Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-349-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-349-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Integrated Climate Data Center (ICDC), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
Thomas Lavergne
Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway
Leif Toudal Pedersen
National Space Institute, Technical University of Denmark, Lyngby, Denmark
Rasmus Tage Tonboe
Danish Meteorological Institute, Copenhagen, Denmark
now at: National Space Institute, Technical University of Denmark, Lyngby, Denmark
Louisa Bell
Integrated Climate Data Center (ICDC), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
now at: Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany
Maybritt Meyer
Integrated Climate Data Center (ICDC), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
now at: Federal Maritime and Hydrographic Agency, Hamburg, Germany
Luise Zeigermann
Integrated Climate Data Center (ICDC), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
now at: Faculty of Science for Physics and Physical Oceanography, Memorial University of Newfoundland, St. Johns, Canada
Related authors
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Preprint under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, and Rasmus Tonboe
The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020, https://doi.org/10.5194/tc-14-2469-2020, 2020
Short summary
Short summary
Arctic sea-ice concentration (SIC) estimates based on satellite passive microwave observations are highly inaccurate during summer melt. We compare 10 different SIC products with independent satellite data of true SIC and melt pond fraction (MPF). All products disagree with the true SIC. Regional and inter-product differences can be large and depend on the MPF. An inadequate treatment of melting snow and melt ponds in the products’ algorithms appears to be the main explanation for our findings.
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Sørensen
The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019, https://doi.org/10.5194/tc-13-3261-2019, 2019
Short summary
Short summary
A systematic evaluation of 10 global satellite data products of the polar sea-ice area is performed. Inter-product differences in evaluation results call for careful consideration of data product limitations when performing sea-ice area trend analyses and for further mitigation of the effects of sensor changes. We open a discussion about evaluation strategies for such data products near-0 % and near-100 % sea-ice concentration, e.g. with the aim to improve high-concentration evaluation accuracy.
Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, Georg Heygster, Mari Anne Killie, Matilde Brandt Kreiner, John Lavelle, Roberto Saldo, Stein Sandven, and Leif Toudal Pedersen
The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, https://doi.org/10.5194/tc-13-49-2019, 2019
Short summary
Short summary
The loss of polar sea ice is an iconic indicator of Earth’s climate change. Many satellite-based algorithms and resulting data exist but they differ widely in specific sea-ice conditions. This spread hinders a robust estimate of the future evolution of sea-ice cover.
In this study, we document three new climate data records of sea-ice concentration generated using satellite data available over the last 40 years. We introduce the novel algorithms, the data records, and their uncertainties.
Stephan Paul, Stefan Hendricks, Robert Ricker, Stefan Kern, and Eero Rinne
The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, https://doi.org/10.5194/tc-12-2437-2018, 2018
Short summary
Short summary
During ESA's second phase of the Sea Ice Climate Change Initiative (SICCI-2), we developed a novel approach to creating a consistent freeboard data set from Envisat and CryoSat-2. We used consistent procedures that are directly related to the sensors' waveform-echo parameters, instead of applying corrections as a post-processing step. This data set is to our knowledge the first of its kind providing consistent freeboard for the Arctic as well as the Antarctic.
Rasmus T. Tonboe, Steinar Eastwood, Thomas Lavergne, Atle M. Sørensen, Nicholas Rathmann, Gorm Dybkjær, Leif Toudal Pedersen, Jacob L. Høyer, and Stefan Kern
The Cryosphere, 10, 2275–2290, https://doi.org/10.5194/tc-10-2275-2016, https://doi.org/10.5194/tc-10-2275-2016, 2016
Short summary
Short summary
The EUMETSAT sea ice climate record (ESICR) is based on the Nimbus 7 SMMR (1978–1987), the SSM/I (1987–2009), and the SSMIS (2003–today) microwave radiometer data. It uses a combination of two sea ice concentration algorithms with dynamical tie points, explicit atmospheric correction using numerical weather prediction data for error reduction and it comes with spatially and temporally varying uncertainty estimates describing the residual uncertainties.
N. Ivanova, L. T. Pedersen, R. T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sørensen, R. Saldo, G. Dybkjær, L. Brucker, and M. Shokr
The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, https://doi.org/10.5194/tc-9-1797-2015, 2015
Short summary
Short summary
Thirty sea ice algorithms are inter-compared and evaluated systematically over low and high sea ice concentrations, as well as in the presence of thin ice and melt ponds. A hybrid approach is suggested to retrieve sea ice concentration globally for climate monitoring purposes. This approach consists of a combination of two algorithms plus the implementation of a dynamic tie point and atmospheric correction of input brightness temperatures.
S. Kern, K. Khvorostovsky, H. Skourup, E. Rinne, Z. S. Parsakhoo, V. Djepa, P. Wadhams, and S. Sandven
The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, https://doi.org/10.5194/tc-9-37-2015, 2015
Short summary
Short summary
Snow depth and ice density are equally important parameters for sea ice thickness retrieval from radar altimetry of Arctic sea ice. Development of a new snow depth data set is mandatory as the Warren snow depth climatology does not represent the actual snow depth distribution. An optimal choice of ice density can be realized by including ice type and degree of deformation. Retrieval and validation enhancement requires more contemporary ice freeboard, thickness, and density and snow depth data.
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Preprint under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024, https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Short summary
Sea ice forecasts are operationally produced using physically based models, but these forecasts are often not accurate enough for maritime operations. In this study, we developed a statistical correction technique using machine learning in order to improve the skill of short-term (up to 10 d) sea ice concentration forecasts produced by the TOPAZ4 model. This technique allows for the reduction of errors from the TOPAZ4 sea ice concentration forecasts by 41 % on average.
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619, https://doi.org/10.5194/tc-18-1597-2024, https://doi.org/10.5194/tc-18-1597-2024, 2024
Short summary
Short summary
Individual satellite passes instead of daily means of sea ice concentration are used to correct the sea ice model forecast in the Barents Sea. The use of passes provides a significantly larger improvement of the forecasts even after a 7 d period due to the more precise information on temporal and spatial variability contained in the passes. One major advantage of the use of satellite passes is that there is no need to wait for the daily mean availability in order to update the forecast.
