–sea ice reanalyses from the ORA-IP project, Clim.
Dynam., 49, 1107–1136, https://doi.org/10.1007/s00382-016-2985-y, 2017.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated
decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, 1–6,
https://doi.org/10.1029/2007GL031972, 2008.
Ding, Q., Schweiger, A., L'Heureux, M., Battisti, D. S., Po-Chedley, S.,
Johnson, N. C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman,
R., and Steig, E. J.: Influence of high-latitude atmospheric circulation
changes on summertime Arctic sea ice, Nat. Clim. Change, 7, 289–295,
https://doi.org/10.1038/NCLIMATE3241, 2017.
Docquier, D., Massonnet, F., Barthélemy, A., Tandon, N. F., Lecomte, O., and Fichefet, T.: Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6, The Cryosphere, 11, 2829–2846, https://doi.org/10.5194/tc-11-2829-2017, 2017.
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022.
Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP, Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, 2020.
Fogt, R. L., Sleinkofer, A. M., Raphael, M. N., and Handcock, M. S.: A
regime shift in seasonal total Antarctic sea ice extent in the twentieth
century, Nat. Clim. Change, 12, 54–62, https://doi.org/10.1038/s41558-021-01254-9,
2022.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, 2017.
Haumann, F. A., Gruber, N., Münnich, M., Frenger, I., and Kern, S.:
Sea-ice transport driving Southern Ocean salinity and its recent trends,
Nature, 537, 89–92, https://doi.org/10.1038/nature19101, 2016.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on single levels from 1959 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set],
10.24381/cds.adbb2d47, 2018.
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift,
Nat. Geosci., 5, 872–875, https://doi.org/10.1038/ngeo1627, 2012.
Hu, A., Rooth, C., Bleck, R., and Deser, C.: NAO influence on sea ice extent
in the Eurasian coastal region, Geophys. Res. Lett., 29, 10-1–10-4,
https://doi.org/10.1029/2001gl014293, 2002.
Hunke, E. C. and Holland, M. M.: Global atmospheric forcing data for Arctic
ice-ocean modeling, J. Geophys. Res.-Oceans., 112, C04S14,
https://doi.org/10.1029/2006JC003640, 2007.
Hunke, E. C. and Lipscomb, W.: CICE: The Los Alamos sea ice model,
documentation and software, version 4.0, Los Alamos National Laboratory,
Technical Report LA-CC-06-012, 2008.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual
Version 5.1, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los
Alamos, New Mexico, USA,
https://github.com/CICE-Consortium/CICE-svn-trunk/releases/tag/cice-5.1.2 (last access: 3 April 2023),
2015.
Kimura, N.: Sea ice motion in response to surface wind and ocean current in
the Southern Ocean, J. Meteorol. Soc. Jpn., 82, 1223–1231,
https://doi.org/10.2151/jmsj.2004.1223, 2004.
Kimura, N., Nishimura, A., Tanaka, Y., and Yamaguchi, H.: Influence of
winter sea-ice motion on summer ice cover in the Arctic, Polar Res., 32, 20193,
https://doi.org/10.3402/polar.v32i0.20193, 2013.
Komuro, Y., Suzuki, T., Sakamoto, T. T., Hasumi, H., Ishii, M., Watanabe,
M., Nozawa, T., Yokohata, T., Nishimura, T., Ogochi, K., Emori, S., and
Kimoto, M.: Sea-ice in twentieth-century simulations by new MIROC coupled
models: a comparison between models with high resolution and with ice
thickness distribution, J. Meteorol. Soc. Jpn., 90A, 213–232, 2012.
Krikken, F. and Hazeleger, W.: Arctic energy budget in relation to sea ice
variability on monthly-to-annual time scales, J. Climate, 28, 6335–6350,
https://doi.org/10.1175/JCLI-D-15-0002.1, 2015.
Kurtz, N. T. and Markus, T.: Satellite observations of Antarctic sea ice
thickness and volume, J. Geophys. Res.-Oceans, 117, C08025,
https://doi.org/10.1029/2012JC008141, 2012.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Lecomte, O., Goosse, H., Fichefet, T., Holland, P. R., Uotila, P., Zunz, V.,
and Kimura, N.: Impact of surface wind biases on the Antarctic sea ice
concentration budget in climate models, Ocean Model., 105, 60–70,
https://doi.org/10.1016/j.ocemod.2016.08.001, 2016.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of
seven different atmospheric reanalysis products in the Arctic, J. Climate,
27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.1, 2014.
Lin, X., Zhai, X., Wang, Z., and Munday, D. R.: Mean, variability, and trend
of Southern Ocean wind stress: Role of wind fluctuations, J. Climate, 31,
3557–3573, https://doi.org/10.1175/JCLI-D-17-0481.1, 2018.
