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Abstract. We report on results of an intercomparison of
10 global sea-ice concentration (SIC) data products at 12.5
to 50.0 km grid resolution from satellite passive microwave
(PMW) observations. For this we use SIC estimated from >

350 images acquired in the visible–near-infrared frequency
range by the joint National Aeronautics and Space Ad-
ministration (NASA) and United States Geological Survey
(USGS) Landsat sensor during the years 2003–2011 and
2013–2015. Conditions covered are late winter/early spring
in the Northern Hemisphere and from late winter through
fall freeze-up in the Southern Hemisphere. Among the prod-
ucts investigated are the four products of the European Or-
ganisation for the Exploitation of Meteorological Satellites
(EUMETSAT) Ocean and Sea Ice Satellite Application Fa-
cility (OSI SAF) and European Space Agency (ESA) Cli-
mate Change Initiative (CCI) algorithms SICCI-2 and OSI-
450. We stress the importance to consider intercomparison
results across the entire SIC range instead of focusing on
overall mean differences and to take into account known bi-
ases in PMW SIC products, e.g., for thin ice. We find superior
linear agreement between PMW SIC and Landsat SIC for
the 25 and the 50 km SICCI-2 products in both hemispheres.
We discuss quantitatively various uncertainty sources of the

evaluation carried out. First, depending on the number of
mixed ocean–ice Landsat pixels classified erroneously as ice
only, our Landsat SIC is found to be biased high. This ap-
plies to some of our Southern Hemisphere data, promotes
an overly large fraction of Landsat SIC underestimation by
PMW SIC products, and renders PMW SIC products over-
estimating Landsat SIC particularly problematic. Secondly,
our main results are based on SIC data truncated to the range
0 % to 100 %. We demonstrate using non-truncated SIC val-
ues, where possible, can considerably improve linear agree-
ment between PMW and Landsat SIC. Thirdly, we inves-
tigate the impact of filters often used to clean up the final
products from spurious SIC over open water due to weather
effects and along coastlines due to land spillover. Benefiting
from the possibility to switch on or off certain filters in the
SICCI-2 and OSI-450 products, we quantify the impact land
spillover filtering can have on evaluation results as shown in
this paper.
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1 Introduction

We carry on the evaluation of sea-ice concentration (SIC)
products derived from satellite passive microwave (PMW)
observations. In Kern et al. (2019), we presented an evalu-
ation of 10 PMW SIC products at 0 % and 100 % SIC and
with respect to sea-ice observations along ship tracks. An-
other study focused on Arctic summer conditions, investi-
gating the bias between these PMW SIC products and inde-
pendent SIC and net ice surface fraction estimates based on
MODerate resolution Imaging Spectroradiometer (MODIS)
observations (Kern et al., 2020b). With this study, we shift
our focus more towards intermediate SIC and utilize a much
larger and, partly, more accurate reference data set than in
the two earlier studies. The evaluation at 0 % SIC in Kern
et al. (2019) utilized a few fixed open water locations only.
The evaluation at 100 % SIC used near-100 % SIC estimates
based on the analysis of freezing-season synthetic aperture
radar (SAR) image pairs representing convergent ice mo-
tion coinciding with a complete ice coverage and therefore
a high probability to encounter near-100 % SIC. Thus, we
evaluated the PMW SIC products for one specific set of ice
conditions only (winter and near-100 %). Kern et al. (2019)
also presented results of an evaluation of PMW SIC against
a multi-annual set of standardized manual visual ship-based
observations of the ice conditions. These observations are,
however, of limited accuracy and of limited representativity
because the average accuracy is between 5 % and 10 %, and
observations mostly represent sea-ice conditions where it is
possible to navigate. In addition, to reduce noise, PMW and
ship-based SIC were averaged over all observations along a
ship-track within 1 d, representing sea-ice conditions across
spatial scales that – in the worst case – vary by an order of
magnitude. The averaging resulted in a reduction in the num-
ber of valid data pairs from approximately 15 000 to less than
800, i.e., about 400 per hemisphere.

Another aspect is that the accuracy of the hemispheric but
also the regional sea-ice area (SIA) computed from PMW
SIC estimates strongly depends on their accuracy. PMW
SIC values biased high yield an overestimation of the SIA,
whereas PMW SIC biased low results in an underestimation
of the SIA. This seems not to be critical as long as the trend
is correct (e.g., Ivanova et al., 2014) but limits the use of
such SIA estimates for quantitative intercomparisons of cli-
mate model results against observations (e.g., Burgard et al.,
2020). It is definitely important PMW SIC is 100 % where
the actual SIC is 100 % to avoid artificially elevated ocean–
atmosphere heat fluxes when used as a surface forcing. It is
equally important PMW SIC is an accurate estimate of the
open water fraction, hence providing 95 % where the actual
SIC is 95 % due to leads and openings in the sea-ice cover.
In addition, it is desirable to check the performance of PMW
SIC products across the entire SIC range in order to have a
reliable estimate of the actual ice cover in, for example, the
marginal ice zone (MIZ). Here gradients in heat fluxes are

often particularly large. A correct definition of and accurate
SIC distribution within the MIZ are also crucial should SIC
values be used to evaluate numerical models capable to sim-
ulate wave–sea ice interaction (e.g., Boutin et al., 2020; Nose
et al., 2020). The ship-based SIC observations used in Kern
et al. (2019) offer only limited potential to carry out this per-
formance check because of the above-mentioned reasons, the
small number of observations falling into the relevant SIC
range of, e.g., 20 % to 80 %, and the larger observational er-
ror in this SIC range.

Therefore, in this paper we focus on the evaluation of
PMW SIC products against a large number of high-resolution
binary sea-ice cover maps estimated from satellite obser-
vations acquired in the visible frequency range by NASA–
USGS Landsat-5, Landsat-7, and Landsat-8. Overall, we
used over 350 such Landsat-based maps, corresponding to
more than 10 000 25km× 25 km resolution PMW SIC grid
cells. We chose Landsat over MODIS because of the substan-
tially finer spatial resolution of the visible channels of Land-
sat: 30 m compared to MODIS’ 250 m. We note in this con-
text that several studies used MODIS visible–near-infrared
observations to either evaluate or complement PMW SIC
products (e.g., Ludwig et al., 2020; Shi et al., 2021). Another
option would have been to use Sentinel-2’s MultiSpectral In-
strument (MSI) (Drusch et al., 2012). We discarded this op-
tion in light of the limited overlap between this satellite mis-
sion (Sentinel-2A was launched June 2015) and our PMW
SIC data set, but it will be very valuable in the future since
it will allow the data set to be extended to areas much fur-
ther from land and will likely provide an even more accurate
evaluation data set.

Utilization of the high-resolution information provided
by Landsat as a means for assessing satellite PMW SIC
products dates back to the early 1980s when Comiso and
Zwally (1982) compared Nimbus-7 Scanning Multichannel
Microwave Radiometer (SMMR) SIC with Landsat imagery.
Since then a number of studies have used a small number of
such images for SIC intercomparison and/or evaluation (e.g.,
Steffen and Maslanik, 1988; Steffen and Schweiger, 1991;
Comiso and Steffen, 2001; Cavalieri et al., 2006; Wiebe et
al., 2009; Lu et al., 2018; Zhao et al., 2021). Landsat imagery
has also recently been used for quality assessment of SIC es-
timates from Suomi National Polar-Orbiting Partnership Vis-
ible Infrared Imaging Radiometer Suite (NPP VIIRS) obser-
vations (e.g., Liu et al., 2016). Common to all these studies is
that they used a comparably small number of Landsat scenes,
i.e., less than 10, an order of magnitude smaller than the 368
scenes used in this study (see above).

Analysis of visible satellite imagery for SIC estimation
is quite straightforward. A threshold-based method discrim-
inating between open water and ice is applied at the na-
tive spatial resolution (pixel size: 30m× 30 m) of the Land-
sat channels in the visible frequency range, assuming that a
pixel is covered by either ice or water. Co-locating this high-
resolution information of the binary ice–water distribution
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with the coarse-resolution PMW SIC products and counting
ice and water pixels within a PMW SIC product’s grid cell
provide an adequate independent measure of the SIC. We re-
fer to Sect. 2.2 for more details.

For evaluating the PMW SIC products across the SIC
range, we prefer to use visible data instead of SAR data. The
main advantages of SAR data would be the larger area cov-
ered by a single scene compared to Landsat (about 400 to
500 km in SAR wide-swath mode (WSM) vs. 180 km for
Landsat) and their independence from daylight and cloud
cover. In fact, many PMW SIC intercomparison studies have
already used SAR images (e.g., Comiso et al., 1991; Dokken
et al., 2000; Belchansky and Douglas, 2002; Kwok, 2002;
Heinrichs et al., 2006; Andersen et al., 2007; Wiebe et
al., 2009; Han and Kim, 2018). However, despite the past
decade’s substantial progress in developing and testing meth-
ods to translate SAR images into high-resolution SIC maps
(e.g., Cooke and Scott, 2019; Karvonen, 2014, 2017; Ko-
marov and Buehner, 2017, 2019; Leigh et al., 2014; Lohse
et al., 2019; Ochilov and Clausi, 2012; Singha et al., 2018;
Wang et al., 2016, 2017; Zakhvatkina et al., 2017; Boulze
et al., 2020; Malmgren-Hansen et al., 2020; Wang and Li,
2021), some using machine learning approaches, the accu-
racy of the obtained SIC maps is not always satisfactory. Par-
ticularly at intermediate SIC – the main focus of this study –
SAR signatures are often ambiguous, resulting in SAR SIC
uncertainties too large for our purposes. Furthermore, appli-
cations of such methods to derive Southern Ocean SIC from
SAR are comparably sparse. Therefore, we do not use SAR-
based SIC maps.