Wiebke Margitta Kolbe, Rasmus T. Tonboe, and Julienne Stroeve
Earth Syst. Sci. Data, 16, 1247–1264, https://doi.org/10.5194/essd-16-1247-2024, https://doi.org/10.5194/essd-16-1247-2024, 2024
Short summary
Short summary
Current satellite-based sea-ice climate data records (CDRs) usually begin in October 1978 with the first multichannel microwave radiometer data. Here, we present a sea ice dataset based on the single-channel Electrical Scanning Microwave Radiometer (ESMR) that operated from 1972-1977 onboard NASA’s Nimbus 5 satellite. The data were processed using modern methods and include uncertainty estimations in order to provide an important, easy-to-use reference period of good quality for current CDRs.
Thomas Lavergne and Emily Down
Earth Syst. Sci. Data, 15, 5807–5834, https://doi.org/10.5194/essd-15-5807-2023, https://doi.org/10.5194/essd-15-5807-2023, 2023
Short summary
Short summary
Sea ice in the Arctic and Antarctic can move several tens of kilometers per day due to wind and ocean currents. By analysing thousands of satellite images, we measured how sea ice has been moving every single day from 1991 through to 2020. We compare our data to how buoys attached to the ice moved and find good agreement. Other scientists will now use our data to better understand if climate change has modified the way sea ice moves and in what way.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Hoyeon Shi, Byung-Ju Sohn, Gorm Dybkjær, Rasmus Tage Tonboe, and Sang-Moo Lee
The Cryosphere, 14, 3761–3783, https://doi.org/10.5194/tc-14-3761-2020, https://doi.org/10.5194/tc-14-3761-2020, 2020
Short summary
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, and Rasmus Tonboe
The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020, https://doi.org/10.5194/tc-14-2469-2020, 2020
Short summary
Short summary
Arctic sea-ice concentration (SIC) estimates based on satellite passive microwave observations are highly inaccurate during summer melt. We compare 10 different SIC products with independent satellite data of true SIC and melt pond fraction (MPF). All products disagree with the true SIC. Regional and inter-product differences can be large and depend on the MPF. An inadequate treatment of melting snow and melt ponds in the products’ algorithms appears to be the main explanation for our findings.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020, https://doi.org/10.5194/tc-14-2369-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice makes it difficult to evaluate climate models with observations. We investigate the possibility of translating the model state into what a satellite could observe. We find that we do not need complex information about the vertical distribution of temperature and salinity inside the ice but instead are able to assume simplified distributions to reasonably translate the simulated sea ice into satellite
language.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407, https://doi.org/10.5194/tc-14-2387-2020, https://doi.org/10.5194/tc-14-2387-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice inhibits the evaluation of climate models with observations. We develop a tool that translates the simulated Arctic Ocean state into what a satellite could observe from space in the form of brightness temperatures, a measure for the radiation emitted by the surface. We find that the simulated brightness temperatures compare well with the observed brightness temperatures. This tool brings a new perspective for climate model evaluation.
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Sørensen
The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019, https://doi.org/10.5194/tc-13-3261-2019, 2019
Short summary
Short summary
A systematic evaluation of 10 global satellite data products of the polar sea-ice area is performed. Inter-product differences in evaluation results call for careful consideration of data product limitations when performing sea-ice area trend analyses and for further mitigation of the effects of sensor changes. We open a discussion about evaluation strategies for such data products near-0 % and near-100 % sea-ice concentration, e.g. with the aim to improve high-concentration evaluation accuracy.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, and Gorm Dybkjær
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-126, https://doi.org/10.5194/tc-2019-126, 2019
Revised manuscript not accepted
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite derived T2m product covers clear sky snow and ice surfaces in the Arctic for the period 2000–2009.
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283–1296, https://doi.org/10.5194/tc-13-1283-2019, https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
Short summary
In this study, we develop and present simple algorithms to derive the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice. This is achieved using satellite observations collocated with buoy measurements. The errors of the retrieved parameters are estimated and compared with independent data. These parameters are useful for sea ice concentration mapping, understanding sea ice properties and variability, and for atmospheric sounding applications.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus Tonboe, Gorm Dybkjær, and Emy Alerskans
The Cryosphere, 13, 1005–1024, https://doi.org/10.5194/tc-13-1005-2019, https://doi.org/10.5194/tc-13-1005-2019, 2019
Short summary
Short summary
The paper facilitates the construction of a satellite-derived 2 m air temperature (T2m) product for Arctic snow/ice areas. The relationship between skin temperature (Tskin) and T2m is analysed using weather stations. The main factors influencing the relationship are seasonal variations, wind speed and clouds. A clear-sky bias is estimated to assess the effect of cloud-limited satellite observations. The results are valuable when validating satellite Tskin or estimating T2m from satellite Tskin.
Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, Georg Heygster, Mari Anne Killie, Matilde Brandt Kreiner, John Lavelle, Roberto Saldo, Stein Sandven, and Leif Toudal Pedersen
The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, https://doi.org/10.5194/tc-13-49-2019, 2019
Short summary
Short summary
The loss of polar sea ice is an iconic indicator of Earth’s climate change. Many satellite-based algorithms and resulting data exist but they differ widely in specific sea-ice conditions. This spread hinders a robust estimate of the future evolution of sea-ice cover.
In this study, we document three new climate data records of sea-ice concentration generated using satellite data available over the last 40 years. We introduce the novel algorithms, the data records, and their uncertainties.
Stephan Paul, Stefan Hendricks, Robert Ricker, Stefan Kern, and Eero Rinne
The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, https://doi.org/10.5194/tc-12-2437-2018, 2018
Short summary
Short summary
During ESA's second phase of the Sea Ice Climate Change Initiative (SICCI-2), we developed a novel approach to creating a consistent freeboard data set from Envisat and CryoSat-2. We used consistent procedures that are directly related to the sensors' waveform-echo parameters, instead of applying corrections as a post-processing step. This data set is to our knowledge the first of its kind providing consistent freeboard for the Arctic as well as the Antarctic.