Lin, X., Massonnet, F., Fichefet, T., and Vancoppenolle, M.: SITool (v1.0) – a new evaluation tool for large-scale sea ice simulations: application to CMIP6 OMIP, Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021, 2021.
Mahlstein, I., Gent, P. R., and Solomon, S.: Historical Antarctic mean sea
ice area, sea ice trends, and winds in CMIP5 simulations, J. Geophys. Res.-Atmos., 118, 5105–5110, https://doi.org/10.1002/jgrd.50443, 2013.
Massonnet, F., Fichefet, T., Goosse, H., Vancoppenolle, M., Mathiot, P., and König Beatty, C.: On the influence of model physics on simulations of Arctic and Antarctic sea ice, The Cryosphere, 5, 687–699, https://doi.org/10.5194/tc-5-687-2011, 2011.
Massonnet, F., Fichefet, T., Goosse, H., Bitz, C. M., Philippon-Berthier, G., Holland, M. M., and Barriat, P.-Y.: Constraining projections of summer Arctic sea ice, The Cryosphere, 6, 1383–1394, https://doi.org/10.5194/tc-6-1383-2012, 2012.
Mellor, G. L. and Kantha, L.: An ice-ocean coupled model, J. Geophys. Res.,
94, 10937–10954, https://doi.org/10.1029/JC094iC08p10937, 1989.
Meneghello, G., Marshall, J., Campin, J. M., Doddridge, E., and Timmermans,
M. L.: The Ice-Ocean Governor: Ice-Ocean Stress Feedback Limits Beaufort
Gyre Spin-Up, Geophys. Res. Lett., 45, 11293–11299,
https://doi.org/10.1029/2018GL080171, 2018.
Notz, D. and SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res. Lett.,
47, 1–11, https://doi.org/10.1029/2019GL086749, 2020.
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M.: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.
Olason, E. and Notz, D.: Drivers of variability in Arctic sea-ice drift
speed, J. Geophys. Res.-Oceans, 119, 5755–5775,
https://doi.org/10.1002/2014JC009897, 2014.
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423,
https://doi.org/10.1073/pnas.1906556116, 2019.
Rampal, P., Weiss, J., Dubois, C., and Campin, J. M.: IPCC climate models do
not capture Arctic sea ice drift acceleration: Consequences in terms of
projected sea ice thinning and decline, J. Geophys. Res.-Oceans, 116, C00D07,
https://doi.org/10.1029/2011JC007110, 2011.
Raphael, M. N. and Hobbs, W.: The influence of the large-scale atmospheric
circulation on Antarctic sea ice during ice advance and retreat seasons,
Geophys. Res. Lett., 41, 5037–5045, https://doi.org/10.1002/2014GL060365, 2014.
Raphael, M. N. and Handcock, M. S.: A new record minimum for Antarctic sea
ice, Nat. Rev. Earth Environ., 3, 215–216, https://doi.org/10.1038/s43017-022-00281-0,
2022.
Renwick, J. A., Kohout, A., and Dean, S.: Atmospheric forcing of Antarctic
sea ice on intraseasonal time scales, J. Climate, 25, 5962–5975,
https://doi.org/10.1175/JCLI-D-11-00423.1, 2012.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of sea ice to the
Arctic Oscillation, J. Climate, 15, 2648–2663,
https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2,
2002.
Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W.,
Notz, D., Rackow, T., Raphael, M. N., O'Farrell, S. P., Bailey, D. A., and
Bitz, C. M.: Antarctic Sea Ice Area in CMIP6, Geophys. Res. Lett., 47,
1–10, https://doi.org/10.1029/2019GL086729, 2020.
Rosenblum, E. and Eisenman, I.: Sea ice trends in climate models only
accurate in runs with biased global warming, J. Climate, 30, 6265–6278,
https://doi.org/10.1175/JCLI-D-16-0455.1, 2017.
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Sévellec, F., Fedorov, A. V., and Liu, W.: Arctic sea-ice decline
weakens the Atlantic Meridional Overturning Circulation, Nat. Clim. Change,
7, 604–610, https://doi.org/10.1038/NCLIMATE3353, 2017.
Shu, Q., Song, Z., and Qiao, F.: Assessment of sea ice simulations in the CMIP5 models, The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015, 2015.
Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., and Li, X.:
Assessment of sea ice extent in CMIP6 with comparison to observations and
CMIP5, Geophys. Res. Lett., 47, 1–9, https://doi.org/10.1029/2020GL087965, 2020.
Smith, D. M., Dunstone, N. J., Scaife, A. A., Fiedler, E. K., Copsey, D.,
and Hardiman, S. C.: Atmospheric response to Arctic and Antarctic sea ice:
The importance of ocean-atmosphere coupling and the background state, J.