We note that also Ice charting services (FMI, DMI, MET
Norway, CIS, NATICE, AARI) heavily depend on SAR im-
agery for production of their ice charts. They thus have a
large demand to automate processes of classification and are
potentially most advanced in testing automated SAR SIC re-
trieval (e.g., Cheng et al., 2020). However, ice charts pro-
vide SIC ranges within polygons that are highly variable and
heterogeneous in size and shape. Several studies used such
ice charts for various intercomparison purposes (e.g., Shokr
and Markus, 2006; Shokr and Agnew, 2013; Titchner and
Rayner, 2014). Some centers providing operational sea-ice
information also use such charts for routine quality checking
of PMW SIC products. However, for our purpose of eval-
uating PMW SIC climate data records (CDRs) and similar
SIC products, the limitations of such charts in terms of pre-
cision and accuracy – particularly in the intermediate SIC
range (e.g., Cheng et al., 2020) – exclude their usage in this
study.

After this introduction, this paper provides information
about the PMW SIC products, the Landsat data set used, and
the methods applied to derive SIC from the Landsat images
(Sect. 2). We present our results in Sects. 3 and 4, discuss
some additional aspects in Sect. 5, and conclude the study in
Sect. 6.

2 Data and methodologies

2.1 Sea-ice concentration data sets

The 10 different PMW SIC products considered in our study
are summarized briefly in Table 1. We refrain from repeating
information about the algorithms themselves, tie point se-
lection, application of weather filters, consideration of land
spillover effects, and so forth. All this information is pro-
vided in detail in Lavergne et al. (2019), Kern et al. (2019,
their Appendix 7.1–7.6), and Kern et al. (2020b). The same
applies to the fact that four of the products (SICCI-12km,
SICCI-25km, SICCI-50km, and OSI-450) allow us to take
into account the full SIC distribution at 0 % and 100 %. Such
a distribution is the natural result of the SIC retrieval method
used in all SIC products considered – except Nasa Team 2
(NT2). This distribution contains negative as well as SIC val-
ues above 100 % that are typically truncated, i.e., set to ex-
actly 0 % and 100 %. We refer to Lavergne et al. (2019) and
Kern et al. (2019) for more information in this regard.

In order to extend the time series of the Comiso bootstrap
(CBT) algorithm and the NT2 algorithm using Advanced
Microwave Scanning Radiometer aboard Earth Observation
Satellite (AMSR-E) data beyond AMSR-E’s capabilities to
provide daily maps of the polar regions (3 October 2011),
we use the respective unified product based on data from the
Advanced Microwave Scanning Radiometer aboard GCOM-
W1 (Global Change Observation Mission-Water): AMSR2
(Meier et al., 2018). With that we use five products based on
AMSR-E and AMSR2 data and five products based on Spe-
cial Sensor Microwave/Imager (SSM/I) and Special Sensor
Microwave Imager and Sounder (SSMIS) data of the period
2002 through 2015. We do not use PMW SIC data from the
period October 2011 through July 2012 because of the gap
between AMSR-E and AMSR2. All PMW SIC data have
daily temporal resolution. The grid type and grid resolution
of all data sets is shown in Table 1. We estimate the Land-
sat SIC (see Sect. 2.2) at the grid resolution of the respec-
tive product. We chose the 25 km grid resolution version of
the AMSR-E and AMSR2 products because this resolution is
closer to the footprint sizes of the involved channels, and this
is the resolution of the respective SSM/I and SSMIS versions
of these products. We use version 3 of the NOAA/NSIDC
SIC CDR (Peng et al., 2013; Meier et al., 2017) even though
version 4 has been released (Meier et al., 2021) because we
want to be consistent with the two previous papers (Kern et
al., 2019, 2020b).

2.2 The Landsat data set

We use Landsat data of the Thematic Mapper (TM) on
Landsat-5, the Enhanced Thematic Mapper (ETM) on
Landsat-7, and the Operational Land Imager (OLI) on
Landsat-8 obtained in level 1c GeoTIFF format from https:
//earthexplorer.usgs.gov (last accessed: 28 June 2021) for the
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Table 1. Overview of the investigated PMW SIC products. Column “ID (algorithm)” holds the identifier we use henceforth to refer to the
data product and which algorithm it uses. For those algorithms for which an AMSR sensor forms part of the name, we refer to AMSR-E or
AMSR2, depending on the respective data used; we write AMSR if we refer to products from both satellites. Column “Input data” refers to
the input satellite data for the data set, together with the frequencies and respective field-of-view dimensions.

ID (algorithm) Input data; frequencies (field-of-views) Grid resolution
and type

Reference

OSI-450
(SICCI2)

SSM/I, SSMIS; 19.35 GHz (69km× 43 km),
37.0 GHz (37km× 28 km)

25km× 25 km
EASE2.0

Tonboe et al. (2016),
OSI SAF (2017a, b),
Lavergne et al. (2019)

SICCI-12km
(SICCI2)

AMSR-E/AMSR2; 18.7 GHz (27km× 16km/22km×
14 km), 89.0 GHz (6km× 4km/5km× 3 km)

12.5km× 12.5 km
EASE2.0

Lavergne et al. (2019)

SICCI-25km
(SICCI2)

AMSR-E/AMSR2; 18.7 GHz (27km× 16km/22km×
14 km), 36.5 GHz (14km× 8km/12km× 7 km)

25km× 25 km
EASE2.0

Pedersen et al. (2017a),
Lavergne et al. (2019)

SICCI-50km
(SICCI2)

AMSR-E/AMSR2; 6.9 GHz (75km×43km/62km×35 km),
36.5 GHz (14km× 8km/12km× 7 km)

50km× 50 km
EASE2.0

Pedersen et al. (2017b),
Lavergne et al. (2019)

CBT-SSMI
(Comiso bootstrap)

SSM/I, SSMIS; 19.35 GHz (69km× 43 km),
37.0 GHz (37km× 28 km)

25km× 25 km
PolarStereo

Comiso (1986), Comiso et
al. (1997), Comiso and
Nishio (2008), Meier et al.
(2017)

NOAA-CDR
(NASA Team and
Comiso bootstrap)

SSM/I, SSMIS; 19.35 GHz (69km× 43 km),
37.0 GHz (37km× 28 km)

25km× 25 km
PolarStereo

Peng et al. (2013), Meier
et al. (2017), Meier and
Windnagel (2018)

CBT-AMSR
(Comiso bootstrap)

AMSR-E/AMSR2; 18.7 GHz (27km× 16km/22km×
14 km), 36.5 GHz (14km× 8km/12km× 7 km)

25km× 25 km
PolarStereo

Comiso et al. (2003),
Comiso and Nishio (2008),
Comiso (2009), Meier et al.
(2018)

ASI-SSMI
(ASI)

SSM/I, SSMIS; 85.5 GHz (15km× 13 km) 12.5km× 12.5 km
PolarStereo

Kaleschke et al. (2001),
Ezraty et al. (2007), Kern et
al. (2020a)

NT1-SSMI
(NASA Team)

SSM/I, SSMIS; 19.35 GHz (69km× 43 km),
37.0 GHz (37km× 28 km)

25km× 25 km
PolarStereo

Cavalieri et al. (1984,
1992, 1999), Meier et al.
(2017)

NT2-AMSR
(NASA Team 2)

AMSR-E/AMSR2; 18.7 GHz (27km× 16km/22km×
14 km), 36.5 GHz (14km× 8km/12km× 7 km),
89.0 GHz (6km× 4km/5km× 3 km)

25km× 25 km
PolarStereo

Markus and Cavalieri
(2000, 2009), Meier et al.
(2018)

years 2003–2011 (Landsat-5), 2003 (Landsat-7), and 2013–
2015 (Landsat-8). We downloaded only images with a cloud
fraction < 30 % provided as a search criterion upfront. In
the Northern Hemisphere, we use images of the months of
March, April, May, and September, i.e., from late winter to
spring and at the onset of fall freeze-up; in the Southern
Hemisphere we use images of the months of October through
March, i.e., from late winter over summer to fall freeze-up.
The total number of images acquired is 421; these split into
152, 12, and 227 for Landsat-5, Landsat-7, and Landsat-8,
respectively, and partition into 259 images for the Northern
Hemisphere and 162 images for the Southern Hemisphere.