Anton Andreevich Korosov, Pierre Rampal, Leif Toudal Pedersen, Roberto Saldo, Yufang Ye, Georg Heygster, Thomas Lavergne, Signe Aaboe, and Fanny Girard-Ardhuin
The Cryosphere, 12, 2073–2085, https://doi.org/10.5194/tc-12-2073-2018, https://doi.org/10.5194/tc-12-2073-2018, 2018
Short summary
Short summary
A new algorithm for estimating sea ice age in the Arctic is presented. The algorithm accounts for motion, deformation, melting and freezing of sea ice and uses daily sea ice drift and sea ice concentration products. The major advantage of the new algorithm is the ability to generate individual ice age fractions in each pixel or, in other words, to provide a frequency distribution of the ice age. Multi-year ice concentration can be computed as a sum of all ice fractions older than 1 year.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Rasmus T. Tonboe, Steinar Eastwood, Thomas Lavergne, Atle M. Sørensen, Nicholas Rathmann, Gorm Dybkjær, Leif Toudal Pedersen, Jacob L. Høyer, and Stefan Kern
The Cryosphere, 10, 2275–2290, https://doi.org/10.5194/tc-10-2275-2016, https://doi.org/10.5194/tc-10-2275-2016, 2016
Short summary
Short summary
The EUMETSAT sea ice climate record (ESICR) is based on the Nimbus 7 SMMR (1978–1987), the SSM/I (1987–2009), and the SSMIS (2003–today) microwave radiometer data. It uses a combination of two sea ice concentration algorithms with dynamical tie points, explicit atmospheric correction using numerical weather prediction data for error reduction and it comes with spatially and temporally varying uncertainty estimates describing the residual uncertainties.
Stefan Kern, Anja Rösel, Leif Toudal Pedersen, Natalia Ivanova, Roberto Saldo, and Rasmus Tage Tonboe
The Cryosphere, 10, 2217–2239, https://doi.org/10.5194/tc-10-2217-2016, https://doi.org/10.5194/tc-10-2217-2016, 2016
Short summary
Short summary
Sea ice, frozen seawater floating on polar oceans, is covered by meltwater puddles, so-called melt ponds, during summer. Methods used to compute Arctic sea-ice concentration (SIC) from microwave satellite data are influenced by melt ponds. We apply eight such methods to one microwave dataset and compare SIC with visible data. We conclude all methods fail to distinguish melt ponds from leads between ice floes; SIC biases are negative (positive) for ponded (non-ponded) sea ice and can exceed 20 %.
N. Ivanova, L. T. Pedersen, R. T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sørensen, R. Saldo, G. Dybkjær, L. Brucker, and M. Shokr
The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, https://doi.org/10.5194/tc-9-1797-2015, 2015
Short summary
Short summary
Thirty sea ice algorithms are inter-compared and evaluated systematically over low and high sea ice concentrations, as well as in the presence of thin ice and melt ponds. A hybrid approach is suggested to retrieve sea ice concentration globally for climate monitoring purposes. This approach consists of a combination of two algorithms plus the implementation of a dynamic tie point and atmospheric correction of input brightness temperatures.
S. Kern, K. Khvorostovsky, H. Skourup, E. Rinne, Z. S. Parsakhoo, V. Djepa, P. Wadhams, and S. Sandven
The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, https://doi.org/10.5194/tc-9-37-2015, 2015
Short summary
Short summary
Snow depth and ice density are equally important parameters for sea ice thickness retrieval from radar altimetry of Arctic sea ice. Development of a new snow depth data set is mandatory as the Warren snow depth climatology does not represent the actual snow depth distribution. An optimal choice of ice density can be realized by including ice type and degree of deformation. Retrieval and validation enhancement requires more contemporary ice freeboard, thickness, and density and snow depth data.
Related subject area
Discipline: Sea ice | Subject: Remote Sensing
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
The AutoICE Challenge
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Pan-Arctic Sea Ice Concentration from SAR and Passive Microwave
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Snow Depth Estimation on Lead-less Landfast ice using Cryo2Ice satellite observations
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
The Variability of CryoSat-2 derived Sea Ice Thickness introduced by modelled vs. empirical snow thickness, sea ice density and water density
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Aerial observations of sea ice breakup by ship waves
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Inter-comparison and evaluation of Arctic sea ice type products
A simple model for daily basin-wide thermodynamic sea ice thickness growth retrieval
Ice ridge density signatures in high-resolution SAR images
Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Quantifying the effects of background concentrations of crude oil pollution on sea ice albedo
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements
Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Satellite altimetry detection of ice-shelf-influenced fast ice
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning
An improved sea ice detection algorithm using MODIS: application as a new European sea ice extent indicator
Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024, https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
EGUsphere, https://doi.org/10.5194/egusphere-2024-178, https://doi.org/10.5194/egusphere-2024-178, 2024
Short summary
Short summary
Here, we present ASIP (Automated Sea Ice Products): a new and comprehensive deep learning-based methodology to retrieve high-resolution sea ice concentration with accompanying well-calibrated uncertainties from Sentinel-1 SAR and AMSR2 passive microwave observations at a pan-Arctic scale for all seasons. In a comparative study against pan-Arctic ice charts and passive microwave-based sea ice products, we show that ASIP generalizes well to the pan-Arctic region.
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023, https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Short summary
To alleviate tedious manual image annotations for training deep learning (DL) models in floe instance segmentation, we employ a classical image processing technique to automatically label floes in images. We then apply a DL semantic method for fast and adaptive floe instance segmentation from high-resolution airborne and satellite images. A post-processing algorithm is also proposed to refine the segmentation and further to derive acceptable floe size distributions at local and global scales.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
EGUsphere, https://doi.org/10.5194/egusphere-2023-2509, https://doi.org/10.5194/egusphere-2023-2509, 2023
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice) but estimating sea surface height from lead-less land-fast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in-situ after adjusting for tides. Realistic snow depths are retrieved but difference in roughness, satellite footprints and snow geophysical properties are identified as challenges.
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-142, https://doi.org/10.5194/tc-2023-142, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Melt water puddles, or melt ponds on top of the Arctic sea ice are a good measure of the Arctic climate state. In the context of the recent climate warming, the Arctic has warmed about 4 times faster than the rest of the world, and a long-term dataset of the melt pond fraction is needed to be able to model the future development of the Arctic climate. We present such a dataset, produce 2002–2023 trends and highlight a potential melt regime shift with drastic regional trends of +20 % per decade.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023, https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Short summary
During winter, storms entering the Arctic region can bring warm air into the cold environment. Strong increases in air temperature modify the characteristics of the Arctic snow and ice cover. The Arctic sea ice cover can be monitored by satellites observing the natural emission of the Earth's surface. In this study, we show that during warm air intrusions the change in the snow characteristics influences the satellite-derived sea ice cover, leading to a false reduction of the estimated ice area.
