Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-451-2022
https://doi.org/10.5194/tc-16-451-2022
Research article
 | Highlight paper
 | 
08 Feb 2022
Research article | Highlight paper |  | 08 Feb 2022

Layered seawater intrusion and melt under grounded ice

Alexander A. Robel, Earle Wilson, and Helene Seroussi

Related authors

Modeling mixing and melting in laminar seawater intrusions under grounded ice
Madeline S. Mamer, Alexander A. Robel, Chris C. K. Lai, Earle Wilson, and Peter Washam
The Cryosphere, 19, 3227–3251, https://doi.org/10.5194/tc-19-3227-2025,https://doi.org/10.5194/tc-19-3227-2025, 2025
Short summary
Impact of glacial isostatic adjustment on zones of potential grounding line persistence in the Ross Sea Embayment (Antarctica) since the Last Glacial Maximum
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
The Cryosphere, 19, 2935–2948, https://doi.org/10.5194/tc-19-2935-2025,https://doi.org/10.5194/tc-19-2935-2025, 2025
Short summary
Sub-grid Parameterization of Iceberg Drag in a Coupled Iceberg-Ocean Model
Paul T. Summers, Rebecca H. Jackson, and Alexander A. Robel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1555,https://doi.org/10.5194/egusphere-2025-1555, 2025
Short summary
Disentangling the oceanic drivers behind the post-2000 retreat of Sermeq Kujalleq, Greenland (Jakobshavn Isbræ)
Ziad Rashed, Alexander A. Robel, and Hélène Seroussi
The Cryosphere, 19, 1775–1788, https://doi.org/10.5194/tc-19-1775-2025,https://doi.org/10.5194/tc-19-1775-2025, 2025
Short summary
Glacier damage evolution over ice flow timescales
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
The Cryosphere, 19, 1599–1619, https://doi.org/10.5194/tc-19-1599-2025,https://doi.org/10.5194/tc-19-1599-2025, 2025
Short summary

Cited articles

Adams, E. E., Sahoo, D., Liro, C. R., and Zhang, X.: Hydraulics of seawater purging in tunneled wastewater outfall, J. Hydraul. Eng., 120, 209–226, 1994. a
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359, 2017. a, b
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T. P., Hodson, T. O., Siegfried, M. R., Powell, R. D., Christianson, K., and King, M. A.: Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone, J. Geophys. Res.-Oceans, 123, 7438–7452, 2018. a, b, c
Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S., and Crawford, A.: Brief communication: Thwaites Glacier cavity evolution, The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, 2021. a
Download
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Share