2.2.1 Processing

We compute the top of atmosphere (TOA) reflectance for
channels 2 to 4 (Landsat-5 and Landsat-7) or channels 3 to 5
(Landsat-8) following Chander et al. (2007, 2009) and USGS
(2019). Table 2 provides the wavelengths of these channels
(e.g., Chander et al., 2009; Barsi et al., 2014). The solar
zenith angle and other parameters required for this computa-
tion are either included in the Landsat data files or are taken
from Chander et al. (2007, 2009) and the Landsat 8 data users
handbook (USGS, 2019). To convert the TOA reflectances
to surface reflectances or surface albedo we follow the ap-
proaches of Koepke (1989) and Knap et al. (1999). They
assume that the TOA reflectance (or planetary reflectance)
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Table 2. Overview about the wavelengths and bandwidths of the
Landsat channels used.

Wavelength [nm] of Landsat-5 Landsat-7 Landsat-8

Channel 2 528–609 519–601 –
Channel 3 626–693 631–692 533–590
Channel 4 776–904 772–898 636–673
Channel 5 – – 851–879

equals the TOA albedo (or planetary albedo) and that the
TOA albedo αTOA is related to the surface albedo αsurface via
the simple linear relationship:

αTOA = a+ bαsurface. (1)

The coefficients a and b are a function of the atmospheric
conditions, the solar zenith angle, and the wavelength. We
follow Koepke (1989) and take values for a and b from his
Figs. 1 (KF1) and 2 (KF2). We use KF1 derived for the Ad-
vanced Very High Resolution Radiometer (AVHRR) channel
1 for Landsat channels in the wavelength range 500–700 nm.
We use KF2 derived for AVHRR channel 2 for Landsat chan-
nels in the wavelength range 700–900 nm. We choose those
atmospheric conditions that are appropriate for a polar ma-
rine atmosphere. For aerosol optical depth we use 0.05, for
ozone content we use 0.24 cm NTP (NTP stands for nor-
mal temperature and pressure) corresponding to 240 Dobson
units, and for water vapor content we use 0.5 gcm−2. Using
Eq. (1) we convert TOA albedo into surface albedo values
separately for the three channels of the respective Landsat
instrument. Subsequently, we compute from these surface
albedo values an estimate of the surface broadband short-
wave albedo (e.g., Brandt et al., 2005) using the bandwidths
of the channels as weights (see Table 2).

For every broadband surface albedo map, we perform a su-
pervised visual classification into open water, bare/thin ice,
and thick/snow-covered ice. For that, we assume the respec-
tive surface class covers a Landsat pixel entirely. We assign
all dark pixels (with an albedo of, on average, smaller than
0.06) to the open water class. We assign all bright pixels
(with an albedo of, on average, larger than 0.45) to the class
thick/snow-covered ice; all remaining pixels fall into the
class bare/thin ice. We pay more attention separating open
water from ice very accurately than distinguishing between
bare/thin ice and thick/snow-covered ice. In every Landsat
albedo map we search for leads or openings, zoom into these,
and perform histogram-equalized slicing to visually identify
– based on albedo values and spatial structures – whether the
leads or openings selected contain open water. We take the
threshold value chosen to separate open water from ice from
Pegau and Paulsen (2001). The threshold value chosen to dis-
tinguish between bare/thin ice and thick/snow-covered ice is
based on Brandt et al. (2005) and Zatko and Warren (2015).
They found an albedo of around 0.33 for bare thin ice less

than 30 cm thick and of around 0.42 for snow-covered thin
ice (5–10 cm thick) with a thin (< 3 cm) snow cover. Note
that the actual threshold values chosen for a particular Land-
sat image vary between 0.03 and 0.08 for the open water–ice
discrimination and between 0.35 and 0.55 for the bare/thin
ice–thick/snow-covered ice discrimination. This variation re-
sults from the varying illumination conditions encountered
– despite our limitation to Landsat scenes acquired at solar
zenith angles < 65◦.

Usage of a three-class distribution is motivated by the fact
that it has been shown that PMW SIC is often biased low
over thin sea ice (e.g., Wensnahan et al., 1993; Cavalieri,
1994; Ivanova et al., 2015). Therefore, in addition to using
the Landsat images just for a high-resolution ice–water dis-
crimination, we also use them to derive the fraction of thin ice
with the aim to discuss differences between Landsat SIC and
PMW SIC in light of a potential impact by thin ice. However,
we discarded this aim – but kept the classification results –
because during analyses of the Landsat images we encoun-
tered ambiguities in surface albedos between snow-covered
thin ice and bare thick ice. While there is little ambiguity
between open water and ice, except for very thin dark nilas
or ice rind (e.g., Zatko and Warren, 2015), resulting in high
confidence of pixels classified as either open water or ice,
the confidence of pixels classified as bare/thin or thick/snow-
covered ice is considerably worse.

2.2.2 Co-location and comparison

For the co-location, we first select a rectangular area within
the PMW SIC grid, EASE-2 for the SICCI-2 and OSI-450
products (EPSG: 6930 and 6931) and polar-stereographic
true at 70◦ northern or southern latitude (known as NSIDC
grid, EPSG: 3411) for the other six products, which encloses
the Landsat SIC map. For this we take the geographic corner
coordinates of the Landsat SIC map (still at 30 m grid resolu-
tion), convert these into Cartesian coordinates, and find those
PMW SIC grid cells whose centers have minimum distance
(in meters) to these corner coordinates. Beforehand, we also
convert PMW SIC grid cell coordinates into Cartesian co-
ordinates and rotate the grid for the Northern Hemisphere
PMW SIC products on the NSIDC grid clockwise by 45◦;
this is not required for the respective Southern Hemisphere
PMW SIC products.

Subsequently, we compute the Landsat SIC by summing
over all 30 m pixels classified as ice that fall into the PMW
SIC grid cells within the above-defined rectangular area. Be-
cause we do this is at the grid resolution of the PMW prod-
ucts, we obtain Landsat SIC maps at 12.5, 25.0, and 50.0 km
grid resolution. We compare the resulting gridded Landsat
SIC with the respective co-located PMW SIC by computing
the mean difference PMW SIC minus Landsat SIC, its stan-
dard deviation, the median difference, and deriving a linear
regression line and computing the linear correlation coeffi-
cient.
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Based on a visual quality check of the obtained Landsat
SIC maps we discard ∼ 50 of the processed Landsat scenes
from further analysis – mainly because of cloud artifacts but
also because a few scenes we obtained twice. Therefore, the
resulting lower final number of Landsat SIC maps used is
368: 234 for the Arctic – partitioning into Landsat-5: 134;
Landsat-7: 12; and Landsat-8: 88 – and 134 for the Antarctic.
The spatial distribution of the Landsat scenes is illustrated in
Fig. 1. Note that we focus on data of Landsat-5 and Landsat-
8 in this paper.

2.2.3 Sensitivity analysis

In order to estimate how Landsat SIC depends on the choice
of the albedo thresholds used to discriminate open water
from ice and bare/thin ice from thick/snow-covered ice, we
repeat the classification into the three surface classes using
modified thresholds. We vary the albedo value for the open
water–ice discrimination by ±0.03; i.e., for an actual albedo
value of 0.06 we employ additional threshold values of 0.03
and 0.09. We vary the albedo value for the bare/thin ice–
thick/snow-covered ice discrimination by ±0.1; i.e., for an
actual albedo value of 0.45 we employ additional threshold
values of 0.35 and 0.55. The range of albedo threshold val-
ues we choose is motivated by our experience with the super-
vised classification of the many Landsat scenes under vary-
ing illumination conditions. We randomly select 12 Land-
sat 8 scenes for the Northern Hemisphere and 15 scenes for
the Southern Hemisphere. For every image we perform the
classification into the three surface classes with the above-
mentioned four additional albedo threshold value combina-
tions, compute Landsat SIC on the 25 and 50 km EASE grid,
and derive a Landsat scene mean SIC value (Tables 3 and 4).
We find that changing the albedo value of the open water–ice
discrimination by±0.03 changes the average Landsat SIC by
between 0.7 % and 1.2 % in the Northern Hemisphere and by
between 0.8 % and 1.5 % in the Southern Hemisphere. Thus,
the sensitivity appears to be independent of the overall SIC
which is close to 100 % for the Northern Hemisphere cases
(Table 3) but 55 %–60 % for the Southern Hemisphere cases
(Table 4). The difference in the sensitivity between grid res-
olutions of 25 and 50 km is less than 0.2 %.

As expected, changing the albedo value of the bare/thin
ice–thick/snow-covered ice discrimination by ±0.1 does not
influence the Landsat SIC. However, it influences the Land-
sat SIC computed at the respective grid resolutions when us-
ing Landsat pixels classified as thick/snow-covered ice only
(Tables S2 and S3 in the Supplement). We find Landsat
SIC of thick ice to vary by between 1.4 % and 2.4 % in the
Northern Hemisphere and by between 2.1 % and 2.7 % in the
Southern Hemisphere with little difference between the grid
resolutions.

2.2.4 Potential biases in Landsat SIC

In our approach, we assume either ice or water to cover
a Landsat pixel (30m× 30 m) entirely, not taking into ac-
count that ice floes or leads/openings might be smaller than
the pixel size, resulting in a mixed ocean–ice pixel. This
can introduce a positive bias in the Landsat SIC computed
at the grid resolution of the PMW SIC products. For in-
stance, for a Landsat pixel covered just half by thick/snow-
covered sea ice, which exhibits a surface albedo of 0.8 under
cold conditions, the resulting pixel average albedo would be
0.5×0.06+0.5×0.8= 0.43. With that, such a pixel is classi-
fied as bare/thin ice and counts as a pixel with 100 % instead
of 50 % sea-ice concentration. Depending on the albedo of
the ice, an ice-cover fraction of 0.04 in one Landsat pixel
could be sufficient to increase the pixel average albedo above
the upper open water–ice discrimination threshold value of
0.09 (see Tables 3 and 4), causing the respective pixel to be
classified as 100 % ice.