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023, https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary
Short summary
In this study, we use satellite observations to investigate the evolution of melt ponds on the Arctic sea ice surface. We derive melt pond depth from ICESat-2 measurements of the pond surface and bathymetry and melt pond fraction (MPF) from the classification of Sentinel-2 imagery. MPF increases to a peak of 16 % in late June and then decreases, while depth increases steadily. This work demonstrates the ability to track evolving melt conditions in three dimensions throughout the summer.
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-122, https://doi.org/10.5194/tc-2023-122, 2023
Revised manuscript accepted for TC
Short summary
Short summary
To derive sea ice thickness (SIT) from satellite freeboard (FB) observations, assumptions about snow thickness, snow density, sea ice density and water density are needed. These parameters are impossible to observe alongside FB, so many existing products use empirical values. In this study, modeled values are used instead. The modeled values and otherwise commonly used empirical values are evaluated against in situ observations. In a further analysis, the influence on the SIT is quantified.
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023, https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Short summary
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate parameterization of Arctic leads. For the first time, we applied the 30 m resolution data from the Thermal Infrared Spectrometer (TIS) on the emerging SDGSAT-1 to detect Arctic leads. Validation with Sentinel-2 data shows high accuracy for the three TIS bands. Compared to MODIS, the TIS presents more narrow leads, demonstrating its great potential for observing previously unresolvable Arctic leads.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023, https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023, https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Short summary
We try to explore the application of SGDR data in polar sea ice thickness. Through this study, we find that it seems difficult to obtain reasonable results by using conventional methods. So we use the 15 lowest points per 25 km to estimate SSHA to retrieve more reasonable Arctic radar freeboard and thickness. This study also provides reference for reprocessing L1 data. We will release products that are more reasonable and suitable for polar sea ice thickness retrieval to better evaluate HY-2B.
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Short summary
Sea ice maps are produced to cover the MOSAiC Arctic expedition (2019–2020) and divide sea ice into scientifically meaningful classes. We use a high-resolution X-band synthetic aperture radar dataset and show how image brightness and texture systematically vary across the images. We use an algorithm that reliably corrects this effect and achieve good results, as evaluated by comparisons to ground observations and other studies. The sea ice maps are useful as a basis for future MOSAiC studies.
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023, https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023, https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Short summary
The reflectivity of sea ice is crucial for modern climate change and for monitoring sea ice from satellites. The reflectivity depends on the angle at which the ice is viewed and the angle illuminated. The directional reflectivity is calculated as a function of viewing angle, illuminating angle, thickness, wavelength and surface roughness. Roughness cannot be considered independent of thickness, illumination angle and the wavelength. Remote sensors will use the data to image sea ice from space.
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Short summary
Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. This study gives a systematic inter-comparison and evaluation of eight SITY products. Main results include differences in SITY products being significant, with average Arctic multiyear ice extent up to 1.8×106 km2; Ku-band scatterometer SITY products generally performing better; and factors such as satellite inputs, classification methods, training datasets and post-processing highly impacting their performance.
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022, https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Short summary
A prominent part of the polar climate system is sea ice, a better understanding of which would lead to better understanding Earth's climate. Newly published methods for observing the temperature of sea ice have made possible a new method for estimating daily sea ice thickness growth from space using an energy balance. The method compares well with existing sea ice thickness observations.
Mikko Lensu and Markku Similä
The Cryosphere, 16, 4363–4377, https://doi.org/10.5194/tc-16-4363-2022, https://doi.org/10.5194/tc-16-4363-2022, 2022
Short summary
Short summary
Ice ridges form a compressing ice cover. From above they appear as walls of up to few metres in height and extend even kilometres across the ice. Below they may reach tens of metres under the sea surface. Ridges need to be observed for the purposes of ice forecasting and ice information production. This relies mostly on ridging signatures discernible in radar satellite (SAR) images. New methods to quantify ridging from SAR have been developed and are shown to agree with field observations.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Benjamin Heikki Redmond Roche and Martin D. King
The Cryosphere, 16, 3949–3970, https://doi.org/10.5194/tc-16-3949-2022, https://doi.org/10.5194/tc-16-3949-2022, 2022
Short summary
Short summary
Sea ice is bright, playing an important role in reflecting incoming solar radiation. The reflectivity of sea ice is affected by the presence of pollutants, such as crude oil, even at low concentrations. Modelling how the brightness of three types of sea ice is affected by increasing concentrations of crude oils shows that the type of oil, the type of ice, the thickness of the ice, and the size of the oil droplets are important factors. This shows that sea ice is vulnerable to oil pollution.
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Short summary
Arctic sea ice has a distribution of ice sizes that provides insight into the physics of the ice. We examine this distribution from satellite imagery from 1999 to 2014 in the Canada Basin. We find that it appears as a power law whose power becomes less negative with increasing ice concentrations and has a seasonality tied to that of ice concentration. Results suggest ice concentration be considered in models of this distribution and are important for understanding sea ice in a warming Arctic.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022, https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Short summary
Ice motion can be used to better understand how weather and climate change affect the ice. Antarctic sea ice extent has shown large variability over the observed period, and dynamical features may also have changed. Our method allows for the quantification of rotational motion caused by wind and how this may have changed with time. Cyclonic motion dominates the Atlantic sector, particularly from 2015 onwards, while anticyclonic motion has remained comparatively small and unchanged.
