Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-5023-2022
https://doi.org/10.5194/tc-16-5023-2022
Research article
 | 
20 Dec 2022
Research article |  | 20 Dec 2022

Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data

Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong

Related authors

Spatial and temporal variation in long-term temperature and water vapor in the mesopause Region
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144,https://doi.org/10.5194/egusphere-2024-1144, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
High-resolution physicochemical dataset of atmospheric aerosols over the Tibetan Plateau and its surroundings
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024,https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Spatially Extensive Long-term Quality-assured Land-atmosphere Interactions Dataset over the Tibetan Plateau
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaoming Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-9,https://doi.org/10.5194/essd-2024-9, 2024
Revised manuscript under review for ESSD
Short summary
Aerosol–meteorology feedback diminishes the transboundary transport of black carbon into the Tibetan Plateau
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024,https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023,https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Post-Little Ice Age rock wall permafrost evolution in Norway
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023,https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary

Cited articles

Carey, S. K. and Quinton, W. L.: Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment, Hydrol. Process., 19, 95–114, https://doi.org/10.1002/hyp.5764, 2005. 
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., Zou, D., Jin, H., Li, X., and Wu, Q.: Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau, Chinese Sci. Bull., 64, 2783–2795, https://doi.org/10.1360/TB-2019-0191, 2019. 
Cheng, G. D. and Jin, H. J.: Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes, Hydrogeology & Engineering Geology, 40, 1–11, https://doi.org/10.16030/j.cnki.issn.1000-3665.2013.01.017, 2013. 
Chiogna, G., Santoni, E., Camin, F., Tonon, A., Majone, B., Trenti, A., and Bellin, A.: Stable isotope characterization of the Vermigliana catchment, J. Hydrol., 509, 295–305, https://doi.org/10.1016/j.jhydrol.2013.11.052, 2014. 
CMA Climate Change Centre: Blue Book on Climate Change in China, edited by: Song, L., Chao, Q., and Wang, P., Science Press, Beijing, 67–68, ISBN 978-7-03-069503-1, 2021. 
Download
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.