In order to quantify this positive bias better, it is useful to
distinguish between sea-ice conditions during summer and
winter and between pack ice and the MIZ, as well as to
take into account the dimensions of leads/openings and ice
floes. Distributions of lead width and floe size both follow
a power law. Leads/openings and ice floes with dimensions
smaller than the Landsat pixel size are orders of magnitude
more abundant than wide leads/openings (e.g., Tschudi et al.,
2002; Marcq and Weiss, 2012) and large ice floes (e.g., Steer
et al., 2008; Toyota et al., 2011; Perovich and Jones, 2014).

Based on airborne digital camera visible imagery captured
along tracks of Operation Icebridge (OIB) flights several
thousands’ of kilometers long in the Arctic in April 2010 and
in the Antarctic in October 2009 analyzed by Onana et al.
(2013) with respect to the lead and open water fraction, we
find a SIC bias of less than 0.2 %. This value derived for an
open water fraction of ∼ 1 % falls into the uncertainty range
of our approach (see Tables 3 and 4) and represents winter
conditions in the pack ice. Based on manual visual analy-
sis of airborne visible imagery obtained in the MIZ in the
Greenland Sea in March 1997, we find a SIC bias of the or-
der of 5 % to 10 %. This value is clearly outside the uncer-
tainty range of our approach. The images used here represent
an ice cover of ∼ 70 % SIC comprising closely packed but
also broken bands of a few thicker ice floes, pancake ice, and
brash and grease ice with little or no new ice formation in
the openings – a typical situation at an ice edge located in
comparably warm water.

Next, we again take the results of Onana et al. (2013) but
assume that the thin ice identified in the OIB digital cam-
era imagery adds to the open water fraction thereby simulat-
ing a summer situation. For an open water fraction of then
∼ 5 %, we estimate a SIC bias of less than 0.8 %, which is
still within the uncertainty range of our approach. However,
this low positive bias during summer would only apply to
a situation where ice floes are still packed closely together,
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Figure 1. Location of the Landsat scenes used. Panels (a–c) Arctic; panel (d) Antarctic. Note that scenes do overlap. The total number of
scenes shown is 134 (a), 12 (b), 88 (c), and 134 (d).

Table 3. Landsat SIC derived using the actual pair of albedo threshold values (“Actual value”) and the four variations of them (see text)
averaged for 12 Landsat-8 scenes selected for the Northern Hemisphere (NH) at 25 and 50 km grid resolution. The number to the right of the
± denotes 1 standard deviation. All SIC values are in percent.

αthinice\αopenwater −0.03 Actual value +0.03 NH, 25 km

−0.1 99.2± 2.1 – 97.3± 3.7
Actual value – 98.0± 3.1 –
+0.1 99.2± 2.1 – 97.3± 3.7

NH, 50 km
−0.1 98.9± 3.2 – 96.9± 4.5
Actual value – 97.7± 4.1 –
+0.1 98.9± 3.2 – 96.9± 4.5

e.g., by herding of ice floes (e.g., Toyota et al., 2016), and
where gaps between the ice floes from additional openings
created by the melt process are filled by brash ice and/or
slush. While this is a situation that might be encountered
during summer (Steer et al., 2008; Lu et al., 2008), it is not
necessarily typical. In summer, it can be more common to
encounter isolated floes. Depending on the size of the floes
and their distribution across a 25 km grid cell with, e.g., 50 %

SIC, we find the bias to range between less than 2 % to 50 %
in the two most extreme cases. We refer to the Supplement to
this subsection, where we describe in more detail how we ob-
tain estimates of the positive bias caused by the combination
of the finite resolution of the Landsat sensor and our classi-
fication approach for both winter and summer conditions at
the scale of a 25 km PMW SIC product grid.
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Table 4. Landsat SIC derived using the actual pair of albedo threshold values (“Actual value”) and the four variations of them (see text)
averaged for 15 Landsat-8 scenes selected for the Southern Hemisphere (SH) at 25 and 50 km grid resolution. The number to the right of the
± denotes 1 standard deviation. All SIC values are in percent.

αthinice\αopenwater −0.03 Actual value +0.03 SH, 25 km

−0.1 63.0± 27.0 – 60.5± 26.4
Actual value – 61.5± 26.6 –
+0.1 63.0± 27.0 – 60.5± 26.4

SH, 50 km
−0.1 54.5± 34.8 – 52.3± 33.8
Actual value – 53.1± 34.1 –
+0.1 54.5± 34.8 – 52.3± 33.8

According to the high-resolution optical images used to in-
fer the floe size distribution (Steer et al., 2008; Toyota et al.,
2011, 2016) and similar studies (e.g., Paget et al., 2001; Lu et
al., 2008; Zhang and Skjetne, 2015), the ice cover often com-
prises a large spectrum of floes. The larger and largest floes
at the upper end of the floe-size distribution form the ma-
jor fraction of the sea-ice area (in square kilometers) (e.g.,
Paget et al., 2001; Steer et al., 2008). A small number of
large floes results in a smaller number of mixed ocean–ice
Landsat pixels than a large number of smaller floes. Hence,
where larger floes dominate, our Landsat SIC estimate is less
biased than where small floes dominate. The effect of the
ocean swell, the dominating force for fracturing ice floes ac-
cording to, e.g., Toyota et al. (2016), is larger close to the
ice edge than further inside the ice pack. Therefore, a larger
number of smaller floes exists along the ice edge, suggest-
ing a larger bias in our Landsat SIC near the ice edge than
inside the ice pack. Without further independent information
about the actual ice cover, we are not able to quantify this
bias accurately.

Thus, for high-concentration winter conditions and for
those cases during summer when ice floes are closely packed
and openings between the floes are covered with brash ice
and slush, the bias in Landsat SIC derived at the spatial scale
of the PMW SIC products falls within the retrieval uncer-
tainty range of our approach (see Tables 3 and 4). The bias
could fall outside the uncertainty range near the ice edge dur-
ing winter when sea ice drifts into comparably warm waters
that inhibit ice formation in newly created openings; here bi-
ases as high as 10 % in a single PMW grid cell could occur.
The bias could also fall outside the uncertainty range during
summer; here biases between 5 % and 20 % in single PMW
grid cells might occur depending on proximity to the ice edge
and hence floe-size distribution and depending on conditions
favoring/inhibiting herding of ice floes into bands.

3 Results

In the following, we present and discuss results obtained in
the Northern Hemisphere and Southern Hemisphere. We pre-

ferred to not merge the results of Landsat-5 and Landsat-8 in
the Northern Hemisphere because with that we have a rel-
atively natural discrimination between cases dominated by
first-year ice (Landsat-5) and cases dominated by mixed first-
year–multiyear ice or multiyear ice (Landsat-8) (see Fig. 1).

3.1 Northern Hemisphere

Out of the 10 products, SICCI-25km, SICCI-50km, ASI-
SSMI, and SICCI-12km offer the best linear agreement with
Landsat SIC for first-year-ice-dominated cases as expressed,
e.g., by the location of mean and median PMW SIC (red
symbols) in Fig. 2 and the values of slope, intercept, and
correlation coefficient listed in Table 5. CBT-SSMI, CBT-
AMSRE, NOAA-CDR, and NT2-AMSRE have the smallest
overall mean difference and zero median (Table 5). These
four products exhibit, however, a considerable tail of near-
100 % PMW SIC values stretching across almost the entire
Landsat SIC range, pointing towards overestimation of Land-
sat SIC. ASI-SSMI and NT1-SSMI SIC exhibit the overall
largest underestimation of Landsat SIC among the 10 prod-
ucts (Table 5).

For cases with mixed first-year–multiyear or multiyear ice,
SICCI-25km and SICCI-50km offer best linear agreement
with Landsat SIC (Fig. 3). Most other products have a less
convincing linear relationship. Like for first-year ice, CBT-
SSMI, CBT-AMSR2, NOAA-CDR, and NT2-AMSR2 have
the smallest mean difference for mixed first-year–multiyear
or multiyear ice (Fig. 3, Table 6). However, particularly at
higher Landsat SIC these products show many data pairs
above the identity line, and the linear regressions through
the mean and median PMW SIC (dashed and solid red lines)
are also located above the identity line – in contrast to, e.g.,
SICCI-25km and SICCI-50km.