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022, https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary
Short summary
This study uses radar satellite data categorized into different sea ice types to detect ice deformation, which is significant for climate science and ship navigation. For this, we examine radar signal differences of sea ice between two similar satellite sensors and show an optimal way to apply categorization methods across sensors, so more data can be used for this purpose. This study provides a basis for future reliable and constant detection of ice deformation remotely through satellite data.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021, https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
Short summary
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker and, in particular conditions, to have a loose mass of platelet ice crystals called a sub‐ice platelet layer beneath. This causes the sea ice freeboard to stand higher above sea level. In this study, we demonstrate for the first time that the signature of ice shelf meltwater in the surface ocean manifesting as higher sea ice freeboard in McMurdo Sound is detectable from space using satellite technology.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Zhixiang Yin, Xiaodong Li, Yong Ge, Cheng Shang, Xinyan Li, Yun Du, and Feng Ling
The Cryosphere, 15, 2835–2856, https://doi.org/10.5194/tc-15-2835-2021, https://doi.org/10.5194/tc-15-2835-2021, 2021
Short summary
Short summary
MODIS thermal infrared (TIR) imagery provides promising data to study the rapid variations in the Arctic turbulent heat flux (THF). The accuracy of estimated THF, however, is low (especially for small leads) due to the coarse resolution of the MODIS TIR data. We train a deep neural network to enhance the spatial resolution of estimated THF over leads from MODIS TIR imagery. The method is found to be effective and can generate a result which is close to that derived from Landsat-8 TIR imagery.
Joan Antoni Parera-Portell, Raquel Ubach, and Charles Gignac
The Cryosphere, 15, 2803–2818, https://doi.org/10.5194/tc-15-2803-2021, https://doi.org/10.5194/tc-15-2803-2021, 2021
Short summary
Short summary
We describe a new method to map sea ice and water at 500 m resolution using data acquired by the MODIS sensors. The strength of this method is that it achieves high-accuracy results and is capable of attenuating unwanted resolution-breaking effects caused by cloud masking. Our resulting March and September monthly aggregates reflect the loss of sea ice in the European Arctic during the 2000–2019 period and show the algorithm's usefulness as a sea ice monitoring tool.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021, https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Short summary
Convergent sea ice motion produces a thick ice cover through ridging. We studied sea ice deformation derived from high-resolution satellite imagery and related it to the corresponding thickness change. We found that deformation explains the observed dynamic thickness change. We show that deformation can be used to model realistic ice thickness distributions. Our results revealed new relationships between thickness redistribution and deformation that could improve sea ice models.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Stephan Paul and Marcus Huntemann
The Cryosphere, 15, 1551–1565, https://doi.org/10.5194/tc-15-1551-2021, https://doi.org/10.5194/tc-15-1551-2021, 2021
Short summary
Short summary
Cloud cover in the polar regions is difficult to identify at night when using only thermal-infrared data. This is due to occurrences of warm clouds over cold sea ice and cold clouds over warm sea ice. Especially the standard MODIS cloud mask frequently tends towards classifying open water and/or thin ice as cloud cover. Using a neural network, we present an improved discrimination between sea-ice, open-water and/or thin-ice, and cloud pixels in nighttime MODIS thermal-infrared satellite data.
Cited articles
Andersen, S., Tonboe, R. T., Kern, S., and Schyberg, H.: Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using Numerical Weather Prediction model fields: An intercomparison of nine algorithms, Remote Sens. Environ., 104, 374–392, 2006.
Andersen, S., Pedersen, L. T., Heygster, G., Tonboe, R. T., and Kaleschke, L.: Intercomparison of passive microwave sea ice concentration retrievals over the high concentration Arctic sea ice, J. Geophys. Res., 112, C08004, https://doi.org/10.1029/2006JC003543, 2007.
Barsi, J. A., Kenton, L., Kvaran, G., Markham, B. L., and Pedelty, J. A.: The spectral response of the Landsat-8 operational land imager, Remote Sens., 6, 10232–10251, https://doi.org/10.3390/rs61010232, 2014.
Belchansky, G. I. and Douglas, D. C.: Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data, Remote Sens. Environ., 81, 67–81, 2002.
Boulze, H., Korosov, A., and Brajard, J.: Classification of sea ice types in Sentinel-1 SAR using convolutional neural networks, Remote Sens., 12, 2165–2184, https://doi.org/10.3390/rs12132165, 2020.
Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone, The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, 2020.
Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface Albedo of the Antarctic sea ice zone, J. Climate, 18, 3606–3622, 2005.
Burgard, C., Notz, D., Pedersen, L. T., and Tonboe, R. T.: The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output, The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020, 2020.
Cavalieri, D. J.: A microwave technique for mapping thin sea ice, J. Geophys. Res., 99, 12561–12572, 1994.
Cavalieri, D. J., Gloersen, P., and Campbell, W. J.: Determination of Sea Ice Parameters with the NIMBUS 7 SMMR, J. Geophys. Res., 89, 5355–5369, 1984.
Cavalieri, D. J., Crawford, J., Drinkwater, M., Emery, W. J., Eppler, D. T., Farmer, L. D., Goodberlet, M., Jentz, R., Milman, A., Morris, C., Onstott, R., Schweiger, A., Shuchman, R., Steffen, K., Swift, C. T., Wackerman, C., and Weaver, R. L.: NASA sea ice validation program for the DMSP SSM/I: final report. NASA Technical Memorandum 104559, National Aeronautics and Space Administration, Washington, D. C., 126 pp., 1992.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and Zwally, H. J.: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets, J. Geophys. Res., 104, 15803–15814, https://doi.org/10.1029/1999JC900081, 1999.
Cavalieri, D. J., Markus, T., Hall, D. K., Gasiewski, A. J., Klein, M., and Ivanoff, A.: Assessment of EOS Aqua AMSR-E Arctic sea ice concentrations using Landsat-7 and airborne microwave imagery, IEEE T. Geosci. Remote, 44, 3057–3069, https://doi.org/10.1109/TGRS.2006.878445, 2006.
Chander, G., Markham, B. L., and Barsi, J. A.: Revised Landsat-5 Thematic Mapper Radiometric Calibration, IEEE Geosci. Remote S., 4, 490–494, 2007.
Chander, G., Markham, B. L., and Helder, D. L.: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sens. Environ., 113, 893–903, 2009.
Cheng, A., Casati, B., Tivy, A., Zagon, T., Lemieux, J.-F., and Tremblay, L. B.: Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2, The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020, 2020.
Comiso, J. C.: Characteristics of arctic winter sea ice from satellite multispectral microwave observations, J. Geophys. Res., 91, 975–994, 1986.
Comiso, J. C.: Enhanced sea ice concentrations and ice extents from AMSR-E data, J. Rem. Sens. Soc. Japan, 29, 199–215, 2009.
Comiso, J. C. and Nishio, F.: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data, J. Geophys. Res., 113, C02S07, https://doi.org/10.1029/2007JC004257, 2008.