Climate, 30, 4547–4565, https://doi.org/10.1175/JCLI-D-16-0564.1, 2017.
Smith, D. M., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S.,
Deser, C., Dunstone, N. J., García-Serrano, J., Gastineau, G., Graff,
L. S., Hardiman, S. C., He, B., Hermanson, L., Jung, T., Knight, J., Levine,
X., Magnusdottir, G., Manzini, E., Matei, D., Mori, M., Msadek, R., Ortega,
P., Peings, Y., Scaife, A. A., Screen, J. A., Seabrook, M., Semmler, T.,
Sigmond, M., Streffing, J., Sun, L., and Walsh, A.: Robust but weak winter
atmospheric circulation response to future Arctic sea ice loss, Nat.
Commun., 13, 1–15, https://doi.org/10.1038/s41467-022-28283-y, 2022.
Sterlin, J., Fichefet, T., Massonnet, F., Lecomte, O., and Vancoppenolle,
M.: Sensitivity of Arctic sea ice to melt pond processes and atmospheric
forcing: A model study, Ocean Model., 167, 101872, https://doi.org/10.1016/j.ocemod.2021.101872,
2021.
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56, 2018.
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic
sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, 1–5,
https://doi.org/10.1029/2007GL029703, 2007.
Tandon, N. F., Kushner, P. J., Docquier, D., Wettstein, J. J., and Li, C.:
Reassessing sea ice drift and its relationship to long-term Arctic sea ice
loss in coupled climate models, J. Geophys. Res.-Oceans, 123 4338–4359,
https://doi.org/10.1029/2017JC013697, 2018.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Tschudi, M., Meier,W. N., Stewart, J. S., Fowler, C., and Maslanik, J.:
Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4.1,
Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed
Active Archive Center [data set], https://doi.org/10.5067/INAWUWO7QH7B, 2019.
Tsujino, H., Motoi, T., Ishikawa, I., Hirabara, M., Nakano, H., Yamanaka,
G., Yasuda, T., and Ishizaki, H.: Reference manual for the Meteorological
Research Institute Community Ocean Model (MRI.COM) Version 3, Technical
Report of the Meteorological Research Institute, 59, 241,
https://doi.org/10.11483/mritechrepo.59, 2010.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S.
G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C.
W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do),
Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020.
Turner, J., Bracegirdle, T. J., Phillips, T., Marshall, G. J., and Scott
Hosking, J.: An initial assessment of Antarctic sea ice extent in the CMIP5
models, J. Climate, 26, 1473–1484, https://doi.org/10.1175/JCLI-D-12-00068.1, 2013.
Uotila, P., Holland, P., Vihma, T., Marsland, S., and Kimura, N.: Is
realistic Antarctic sea-ice extent in climate models the result of excessive
ice drift?, Ocean Modell., 79, 33–42, https://doi.org/10.1016/j.ocemod.2014.04.004,
2014.
Watts, M., Maslowski, W., Lee, Y. J., Kinney, J. C., and Osinski, R.: A
spatial evaluation of Arctic sea ice and regional limitations in CMIP6
historical simulations, J. Climate, 34, 6399–6420,
https://doi.org/10.1175/JCLI-D-20-0491.1, 2021.
Wu, Y., Wang, Z., Liu, C., and Lin, X.: Impacts of high-frequency
atmospheric forcing on Southern Ocean circulation and Antarctic sea ice,
Adv. Atmos. Sci., 37, 515–531, https://doi.org/10.1007/s00376-020-9203-x, 2020.
Yi, D. and Zwally H. J.: Arctic Sea Ice Freeboard and Thickness, Version 1,
(2003–2007), Boulder, Colorado USA, NASA National Snow and Ice Data Center
Distributed Active Archive Center [data set], https://doi.org/10.5067/SXJVJ3A2XIZT,
2009.
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
meteorological research institute Earth system model version 2.0,
MRI-ESM2.0: Description and basic evaluation of the physical component, J.
Meteorol. Soc. Jpn., 97, 931–965, https://doi.org/10.2151/jmsj.2019-051, 2019.
Zunz, V., Goosse, H., and Massonnet, F.: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent?, The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013, 2013.
Short summary
This study provides clues on how improved atmospheric reanalysis products influence sea ice simulations in ocean–sea ice models. The summer ice concentration simulation in both hemispheres can be improved with changed surface heat fluxes. The winter Antarctic ice concentration and the Arctic drift speed near the ice edge and the ice velocity direction simulations are improved with changed wind stress. The radiation fluxes and winds in atmospheric reanalyses are crucial for sea ice simulations.
This study provides clues on how improved atmospheric reanalysis products influence sea ice...