The linear agreement between PMW SIC and Landsat SIC
improves in general for all 10 products for mixed first-year–
multiyear or multiyear ice cases (Fig. 3, Table 6) compared
to first-year ice (Fig. 2, Table 5). This improvement is com-
parably large for OSI-450 (slope increases by ∼ 0.10) and
NT2-AMSR (slope increases by ∼ 0.15) but quite small for
SICCI-25km and SICCI-50km because slopes are close to
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Figure 2. Scatterplots of PMW SIC (y axis) versus Landsat SIC (x axis) for all 10 products for the first-year-ice-dominated cases from
2003–2011 in the Northern Hemisphere (Landsat-5). Black dots are individual data pairs, the solid black line is the linear regression, and
the dashed black line is the identity line. Red triangles denote the mean PMW SIC computed for Landsat SIC ranges 0 %–5 %, 5 %–15 %,
15 %–25 %, . . ., 85 %–95 %, 95 %–100 %, red bars denote 1 standard deviation of these mean values, and the dashed red line is the respective
linear regression line. Red squares denote the median PMW SIC for the same Landsat SIC ranges, and the solid red line is the respective
linear regression line. The overall mean and median difference PMW SIC minus Landsat SIC, its standard deviation, and the equation of the
linear regression through the individual data pairs are shown at the top and the number N of data pairs and the squared linear correlation
coefficient at the bottom of each panel.
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Table 5. Summary of the statistical parameters displayed in Fig. 2. Diff, DiffSDEV, and Median (all in percent SIC) are the mean difference
PMW SIC minus Landsat (LS) SIC, its standard deviation, and the median difference, Slope and Intercept (in percent SIC) are the coefficients
of the linear regression, and R2 and N are the squared linear correlation coefficient and number of data pairs, respectively. Numbers in bold
and bold italic font denote the respective “best” and “second best” value, respectively, e.g., largest and second largest values of R2 and lowest
and second lowest values of Diff, Intercept, and the difference of unity minus slope.

LS5 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
NH 2003–2011 12 25 50 450 SSMI CDR AMSRE SSMI SSMI AMSRE

Diff −5.5 −5.4 −3.5 −4.9 0.6 0.7 –0.3 −8.4 −7.8 0.0
DiffSDEV 9.2 8.3 9.1 8.7 8.2 8.2 7.7 11.7 10.5 7.5
Median −3.2 −3.4 −1.7 −3.3 0.0 0.0 0.0 −5.7 −6.0 0.0
Slope 0.833 0.963 0.967 0.675 0.515 0.524 0.730 0.665 0.846 0.675
Intercept 10.6 –1.9 –0.3 26.4 47.4 46.6 25.9 23.9 7.0 31.5
R2 0.57 0.64 0.57 0.50 0.49 0.49 0.54 0.32 0.51 0.55
N 30 549 8519 2748 8519 7557 7491 8384 7637 32 855 8384

Table 6. Summary of statistical parameters shown in Fig. 3. See Table 5 for an explanation of the parameters given.

LS8 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
NH 2013–2015 12 25 50 450 SSMI CDR AMSR2 SSMI SSMI AMSR2

Diff −6.2 −4.7 −3.6 −4.3 1.6 1.6 0.4 −4.8 −6.0 1.2
DiffSDEV 11.0 8.2 9.0 9.8 9.9 9.8 8.0 11.4 12.2 8.1
Median −2.8 −2.8 −2.0 −2.9 0.0 0.0 0.0 −1.5 −3.8 −1.5
Slope 0.868 0.974 0.997 0.779 0.688 0.704 0.841 0.842 0.919 0.828
Intercept 6.1 –2.4 −3.3 16.2 30.5 29.1 15.2 9.8 1.5 17.2
R2 0.72 0.84 0.79 0.73 0.72 0.72 0.81 0.67 0.69 0.80
N 23 433 6484 2056 6576 5944 5945 5831 6008 22 655 5831

unity already. Hence, despite the larger magnitude of overall
mean and median SIC differences, of all 10 products SICCI-
25km and SICCI-50km provide SIC estimates for first-year
ice that are almost as accurate as those for mixed first-year–
multiyear ice or multiyear ice. This could be one conse-
quence of the self-optimizing hybrid SICCI-2 and OSI-450
algorithm (Lavergne et al., 2019) and of the way ice tie points
are chosen in comparison to the other products (e.g., Kern et
al., 2020b).

3.2 Southern Hemisphere

In the Southern Hemisphere, slope and location of the linear
regression lines, as well as of the mean and median PMW
SIC values (red symbols), are more similar between the 10
products (Fig. 4, Table 7). The linear agreement is fairly good
for SICCI-2 products, CBT-AMSR2, and ASI-SSMI. Like in
the Northern Hemisphere, SICCI-25km and SICCI-50km re-
veal the best linear agreement with Landsat SIC, but SICCI-
50km appears to be negatively biased. This bias is associated
with a large number of PMW SIC values of 0 % at non-zero
Landsat SIC which is also reflected by the mean and median
PMW SIC (compare Fig. 4c with Fig. 3c). We discuss this is-
sue and the observation that all products except CBT-SSMI,
NOAA-CDR, and CBT-AMSR2 exhibit SIC values below

about 10 %–15 %, while these three products lack values in
the PMW SIC range between 0 % and ∼ 15 % in Sect. 5.3.

Like in the Northern Hemisphere (Table 6), the magni-
tude of the SIC difference is smallest for NT2-AMSR2,
NOAA-CDR, CBT-SSMI, and CBT-AMSR2 and largest for
NT1-SSMI and ASI-SSMI. Of all 10 products, NT2-AMSR2
(Fig. 4j) offers the most asymmetric SIC distribution and a
considerable overestimation of Landsat SIC in the range be-
tween ∼ 40 % and ∼ 90 %, also expressed by median SIC
> mean SIC for all Landsat SIC bins above 25 % (Fig. 4j).
NT2-AMSR2 is the only product with a substantial positive
overall mean difference of 3.4 %; even the median difference
is > 0 % (Table 7).

3.3 Hemispheric similarities and differences

Overall, agreement between PMW SIC and Landsat SIC dif-
fers between the two hemispheres. For all products, we find a
substantially larger scatter of SIC values around the identity
line in the Southern Hemisphere (Sect. 3.2) than the Northern
Hemisphere (Sect. 3.1). On the one hand, this larger scatter
in the Southern Hemisphere could be the result of a consid-
erably larger number of Landsat scenes of cases with low
SIC, naturally resulting in a larger spread of the SIC. In ad-
dition, the majority of the Landsat scenes in the Southern
Hemisphere reflect late-spring/summer conditions. During
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Figure 3. Scatterplots of PMW SIC (y axis) versus Landsat SIC (x axis) for all 10 products for mixed first-year–multiyear or multiyear ice
cases from 2013 to 2015 in the Northern Hemisphere (Landsat-8). See Fig. 2 for a description of symbols, lines, and text.

such conditions, snow metamorphism due to melt and melt–
refreeze cycles substantially change the sea-ice surface emis-
sivity on daily timescales and sub-grid-cell-size spatial scales
(e.g., Willmes et al., 2014), causing a larger scatter in SIC.
Another factor impacting the sea-ice emissivity is flooding
at the interface between the sea ice and the snow cover for-
mation, causing considerable variations in basal snow layer

wetness and salinity on similar spatiotemporal scales. On the
other hand, we are dealing with an unknown amount of over-
estimation of the actual sea-ice concentration by our Landsat
SIC during summer melt due to mixed ocean–ice Landsat
pixels (Sect. 2.2.4). We refer to Sects. 4.3, 5.1 and 5.2 for
more discussion on this issue.
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Figure 4. Scatterplots of PMW SIC (y axis) versus Landsat SIC (x axis) for all 10 products for 2013–2015 in the Southern Hemisphere. See
Fig. 2 for a description of symbols, lines, and text.

In general, we find the scatter is larger for products with
finer grid resolution, e.g., SICCI-12km and ASI-SSMI, than
for the coarser-grid-resolution products. The larger number
of valid SIC pairs of the high-resolution products result in
more scatter due to the inherent retrieval noise even though
the capability to resolve smaller-scale SIC variations is better
for the fine-resolution than for the coarser-resolution prod-

ucts (see Sect. 5.1). In addition, a mismatch in the location
of, for example, a 10 km scale patch of ice between a Landsat
scene and a PMW SIC product has a substantially larger in-
fluence on the SIC difference at 12.5 than at 25 or 50 km grid
resolution. The fact that oversampling is much larger at 12.5
than at 50 km plays a role here also. Even using simulated
brightness temperatures one gets a large spread between a
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Table 7. Summary of statistical parameters shown in Fig. 4. See Table 5 for an explanation of the parameters given.

LS8 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
SH 2013–2015 12 25 50 450 SSMI CDR AMSR2 SSMI SSMI AMSR2

Diff −5.1 −5.9 −6.8 −5.3 –1.5 –1.6 −3.0 −9.5 −9.1 3.4
DiffSDEV 13.3 13.5 16.0 13.5 14.6 14.8 14.2 15.5 16.9 13.8
Median −1.3 −2.1 −1.9 −2.8 0.0 0.0 −0.2 −7.3 −6.5 0.4
Slope 0.915 0.969 1.033 0.827 0.826 0.843 0.915 0.834 0.898 0.821
Intercept 2.1 −3.3 −9.6 9.5 13.4 11.8 4.2 4.7 –0.4 18.7
R2 0.78 0.77 0.72 0.73 0.70 0.70 0.74 0.68 0.68 0.72
N 34 331 9796 3098 9796 9788 9788 10 009 9883 34 252 10 009

reference SIC and the PMW SIC due to resolution mismatch
(see, e.g., Tonboe et al., 2016). We discuss the effect of differ-
ent footprint sizes and grid resolutions (see Table 1) in more
detail in Sect. 5.1.