Comiso, J. C. and Steffen, K.: Studies of Antarctic sea ice concentrations from satellite data and their applications, J. Geophys. Res., 106, 31361–31385, 2001.
Comiso, J. C. and Zwally, H. J.: Antarctic sea ice concentrations inferred from Nimbus 5 ESMR and Landsat imagery, J. Geophys. Res., 87, 5836–5844, https://doi.org/10.1029/JC087iC08p05836, 1982.
Comiso, J. C., Wadhams, P., Krabill, W. B., Swift, R. N., Crawford, J. P., and Tucker III, W. B.: Top/bottom multisensory remote sensing of Arctic sea ice, J. Geophys. Res., 96, 2693–2709, https://doi.org/10.1029/90JC02466, 1991.
Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive microwave algorithms for sea ice concentration: A comparison of two techniques, Remote Sens. Environ., 60, 357–384, 1997.
Comiso, J. C., Cavalieri, D. J., and Markus, T.: Sea ice concentration, ice temperature, and snow depth, using AMSR-E data, IEEE T. Geosci. Remote, 41, 243–252, https://doi.org/10.1109/TGRS.2002.808317, 2003.
Cooke, C. L. V. and Scott, K. A.: Estimating sea ice concentration from SAR: Training convolutional neural networks with passive microwave data, IEEE T. Geosci. Remote, 57, 4735–4747, https://doi.org/10.1109/TGRS.2019.2892723, 2019.
Dokken, S. T., Håkansson, B., and Askne, J.: Inter-comparison of Arctic sea ice concentration using RADARSAT, ERS, SSM/I and In-Situ Data, Can. J. Remote Sens., 26, 521–536, https://doi.org/10.1080/07038992.2000.10874793, 2000.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Ezraty, R., Girard-Ardhuin, F., Piollé, J.-F., Kaleschke, L., and Heygster, G.: Arctic and Antarctic sea ice concentration and Arctic sea ice drift estimated from special sensor microwave data – Users's Manual, Version 2.1, IFREMER, Brest, France, February 2007.
Han, H. and Kim, H.-C.: Evaluation of summer passive microwave sea ice concentrations in the Chukchi Sea based on KOMPSAT-5 SAR and numerical weather prediction data, Remote Sens. Environ., 209, 343–362, https://doi.org/10.1016/j.rse.2018.02.058, 2018.
Heinrichs, J. F., Cavalieri, D. J., and Markus, T.: Assessment of the AMSR-E sea ice concentration product at the ice edge using RADARSAT-1 and MODIS imagery, IEEE T. Geosci. Remote, 44, 3070–3080, https://doi.org/10.1109/TGRS.2006.880622, 2006.
Ivanova, N., Johannessen, O. M., Pedersen, R. T., and Tonboe, R. T.: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms, IEEE T. Geosci. Remote, 52, 7233–7246, https://doi.org/10.1109/TGRS.2014.2310136, 2014.
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015.
Kaleschke, L., Lüpkes, C., Vihma, T., Haarpaintner, J., Bochert, A., Hartmann, J., and Heygster, G.: SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Can. J. Remote Sens., 27, 526–537, 2001.
Karvonen, J.: A sea ice concentration estimation algorithm utilizing radiometer and SAR data, The Cryosphere, 8, 1639–1650, https://doi.org/10.5194/tc-8-1639-2014, 2014.
Karvonen, J.: Baltic sea ice concentration estimation using SENTINEL-1 SAR and AMSR2 microwave radiometer data, IEEE T. Geosci. Remote, 55, 2871–2883, https://doi.org/10.1109/TGRS.2017.2655567, 2017.
Kern, S.: A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data, Int. J. Remote Sens., 25, 4555–4582, 2004.
Kern, S.: Landsat surface type over water from supervised classification of surface broadband albedo estimates (Version 2021_fv0.01), Universität Hamburg [data set], https://doi.org/10.25592/uhhfdm.9181, 2021.
Kern, S., Rösel, A., Pedersen, L. T., Ivanova, N., Saldo, R., and Tonboe, R. T.: The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations, The Cryosphere, 10, 2217–2239, https://doi.org/10.5194/tc-10-2217-2016, 2016.
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., and Sørensen, A. M.: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations, The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019, 2019.
Kern, S., Kaleschke, L., Girard-Ardhuin, F., Spreen, G.,
and Beitsch, A.: Global daily gridded 5 d median-filtered,
gap-filled ASI Algorithm SSMI-SSMIS sea ice concentration data,
Integrated Climate Date Center (ICDC), CEN, University of Hamburg,
Germany [data set], available at: https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/seaiceconcentration-asi-ssmi.html (last access: 9 December 2021), 2020a.
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., and Tonboe, R.: Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions, The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020, 2020b.
Knap, W. H., Brock, B. W., Oerlemans, J., and Willis, I. C.: Comparison of Landsat TM-derived and ground-based albedos of Haut Glacier d'Arolla, Switzerland, Int. J. Remote Sens., 20, 3293–3310, 1999.
Koepke, P.: Removal of Atmospheric Effects from AVHRR albedos, J. Appl. Meteorol., 28, 1341–1348, 1989.
Komarov, A. S. and Buehner, M.: Automated detection of ice and open water from dual-polarization RADARSAT-2 images for data assimilation, IEEE T. Geosci. Remote, 55, 5755–5769, https://doi.org/10.1109/TGRS.2017.2713987, 2017.
Komarov, A. S. and Buehner, M.: Improved retrieval of ice and open water from sequential RADARSAT-2 images, IEEE T. Geosci. Remote, 57, 3694–3702, https://doi.org/10.1109/TGRS.2018.2886685, 2019.
Kwok, R.: Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion, Geophys. Res. Lett., 29, 1311, https://doi.org/10.1029/2002GL014787, 2002.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Leigh, S., Wang, Z., and Clausi, D. A.: Automated ice-water classification using dual polarization SAR satellite imagery, IEEE T. Geosci. Remote, 52, 5529–5539, https://doi.org/10.1109/TGRS.2013.2290231, 2014.
Liu, Y., Key, J., and Mahoney, R.: Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future JPSS satellites, Remote Sens., 8, 523–542, https://doi.org/10.3390/rs8060523, 2016.
