Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-451-2022
https://doi.org/10.5194/tc-16-451-2022
Research article
 | Highlight paper
 | 
08 Feb 2022
Research article | Highlight paper |  | 08 Feb 2022

Layered seawater intrusion and melt under grounded ice

Alexander A. Robel, Earle Wilson, and Helene Seroussi

Related authors

Sub-grid Parameterization of Iceberg Drag in a Coupled Iceberg-Ocean Model
Paul T. Summers, Rebecca H. Jackson, and Alexander A. Robel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1555,https://doi.org/10.5194/egusphere-2025-1555, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Disentangling the oceanic drivers behind the post-2000 retreat of Sermeq Kujalleq, Greenland (Jakobshavn Isbræ)
Ziad Rashed, Alexander A. Robel, and Hélène Seroussi
The Cryosphere, 19, 1775–1788, https://doi.org/10.5194/tc-19-1775-2025,https://doi.org/10.5194/tc-19-1775-2025, 2025
Short summary
Glacier damage evolution over ice flow timescales
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
The Cryosphere, 19, 1599–1619, https://doi.org/10.5194/tc-19-1599-2025,https://doi.org/10.5194/tc-19-1599-2025, 2025
Short summary
The Greenland Ice Sheet Large Ensemble (GrISLENS): Simulating the future of Greenland under climate variability
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackerman, Youngmin Choi, and Uta Krebs-Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4067,https://doi.org/10.5194/egusphere-2024-4067, 2025
Short summary
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
The Cryosphere, 19, 19–35, https://doi.org/10.5194/tc-19-19-2025,https://doi.org/10.5194/tc-19-19-2025, 2025
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ocean Interactions
Brief communication: Sea-level projections, adaptation planning, and actionable science
William H. Lipscomb, David Behar, and Monica Ainhorn Morrison
The Cryosphere, 19, 793–803, https://doi.org/10.5194/tc-19-793-2025,https://doi.org/10.5194/tc-19-793-2025, 2025
Short summary
Sub-shelf melt pattern and ice sheet mass loss governed by meltwater flow below ice shelves
Franka Jesse, Erwin Lambert, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-4058,https://doi.org/10.5194/egusphere-2024-4058, 2025
Short summary
Brief Communication: Representation of heat conduction into the ice in marine ice shelf melt modeling
Jonathan Wiskandt and Nicolas Jourdain
EGUsphere, https://doi.org/10.5194/egusphere-2024-2239,https://doi.org/10.5194/egusphere-2024-2239, 2024
Short summary
High-Fidelity Modeling of Turbulent Mixing and Basal Melting in Seawater Intrusion Under Grounded Ice
Madeline S. Mamer, Alexander A. Robel, Chris C. K. Lai, Earle Wilson, and Peter Washam
EGUsphere, https://doi.org/10.5194/egusphere-2024-1970,https://doi.org/10.5194/egusphere-2024-1970, 2024
Short summary
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024,https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary

Cited articles

Adams, E. E., Sahoo, D., Liro, C. R., and Zhang, X.: Hydraulics of seawater purging in tunneled wastewater outfall, J. Hydraul. Eng., 120, 209–226, 1994. a
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359, 2017. a, b
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T. P., Hodson, T. O., Siegfried, M. R., Powell, R. D., Christianson, K., and King, M. A.: Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone, J. Geophys. Res.-Oceans, 123, 7438–7452, 2018. a, b, c
Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S., and Crawford, A.: Brief communication: Thwaites Glacier cavity evolution, The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, 2021. a
Download
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Share