SICCI-2 products and OSI-450 provide access to SIC val-
ues above 100 % and below 0 % that are naturally retrieved
due to the brightness temperature distribution around the ice
and water tie points used. Kern et al. (2019) found that incor-
poration of these so-called off-range or non-truncated SIC
values provides a more accurate estimate of accuracy, i.e.,
difference to the true SIC value, and precision, i.e., standard
deviation of this difference. Table 8 reveals that independent
of the ice type, the magnitude of the mean difference de-
creases, while the slope of the linear regression increases,
becoming closer to unity in most cases, in agreement with
Kern et al. (2019). Of particular interest in this regard are
high-concentration cases discussed in more detail in Sect. 4.2
but also the effect of the truncation at 0 % in the context of
filters used to mitigate spurious SIC values (see Sect. 5.3).

4 Case studies

In the previous section, we showed results independent of
the ice regime (see below) – except for a general discussion
of the observed differences between predominantly first-year
ice (Landsat-5) and a mixture of first-year–multiyear or mul-
tiyear ice (Landsat-8). This section deals with our compar-
ison between PMW SIC and Landsat SIC for the following
ice regimes: “ice edge”, “leads and openings” meaning cases
with leads and coastal polynyas or openings, “heterogeneous
ice” meaning cases with irregularly shaped openings in the
ice pack, “freeze-up”, “high-concentration ice”, and “melt
conditions” (see Table S1 in the Supplement). We show in
more detail results of the last three ice regimes. Freeze-up
cases are characterized by a comparably large fraction of new
and thin ice, an ice type for which some of the SIC products
investigated here are already known to be negatively biased
from preliminary work based on Soil Moisture and Ocean
Salinity (SMOS) thin ice thickness observations (Ivanova et
al., 2015). We elaborate on their findings using an alternative
data set. Investigating high-concentration cases in more de-

tail aids in a better understanding of saturation effects near
100 % caused by truncating PMW SIC at 100 %, expanding
on the work of Kern et al. (2019) and refining our knowledge
of SIC precision and accuracy for high-concentration regions
and hence application potential of the products for surface
heat flux computations. Finally, melt conditions – even with-
out melt ponds – represent a multitude of different snow and
sea-ice conditions causing enhanced variability in the sea-ice
microwave emissivity (e.g., Willmes et al., 2014), which in
turn can result in biases in PMW SIC products of both signs
in the Arctic (Kern et al., 2016, 2020b). Here we have the
opportunity to better quantify such biases especially for the
Antarctic. For all remaining regimes, we show examples in
Figs. S3–S8 in the Supplement and include their results of the
statistical comparison into our summary figures (Figs. 11 and
12) but refrain from a detailed discussion. For regimes “ice
edge” and “leads and openings” such a discussion would re-
quire a comprehensive investigation of open water and land
spillover filters (see Sect. 5.3) which is beyond the scope of
this paper. For regime “heterogeneous ice”, application of
a more accurate evaluation SIC data set seems to be advis-
able given the identified shortcomings of the one used (see
Sect. 2.2.4) before going into more detail.

4.1 Freeze-up

These are cases when according to the date, geographic lo-
cation, and information in the Landsat scene freeze-up has
commenced. We select Landsat scenes containing a consid-
erable fraction of new and thin ice; these are acquired in
September and February/March in the Northern Hemisphere
and Southern Hemisphere, respectively. We have only a few
such cases in both hemispheres (see Table S1). We expect
PMW SIC underestimates Landsat SIC (LSIC) – particu-
larly for young and thin ice with a thickness < 0.2 m (e.g.,
Ivanova et al., 2015). Figure 5 illustrates the conditions for a
Landsat-8 scene close to Greenland in the Fram Strait on 15
September 2015. The classified Landsat-8 image (Fig. 5, top
left) reveals a mix of large ice floes – presumably second-
year or older ice – and meandering patches of smaller floes
embedded into a matrix of mostly gray and a few dark pix-
els; the gray pixels are supposed to represent bare/thin sea
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Table 8. Comparison of statistical parameters listed in Tables 5–7 in both hemispheres for SICCI-2 and OSI-450 products using truncated
or non-truncated (near-100 % SIC) PMW SIC data. See Table 5 for an explanation of the parameters given. Top (LS5, NH 2003–2011) is
for first-year-ice-dominated cases, middle (LS8, NH 2013–2015) is for mixed first-year–multiyear and multiyear ice cases, both Northern
Hemisphere, and bottom (LS8, SH 2013–2015) is for the Southern Hemisphere. The overall median differences do not change and are not
listed again.

LS5 SICCI-12 SICCI-12 SICCI-25 SICCI-25 SICCI-50 SICCI-50 OSI-450 OSI-450
NH 2003–2011 non-truncated non-truncated non-truncated non-truncated

Diff −5.5 −4.6 −5.4 −5.0 −3.5 −3.0 −4.9 −4.5
DiffSDEV 9.2 10.0 8.3 8.7 9.1 9.3 8.7 9.0
Slope 0.833 0.852 0.963 0.974 0.967 0.979 0.675 0.684
Intercept 10.6 9.6 −1.9 −2.5 −0.3 −1.0 26.4 26.0
R2 0.57 0.54 0.64 0.63 0.57 0.56 0.50 0.48

LS8, NH 2013–2015
Diff −6.2 −4.9 −4.7 −4.4 −3.6 −3.4 −4.3 −3.9
DiffSDEV 11.0 12.1 8.2 8.5 9.0 9.1 9.8 9.9
Slope 0.868 0.891 0.974 0.982 0.997 1.000 0.779 0.786
Intercept 6.1 5.2 −2.4 −2.7 −3.3 −3.5 16.2 15.9
R2 0.72 0.68 0.84 0.83 0.79 0.79 0.73 0.73

LS8, SH 2013–2015
Diff −5.1 −4.3 −5.9 −5.6 −6.8 −6.5 −5.3 −5.1
DiffSDEV 13.3 13.8 13.5 13.7 16.0 16.2 13.5 13.7
Slope 0.915 0.931 0.969 0.976 1.033 1.040 0.827 0.832
Intercept 2.1 1.6 −3.3 −3.5 −9.6 −9.9 9.5 9.3
R2 0.78 0.77 0.77 0.77 0.72 0.71 0.73 0.73

ice and the dark pixels open water. All products agree well
with Landsat SIC in the topmost part of the scene over high-
concentration ice. PMW SIC maps of 6 of the 10 products
(SICCI-2 products, OSI-450, NT1-SSMI, and ASI-SSMI) re-
veal an overall SIC distribution similar to Landsat SIC. For
the remaining four products, the SIC difference maps show
widespread overestimation of LSIC by PMW SIC expressed
by positive (red) values. Contrary to expectations, we do not
observe negative SIC differences for the entire greyish area
of the Landsat-8 scene.

The main reason for this observation is the actual ice
condition. Very likely the greyish area represents a mixture
of sub-pixel-size, i.e., less than 30m× 30 m, ice floes and
brash ice formed from disintegrated thicker ice floes and
young/new sea ice. On the one hand, the sub-pixel-size floes
and the brash ice are thicker than young/new sea ice. These
forms of sea ice exhibit different surface properties and hence
microwave emissivity than young/new thin sea ice. For such
a mixture of ice types, it is particularly difficult to retrieve
an accurate SIC with any of the algorithms used in the 10
products. Ice tie points do not adequately represent these ice
conditions. On the other hand, for the greyish area the Land-
sat SIC could likely be too high because of mixed ocean–
ice Landsat pixels (see Sect. 2.2.4 and the respective Sup-
plement section). What appears to be 100 % thin ice might
be just 50 % thick ice. However, observations conducted at
Henrik Krøyer Holme station (80◦38′ N, 13◦43′W; see star
in Fig. 5, top left panel) on 15 September 2015 and the pre-
ceding days indicate freezing conditions with air tempera-

tures between −5 and −13 ◦C (https://www.dmi.dk, last ac-
cess: 29 June 2021). Therefore, it is quite likely, new/thin
ice covers most open water patches, and any overestimation
of Landsat SIC due to sub-pixel-size open water patches is
rather small. Thus, the complex sea-ice conditions encoun-
tered appear to be a valid explanation for the observed dif-
ferences. Contributing factors are also the different footprint
sizes and grid resolutions that cause heterogeneous sub-grid
surface conditions to be mixed differently (see the panels
for the three SICCI products in Fig. 5) and an unaccounted
weather influence. An apparent underestimation of the SIC
(see, e.g., ASI-SSMI) could be caused by actual weather con-
ditions being less severe, i.e., smaller atmospheric water va-
por content, than are included inherently in the open water
tie point used (see also Kaleschke et al., 2001).