Lohse, J., Doulgeris, A. P., and Dierking, W.: An optimal decision-tree design strategy and its application to sea ice classification from SAR imagery, Remote Sens., 11, 1574–1588, https://doi.org/10.3390/rs11131574, 2019.
Lu, J., Heygster, G., and Spreen, G.: Atmospheric correction of sea-ice concentration retrieval for 89 GHz AMSR-E observations, IEEE J. Sel. Top. Appl., 11, 1442–1457, https://doi.org/10.1109/JSTARS.2018.2805193, 2018.
Lu, P., Li, Z. L., Zhang, Z. H., and Dong, X. L.: Aerial observations of floe size distributions in the marginal ice zone of summer Prydz Bay, J. Geophys. Res., 113, C02011, https://doi.org/10.1029/2006JC003965, 2008.
Ludwig, V., Spreen, G., and Pedersen, L. T.: Evaluation of a new merged sea-ice concentration dataset at 1 km resolution from thermal infrared and passive microwave satellite data in the Arctic, Remote Sens., 12, 3183–3210, https://doi.org/10.3390/rs12193183, 2020.
Maass, N. and Kaleschke, L.: Improving passive microwave
sea ice concentration algorithms for coastal areas: applications to
the Baltic Sea, Tellus A, 62, 393–410, https://doi.org/10.1111/j.1600-0870.2010.00452.x, 2010.
Malmgren-Hansen, D., Pedersen, L. T., Aasbjerg Nielsen, A., Brandt Kreiner, M., Saldo, R., Skriver, H., Lavelle, J., Buus-Hinkler, J., and Harnvig Krane, K.: A convolutional neural network architecture for sentinel-1 and AMSR2 data fusion, IEEE T. Geosci. Remote, 59, 1890–1902, https://doi.org/10.1109/TGRS.2020.3004539, 2020.
Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012.
Markus, T. and Cavalieri, D. J.: An enhancement of the NASA Team sea ice algorithm, IEEE T. Geosci. Remote, 38, 1387–1398, 2000.
Markus, T. and Cavalieri, D. J.: The AMSR-E NT2 sea ice concentration algorithm: its basis and implementation, J. Rem. Sens. Soc. Japan, 29, 216–225, 2009.
Meier, W. N. and Windnagel, A.: Sea ice concentration – climate algorithm theoretical basis document, NOAA Climate Data Record Program CDRP-ATBD-0107 Rev. 7 (03/06/2018), available at: https://www.ncdc.noaa.gov/cdr/oceanic/sea-ice-concentration (last access: 19 February 2020), 2018.
Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3, NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA [data set], https://doi.org/10.7265/N59P2ZTG, 2017.
Meier, W. N., Markus, T., and Comiso, J. C.: AMSR-E/AMSR2 Unified L3 Daily 25.0 km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth Polar Grids, Version 1, Boulder, Colorado, USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/TRUIAL3WPAUP, 2018.
Meier, W. N., Fetterer, F., Windnagel, A. K., and Stewart, S.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65, 2021.
Mojica Moncada, J. F. and Holland, D.: Automatic Weather Station Pine Island Glacier, U. S. Antarctic Program (USAP) Data Center, https://doi.org/10.15784/601216, 2019.
Nose, T., Waseda, T., Kodaira, T., and Inoue, J.: Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones, The Cryosphere, 14, 2029–2052, https://doi.org/10.5194/tc-14-2029-2020, 2020.
Ochilov, S. and Clausi, D. A.: Operational SAR sea-ice image classification, IEEE T. Geosci. Remote, 50, 4397–4408, https://doi.org/10.1109/TGRS.2012.2192278, 2012.
Onana, V.-De-P., Kurtz, N. T., Farrell, S. L., Koenig, L. S., Studinger, M., and Harbeck, J. P.: A sea-ice lead detection algorithm for use with high-resolution airborne visible imagery, IEEE T. Geosci. Remote, 51, 38–56, https://doi.org/10.1109/TGRS.2012.2202666, 2013.
OSI SAF: Global Sea Ice Concentration Climate Data Record v2.0 – Multimission, EUMETSAT SAF on Ocean and Sea Ice [data set], https://doi.org/10.15770/EUM_SAF_OSI_0008, 2017a.
OSI SAF: Global Sea Ice Concentration Interim Climate Data Record 2016–onwards (v2.0, 2017), OSI-430-b [data set], https://osi-saf.eumetsat.int/products/osi-430-b-complementing-osi-450 (last access: 17 September 2021), 2017b.
Ozsoy-Cicek, B., Xie, H., Ackley, S. F., and Ye, K.: Antarctic summer sea ice concentration and extent: comparison of ODEN 2006 ship observations, satellite passive microwave and NIC sea ice charts, The Cryosphere, 3, 1–9, https://doi.org/10.5194/tc-3-1-2009, 2009.
Paget, M. J., Worby, A. P., and Michael, K. J.: Determining the floe-size distribution of East Antarctic sea ice from digital aerial photographs, Ann. Glaciol., 33, 94–100, 2001.
Pedersen, L. T., Dybkjær, G., Eastwood, S., Heygster,
G., Ivanova, N., Kern, S., Lavergne, T., Saldo, R., Sandven, S.,
Sørensen, A., and Tonboe, R. T.: ESA Sea Ice Climate Change
Initiative (Sea_Ice_cci): Sea Ice Concentration Climate Data
Record from the AMSR-E and AMSR-2 instruments at 25 km grid
spacing, version 2.1, Centre for Environmental Data Analysis [data set], 5
October 2017, https://doi.org/10.5285/f17f146a31b14dfd960cde0874236ee5, 2017a.
Pedersen, L. T., Dybkjær, G., Eastwood, S., Heygster, G., Ivanova, N., Kern, S., Lavergne, T., Saldo, R., Sandven, S., Sørensen, A., and Tonboe, R. T.: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Sea Ice Concentration Climate Data Record from the AMSR-E and AMSR-2 instruments at 50 km grid spacing, version 2.1, Centre for Environmental Data Analysis, 5 October 2017, Centre for Environmental Data Analysis [data set],
https://doi.org/10.5285/5f75fcb0c58740d99b07953797bc041e, 2017b.
Pegau, W. S. and Paulson, C. A.: The albedo of Arctic leads in summer, Ann. Glaciol., 33, 221–224, 2001.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring, Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013.
