Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1205-2023
https://doi.org/10.5194/tc-17-1205-2023
Research article
 | 
13 Mar 2023
Research article |  | 13 Mar 2023

The temperature-dependent shear strength of ice-filled joints in rock mass considering the effect of joint roughness, opening and shear rates

Shibing Huang, Haowei Cai, Zekun Xin, and Gang Liu

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024,https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary

Cited articles

Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global Planet. Change, 107, 59–69, https://doi.org/10.1016/j.gloplacha.2013.04.007, 2013. 
Barton, N. and Choubey, V.: The shear strength of rock joints in theory and practice, J. Rock. Mech. Geotech., 10, 1–54, https://doi.org/10.1007/BF01261801, 1977. 
Bragov, A., Igumnov, L., Konstantinov, A., Lomunov, A., Filippov, A., Shmotin, Y., Didenko R., and Krundaeva, A.: Investigation of strength properties of freshwater ice, EPJ Web of Conferences, 94, 01070, https://doi.org/10.1051/epjconf/20159401070, 2015. 
Colucci, R. R. and Guglielmin, M.: Climate change and rapid ice melt: Suggestions from abrupt permafrost degradation and ice melting in an alpine ice cave, Prog. Phys. Geog., 43, 561–573, https://doi.org/10.1177/0309133319846056, 2019. 
Davies, M. C., Hamza, O., and Harris, C.: The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities, Permafrost. Periglac., 12, 137–144, https://doi.org/10.1002/ppp.378, 2001. 
Download
Short summary
In this study, the warming degradation mechanism of ice-filled joints is revealed, and the effect of temperature, normal stress, shear rate and joint opening on the shear strength of rough ice-filled joints is investigated. The shear rupture modes include shear cracking of joint ice and debonding of the ice–rock interface, which is related to the above factors. The bonding strength of the ice–rock interface is larger than the shear strength of joint ice when the temperature is below −1 ℃.