Figure 6 illustrates a freeze-up case in Pine Island Bay,
Amundsen Sea, Southern Ocean, on 12 March 2014. The
classified Landsat-8 scene features a predominant coverage
with new/young ice, some open water towards the coast, and
little thick/snow-covered ice and few icebergs in the open
bay. Landsat SIC is mostly around 90 %; only a few grid
cells with low SIC exist close to the coast at 12.5 and 25 km
grid resolution. A total of 9 of the 10 PMW SIC products re-
veal considerably lower SIC values, with SICCI-25km, OSI-
450, NT1-SSMI, and ASI-SSMI exhibiting particularly large
widespread negative differences with magnitude > 40 %. An
exception is NT2-AMSR2 exhibiting the highest PMW SIC
of all 10 products and overall the smallest differences. It is
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Figure 5. Landsat SIC, PMW SIC, and the difference PMW SIC
minus Landsat SIC (LSIC) for all 10 products for a freeze-up case
in the Fram Strait on 15 September 2015. The Landsat surface
class map at the top left shows the following: white: thick/snow-
covered ice; gray: bare/thin ice; black: open water. The red star
marks the location of Henrik Krøyer Holme station (see text). White
and gray pixels are used to compute maps of gridded LSIC at 12.5,
25, and 50 km, respectively (blue: outside Landsat image). A sub-
set of SICCI-12km SIC grid cells shown at the top right illustrates
the array used for the collocation. Panels in the remaining four rows
show PMW SIC and PMW SIC minus LSIC for all 10 products.
Land is flagged brown in the SIC panels and black in the SIC differ-
ence panels; it differs between the PMW products. The land masks
in the two bigger maps at the top come from the plotting routine
used. LSIC maps use the land masks of the SICCI-2 products.

the only product, though, which also exhibits positive differ-
ences, i.e., an overestimation of Landsat SIC by up to 20 %.

The widespread underestimation of Landsat SIC by almost
all products agrees very well with the findings of Ivanova et
al. (2015), albeit a bit large in magnitude. The new ice en-
countered in our example comprises a comparably large frac-
tion of frazil, grease, and/or small pancake ice compared to
nilas and gray/gray-white ice in Ivanova et al. (2015). Be-
cause Pine Island Glacier Automatic Weather Station (see

Figure 6. Landsat SIC, PMW SIC, and the difference PMW SIC
minus Landsat SIC for all 10 products for a scene near the coast dur-
ing freeze-up in Pine Island Bay, Amundsen Sea, Southern Ocean,
on 12 March 2014. The red star in the top left map marks the lo-
cation of the Pine Island Glacier Automatic Weather Station (see
text). Some of the white patches near the coast in this map are actu-
ally glacier ice not adequately flagged by the land mask. See Fig. 5
for more details.

star in top left map of Fig. 6) reported air temperatures be-
tween −11 and −21 ◦C on 12 March 2014 and the 3 pre-
ceding days (Mojica Moncada et al., 2019), the gray pixels
in this Landsat scene very likely represent new/thin sea ice
formed locally. However, we cannot fully exclude an overes-
timation of Landsat SIC by sub-pixel-size open water patches
between streaks of new ice formed being classified as thin ice
instead of open water (see Sect. 2.2.4 and respective Supple-
ment section); for the conditions encountered this positive
bias in Landsat SIC should be less than 5 % and maximum
10 %. The existence of such a positive bias combined with
the different ice type encountered compared to Ivanova et al.
(2015) could explain why the observed underestimation of
Landsat SIC for most of the PMW SIC products is larger in
magnitude than expected.
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Table 9 summarizes our results of the freeze-up cases
for which we expect, overall, an underestimation of Land-
sat SIC, i.e., a negative bias, due to a notable fraction of
new/thin ice (see Ivanova et al., 2015). In the Northern Hemi-
sphere, performance of the products differs a lot. We find
positive biases for CBT-SSMI, CBT-AMSR2, NOAA-CDR,
and NT2-AMSR2 and large negative biases for the remaining
products. SICCI-25km offers the best linear agreement with
Landsat SIC. In the Southern Hemisphere, a number of prod-
ucts have a regression line slope close to unity, a small inter-
cept, and a squared linear correlation coefficient > 0.8. Most
importantly, however, all products – except NT2-AMSR2 –
on average underestimate Landsat SIC in agreement with
Ivanova et al. (2015).

4.2 High-concentration ice

These are cases when the Landsat scene indicates either a
closed ice cover without any leads or openings or an almost
closed ice cover with few refrozen leads or openings, result-
ing in near-100 % Landsat SIC. In the ideal case, we ex-
pect PMW SIC is close to 100 %. Figure 7 illustrates such
a case for 4 April 2015 in the Beaufort Sea, Arctic Ocean.
Landsat SIC is 100.0 %. All 10 PMW SIC products exhibit
quite high sea-ice concentrations – particularly SICCI-50km,
NOAA-CDR, and NT2-AMSR2. However, the difference
maps clearly reveal a (very) small and negative bias for all
PMW products. This bias is largest in magnitude for SICCI-
12km and ASI-SSMI and smallest in magnitude for NT2-
AMSR2.

Table 10 summarizes the results obtained for, in total, 40
high-concentration cases in the Northern Hemisphere: 28
first-year-ice-dominated scenes (Landsat-5) and 12 scenes of
mixed first-year–multiyear or multiyear ice cases (Landsat-
8). We find the largest biases for SICCI-12km and ASI-SSMI
independent of ice type. Except for CBT-AMSR and NT2-
AMSR, all products exhibit a larger bias for first-year ice
cases than mixed first-year–multiyear or multiyear ice cases.
We hypothesize that the different biases between PMW and
Landsat SIC for these near-100 % cases are caused by the
different capabilities of the respective algorithms to derive
an accurate SIC independent of ice type – as stated already
in Sect. 3.1. NT1-SSMI and ASI-SSMI appear to have the
largest difficulties with the different ice types encountered
because their biases vary most. CBT-SSMI, CBT-AMSR,
NOAA-CDR, and NT2-AMSRE have a median difference
of 0.0 % independent of ice type – similar to Tables 5 and 6.
For SICCI-2 products and OSI-450, median differences are
smaller in magnitude than for all ice and approach zero for
the mixed first-year–multiyear or multiyear ice cases.

Using non-truncated SIC of SICCI-2 products and OSI-
450 (see also Table 8) reduces the magnitude of the bias
by between 0.5 % for SICCI-50km and 2.1 % for SICCI-
12km for the mixed first-year–multiyear or multiyear ice
cases (LS8) and less than that for the first-year ice cases. As

Figure 7. Landsat SIC, PMW SIC, and the difference PMW SIC mi-
nus Landsat SIC for all 10 products for a high-concentration scene
in the Beaufort Sea, Arctic Ocean, on 4 April 2015. See Fig. 5 for a
description of the maps shown.

expected, the standard deviation of the bias increases using
non-truncated SIC. The other six PMW products set SIC val-
ues > 100 % to 100 % or do not permit a simple retrieval of
such SIC values (NT2-AMSR, but see Ivanova et al., 2015)
and would therefore have a different bias and a larger stan-
dard deviation than shown in Table 10 (see Kern et al., 2019).
Of the SICCI-2 and OSI-450 products, SICCI-50km provides
the smallest bias and the smallest standard deviation of this
bias: −0.7%± 2.2 % in line with Kern et al. (2019) who re-
ported a bias of −0.5%± 2.1 % for non-truncated SICCI-
50km SIC.

Figure 8 illustrates a high-concentration case in the Wed-
dell Sea, Southern Ocean, on 12 March 2015. A total of 6 of
the 10 PMW SIC products show almost 100 % sea-ice con-
centration and almost zero bias. We only find notable devi-
ations from 100 % concomitant with a small negative bias
for ASI-SSMI, CBT-SSMI, CBT-AMSR2, and SICCI-12km.
For our four high-concentration cases in the Southern Ocean
(Table 11), we find the largest overall bias for ASI-SSMI.
Most products reveal a bias of magnitude 0.3 % or smaller.
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Table 9. Summary of statistical results obtained for three freeze-up cases in the Northern Hemisphere (NH) and for 11 freeze-up cases in the
Southern Hemisphere (SH) using Landsat 8 data. See Table 5 for an explanation of the parameters given.

NH SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
12 25 50 450 SSMI CDR AMSR2 SSMI SSMI AMSR2

Diff −8.2 −8.9 −10.5 −7.7 5.0 4.6 2.6 −14.1 −12.0 4.3
Diff SDEV 13.5 10.8 17.8 13.9 18.5 18.4 12.9 20.8 21.9 13.8
Slope 0.799 0.960 0.948 0.665 0.655 0.679 0.881 0.673 0.738 0.866
Intercept 7.8 –5.7 –6.4 19.3 31.6 29.4 12.0 11.3 8.6 14.9
R2 0.77 0.84 0.65 0.70 0.58 0.58 0.77 0.50 0.51 0.74
N 751 208 64 210 191 191 186 196 702 186

SH
Diff −11.8 −12.1 −7.4 −12.1 −6.3 –6.1 −6.5 −10.9 −11.4 2.1
Diff SDEV 18.1 15.9 16.1 15.1 12.1 12.1 11.8 15.3 18.1 10.6
Slope 0.839 0.915 1.027 0.861 0.965 0.971 0.977 0.953 0.982 0.943
Intercept 2.0 −4.8 −9.7 0.1 −3.3 −3.7 −4.5 −6.9 −9.8 7.0
R2 0.66 0.72 0.75 0.73 0.83 0.84 0.84 0.75 0.72 0.86
N 1843 531 169 531 536 536 547 540 1842 547

Table 10. Summary of statistical results obtained in the Northern Hemisphere for 28 cases with first-year ice (top, LS5, NH 2003–2011) and
for 12 cases with mixed first-year–multiyear or multiyear ice (bottom, LS8, NH 2013–2015). See Table 5 for an explanation of the parameters
shown. For SICCI-2 and OSI-450 products, we include in all rows but “N” values based on non-truncated (near 100 %) SIC data to the right
of the “/”. We omit slope and intercept because SIC data pairs cluster at 100 %.