Perovich, D. K. and Jones, K. F.: The seasonal evolution of sea ice floe size distribution, J. Geophys. Res.-Oceans, 119, 8767–8777, https://doi.org/10.1002/2014JC010136, 2014.
Shi, Q., Su, J., Heygster, G., Shi, J., Wang, L., Zhu, L., Lou, Q., and Ludwig, V.: Step-by-step validation of Antarctic ASI AMSR-E sea-ice concentrations by MODIS and an aerial image, IEEE T. Geosci. Remote, 59, 392–403, https://doi.org/10.1109/TGRS.2020.2989037, 2021.
Shokr, M. and Agnew, T. A.: Validation and potential applications of Environment Canada Ice Concentration Extractor (ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations, Remote Sens. Environ., 128, 315–332, https://doi.org/10.1016/j.rse.2012.10.016, 2013.
Shokr, M. and Markus, T.: Comparison of NASA Team2 and AES-York ice concentration algorithms against operational ice charts from the Canadian Ice Service, IEEE T. Geosci. Remote, 44, 2164–2175, https://doi.org/10.1109/TGRS.2006.872077, 2006.
Singha, S., Johansson, M., Hughes, N., Hvidegaard, S. M., and Skourup, H.: Arctic sea ice characterization using spaceborne fully polarimetric L-, C-, and X-band SAR with validation by airborne measurements, IEEE T. Geosci. Remote, 56, 3715–3734, https://doi.org/10.1109/TGRS.2018.2809504, 2018.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Steer, A., Worby, A. P., and Heil, P.: Observed changes in sea-ice floe size distribution during early summer in the western Weddell Sea, Deep-Sea Res. Pt. II, 55, 933–942, https://doi.org/10.1016/j.dsr2.2007.12.016, 2008.
Steffen, K. and Maslanik, J. A.: Comparison of Nimbus 7 scanning multichannel microwave radiometer radiance and derived sea ice concentrations with Landsat imagery for the north water area of Baffin Bay, J. Geophys. Res., 93, 10769–10781, https://doi.org/10.1029/JC093iC09p10769, 1988.
Steffen, K. and Schweiger, A.: NASA team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite Program special sensor microwave imager: comparison with Landsat satellite data, J. Geophys. Res., 96, 21971–21987, 1991.
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea Ice concentrations, J. Geophys. Res.-Atmos., 119, 2864–2889, https://doi.org/10.1002/2013JD020316, 2014.
Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rathmann, N., Dybkjær, G., Pedersen, L. T., Høyer, J. L., and Kern, S.: The EUMETSAT sea ice concentration climate data record, The Cryosphere, 10, 2275–2290, https://doi.org/10.5194/tc-10-2275-2016, 2016.
Toyota, T., Haas, C., and Tamura, T.: Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter, Deep-Sea Res. Pt. II, 58, 1182–1193, https://doi.org/10.1016/j.dsr2.2010.10.034, 2011.
Toyota, T., Kohout, A., and Fraser, A. D.: Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica, Deep-Sea Res. Pt. II, 131, 28–40, https://doi.org/10.1016/j.dsr2.2015.10.003, 2016.
Tschudi, M. A., Curry, J. A., and Maslanik, J. A.: Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA, J. Geophys. Res., 107, 8034, https://doi.org/10.1029/2000JC000541, 2002.
Wang, L., Scott, K. A., Xu, L., and Clausi, D. A.: Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study, IEEE T. Geosci. Remote, 54, 4524–4533, https://doi.org/10.1109/TGRS.2016.2543660, 2016.
USGS: Landsat 8 (L8) Data Users Handbook, LSDS-1574, Version 5.0, November 2019, Department of the Interior, U.S. Geological Survey, EROS, Sioux Falls, South Dakota, 2019.
Wang, L., Scott, K. A., and Clausi, D. A.: Sea ice concentration estimation during freeze-up from SAR imagery using a convolutional neural network, Remote Sens., 9, 408–427, https://doi.org/10.3390/rs9050408, 2017.
Wang, Y.-R. and Li, X.-M.: Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning, Earth Syst. Sci. Data, 13, 2723–2742, https://doi.org/10.5194/essd-13-2723-2021, 2021.
Wensnahan, M., Maykut, G. A., Grenfell, T. C., and Winebrenner, D. P.: Passive microwave remote sensing of thin sea ice using principal component analysis, J. Geophys. Res., 98, 12453–12468, https://doi.org/10.1029/93JC00939, 1993.
Wiebe, H., Heygster, G., and Markus, T.: Comparison of the ASI ice concentration algorithm with Landsat-7 ETM+ and SAR imagery, IEEE T. Geosci. Remote, 47, 3008–3015, https://doi.org/10.1109/TGRS.2009.2026367, 2009.
Willmes, S., Nicolaus, M., and Haas, C.: The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study, The Cryosphere, 8, 891–904, https://doi.org/10.5194/tc-8-891-2014, 2014.
Worby, A. P. and Comiso, J. C.: Studies of the Antarctic sea ice edge and ice extent from satellite and ship observations, Remote Sens. Environ., 92, 98–111, https://doi.org/10.1016/j.rse.2004.05.007, 2004.
Zakhvatkina, N., Korosov, A., Muckenhuber, S., Sandven, S., and Babiker, M.: Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images, The Cryosphere, 11, 33–46, https://doi.org/10.5194/tc-11-33-2017, 2017.
Zatko, M. C. and Warren, S. G.: East Antarctic sea ice in spring: spectral albedo of snow, nilas, frost flowers and slush, and light-absorbing impurities in snow, Ann. Glaciol., 56, 53–64, https://doi.org/10.3189/2015AoG69A574, 2015.
Zhang, Q. and Skjetne, R.: Image processing for identification of sea-ice floes and the floe size distributions, IEEE T. Geosci. Remote, 53, 2913–2924, https://doi.org/10.1109/TGRS.2014.2366640, 2015.
Zhao, X., Chen, Y., Kern, S., Qu, M., Ji, Q., Fan, P., and Liu, Y.: Sea ice concentration derived from FY-3D MWRI and its accuracy assessment, IEEE T. Geosci. Remote, 60, 4300418, https://doi.org/10.1109/TGRS.2021.3063272, 2022.
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite...