Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4423-2022
https://doi.org/10.5194/tc-16-4423-2022
Research article
 | 
20 Oct 2022
Research article |  | 20 Oct 2022

Exploring the capabilities of electrical resistivity tomography to study subsea permafrost

Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke

Related authors

Newly dated permafrost deposits and their paleoecological inventory reveal an Eemian much warmer than today in Arctic Siberia
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025,https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Organic carbon, mercury, and sediment characteristics along a land–shore transect in Arctic Alaska
Frieda P. Giest, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Kai Mangelsdorf, Torben Windirsch, and Jens Strauss
Biogeosciences, 22, 2871–2887, https://doi.org/10.5194/bg-22-2871-2025,https://doi.org/10.5194/bg-22-2871-2025, 2025
Short summary
Stochastic Modelling of Thermokarst Lakes: Size Distributions and Dynamic Regimes
Constanze Reinken, Victor Brovkin, Philipp de Vrese, Ingmar Nitze, Helena Bergstedt, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1817,https://doi.org/10.5194/egusphere-2025-1817, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
High-resolution inventory and classification of retrogressive thaw slumps in West Siberia
Nina Nesterova, Ilia Tarasevich, Marina Leibman, Artem Khomutov, Alexander Kizyakov, Ingmar Nitze, and Guido Grosse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-164,https://doi.org/10.5194/essd-2025-164, 2025
Preprint under review for ESSD
Short summary
A new habitat map of the Lena Delta in Arctic Siberia based on field and remote sensing datasets
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data, 17, 1707–1730, https://doi.org/10.5194/essd-17-1707-2025,https://doi.org/10.5194/essd-17-1707-2025, 2025
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
A hybrid ice-mélange model based on particle and continuum methods
Saskia Kahl, Carolin Mehlmann, and Dirk Notz
The Cryosphere, 19, 129–141, https://doi.org/10.5194/tc-19-129-2025,https://doi.org/10.5194/tc-19-129-2025, 2025
Short summary
Combining observational data and numerical models to obtain a seamless high temporal resolution seasonal cycle of snow and ice mass balance at the MOSAiC Central Observatory
Polona Itkin and Glen E. Liston
EGUsphere, https://doi.org/10.5194/egusphere-2024-3402,https://doi.org/10.5194/egusphere-2024-3402, 2024
Short summary
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024,https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024,https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024,https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary

Cited articles

Akça, I. and Basokur, A. T.: Extraction of structure-based geoelectric models by hybrid genetic algorithms, Geophysics, 75, F15–F22, https://doi.org/10.1190/1.3273851, 2010. a, b
Angelopoulos, M.: Mapping subsea permafrost with electrical resistivity surveys, Nature Reviews Earth & Environment, 3, 6–6, https://doi.org/10.1038/s43017-021-00258-5, 2022. a
Angelopoulos, M., Westermann, S., Overduin, P. P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Conductivity, temperature and depth (CTD), snow and ice thickess and apparent resisitivity on the Bykovsky Peninsula, Lena Delta, in April and July 2017, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.895887, 2018. a
Angelopoulos, M., Westermann, S., Overduin, P. P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Heat and Salt Flow in Subsea Permafrost Modeled with CryoGRID2, J. Geophys. Res.-Earth, 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019. a, b, c, d
Angelopoulos, M., Overduin, P. P., Miesner, F., Grigoriev, M. N., and Vasiliev, A. A.: Recent advances in the study of Arctic submarine permafrost, Permafrost Periglac., 31, 442–453, https://doi.org/10.1002/ppp.2061, 2020a. a, b
Download
Short summary
We demonstrate how we can reliably estimate the thawed–frozen permafrost interface with its associated uncertainties in subsea permafrost environments using 2D electrical resistivity tomography (ERT) data. In addition, we show how further analyses considering 1D inversion and sensitivity assessments can help quantify and better understand 2D ERT inversion results. Our results illustrate the capabilities of the ERT method to get insights into the development of the subsea permafrost.
Share