LS5 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
NH 2003–2011 12 25 50 450 SSMI CDR AMSR SSMI SSMI AMSR

Diff −4.0/− 3.0 −3.7/− 3.4 −1.5/− 1.0 −3.5/− 3.2 −0.8 −0.7 −0.9 −5.8 −6.9 −0.6
DiffSDEV 5.2/6.0 4.0/4.4 1.8/2.5 3.7/4.1 1.6 1.4 1.8 6.6 5.6 1.4
Median −2.6/− 2.6 −2.5/− 2.5 −1.0/− 1.0 −2.4/− 2.4 0.0 0.0 0.0 −3.5 −6.0 0.0
N 7028 1978 677 1978 1940 1940 2104 1940 7633 2104

LS8, NH 2013–2015
Diff −2.9/− 0.8 −1.5/− 0.5 −0.9/− 0.4 −1.3/− 0.3 −0.5 −0.2 −1.0 −0.3 −2.6 −0.6
DiffSDEV 4.1/6.2 2.2/3.1 1.2/1.7 1.9/3.0 1.4 0.9 3.0 0.9 2.6 2.5
Median −0.2/− 0.2 −0.2/− 0.2 −0.3/− 0.3 −0.2/− 0.2 0.0 0.0 0.0 0.0 −2.1 −0.5
N 2659 764 242 764 714 714 723 714 2571 723

Using non-truncated SICCI-2 and OSI-450 SIC results
in positive biases, ranging between 1.8 % for OSI-450 and
2.7 % for SICCI-50km (Table 11, values to the right of the
“/”). This amounts to an increase in the mean SICCI-2 and
OSI-450 SIC for these cases by ∼ 2.5 %. This increase is
larger than in the Northern Hemisphere (compare Table 10).
We explain this with a comparably large fraction of PMW
SIC> 100 % for our small high-concentration case data set
of the Southern Hemisphere (4) compared to the Northern
Hemisphere (40). Three of the four high-concentration cases
identified in the Southern Ocean are from the months of
November and December, a time of the year when melt on-
set and melt–refreeze cycles cause higher variability in the
ice emissivity. One of the likely impacts is a notable frac-
tion of PMW SIC> 100 % (see Fig. S1 in the Supplement).
The same applies in a different way to the case shown in
Fig. 8, the only late-fall/early winter case out of these four
cases. The overall Landsat SIC of this scene is 99.9 %; that

of an adjacent scene is 98.9 % (not shown). Sea-ice and snow
properties in late-fall/early winter are often quite variable as
well and can cause an elevated spread of the retrieved PMW
SIC around 100 %, resulting in a substantial fraction of SIC
values > 100 %. For instance, the overall SICCI-25km SIC
is 101.9 % for the scene shown in Fig. 8 and 103.1 % for the
adjacent scene (not shown).

4.3 Melt conditions

For melt-condition cases, we select Landsat scenes by means
of the calendar date. In the Northern Hemisphere, we con-
sider the time period 15 May to 31 May; in the South-
ern Hemisphere, we use the time period 15 November to
28 February. We do not include Landsat scenes subject to
melt ponding on sea ice, e.g., during the months of June
through August; this topic is covered in Kern et al. (2020b).
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Table 11. Summary of statistical results obtained for the four high-concentration cases in the Southern Hemisphere. See Table 5 for an
explanation of the parameters shown. For SICCI-2 and OSI-450 products, we include in rows “Diff”, “DiffSDEV”, and “Median” values
obtained using non-truncated SIC to the right of the “/”.

LS8 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
SH 2013–2015 12 25 50 450 SSMI CDR AMSR2 SSMI SSMI AMSR2

Diff −0.1/2.5 0.0/2.4 0.0/2.7 −0.3/1.8 −0.7 0.1 −1.1 −0.9 −2.9 −0.1
DiffSDEV 1.7/2.9 0.8/2.3 1.2/2.7 2.1/3.1 1.7 0.7 2.0 2.6 2.5 1.2
Median 0.0/2.8 0.0/2.5 0.1/2.6 0.0/2.2 0.0 0.1 0.0 0.0 −2.4 0.0
N 978 287 93 287 288 288 302 288 973 302

Figure 8. Landsat SIC, PMW SIC, and the difference PMW SIC mi-
nus Landsat SIC for all 10 products for a high-concentration scene
in the Weddell Sea, Southern Ocean, on 12 March 2015. See Fig. 5
for a description of the maps shown.

In the Northern Hemisphere (Table 12), we find positive
and comparably small biases for CBT-SSMI, CBT-AMSR2,
NOAA-CDR, and NT2-AMSR2 and negative biases for all
other products. We find the best quality of the linear agree-
ment between PMW SIC and Landsat SIC for SICCI-25km,
followed by SICCI-50km and SICCI-12km. According to
Kern et al. (2020b), the second half of May is character-

ized by an upswing in the number and magnitude of SIC val-
ues > 100 % for SICCI-2 and OSI-450 products (see Fig. S2
in the Supplement). Using non-truncated SIC of these prod-
ucts reduces the mean bias by 1.0 % for SICCI-12km, 0.5 %
for SICCI-25km, and 0.3 % for OSI-450 and further im-
proves the already good linear agreement. For SICCI-50km,
results remain almost unchanged. We explain the difference
in the response between SICCI-50km and SICCI-12km by
the greater sensitivity of the higher frequency channels used
by SICCI-12km to early stages of melt encountered at that
time of the year.

Figure 9 illustrates a typical case of late-summer melt
conditions in the Ross Sea, Southern Ocean. The classified
Landsat-8 image shows a heterogeneous mixture of black,
gray, and white pixels. The gray pixels denote a mixture of
open water and thicker ice, possibly brash ice, sea ice with
a wet or even flooded snow cover, or bare relatively thick
ice from which the snow has been washed off. New/young
ice is unlikely according to 6 hourly forecasts of the Antarc-
tic Mesoscale Prediction System (AMPS), revealing near-
surface temperatures around −1 ◦C on 27 January 2014 and
between −3 and −5 ◦C on 28 and 29 January 2014 (http:
//polarmet.osu.edu/AMPS/, last access: 29 June 2021), indi-
cating that freeze-up has not yet commenced.

PMW SIC distributions match well with Landsat SIC,
which is > 70 % for a considerable fraction of the map, but
for most products PMW SIC is considerably smaller. Neg-
ative biases dominate and are widespread (30 % to 50 % in
magnitude). Striking is the similarity between LSIC 12.5 km
and ASI-SSMI and between LSIC 25 km and SICCI-25km,
as well as CBT-AMSR2. Also striking is the similarity be-
tween OSI-450, NT1-SSMI, CBT-SSMI, and NOAA-CDR.
These similarities indicate that different native spatial reso-
lutions, TB sampling intervals, and grid spacings of SSM/I
and SSMIS on the one hand and AMSR-E and AMSR2 on
the other hand can cause a substantial difference in the agree-
ment with LSIC especially when ice conditions are as hetero-
geneous as in this example (see Sect. 5.1).

Overall, we find negative biases for 9 of the 10 products
in the Southern Hemisphere (Table 13). These are smallest
in magnitude for CBT-SSMI and NOAA-CDR (< 1 %), and
largest for NT1-SSMI, ASI-SSMI, and SICCI-50km. NT2-
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Table 12. Summary of statistical results obtained for 15 melt-condition cases (without melt ponds) in the Northern Hemisphere. See Table 5
for an explanation of the parameters shown. Numbers added to the right of the “/” for SICCI-2 and OSI-450 products denote the results
obtained using non-truncated SIC.

LS8 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
NH 2013–2015 12 25 50 450 SSMI CDR AMSR2 SSMI SSMI AMSR2

Diff −5.3/− 4.3 −5.1/− 4.6 −4.2/− 4.2 −4.6/− 4.3 2.2 2.4 0.2 −3.5 −4.7 1.7
DiffSDEV 10.5/11.2 8.9/9.3 9.6/9.6 9.5/9.7 9.8 9.7 7.4 10.8 12.2 8.3
Slope 0.829/0.852 0.930/0.943 0.898/0.899 0.617/0.626 0.418 0.416 0.727 0.637 0.740 0.564
Intercept 10.5/9.4 1.4/0.6 5.3/5.2 30.9/30.4 56.9 57.3 26.1 30.6 19.5 43.0
R2 0.67/0.65 0.72/0.71 0.61/0.61 0.61/0.60 0.54 0.54 0.66 0.48 0.55 0.56
N 2926 817 266 817 817 817 795 823 3117 795

Figure 9. Landsat SIC, PMW SIC, and difference PMW SIC minus
Landsat SIC for all 10 products for a melt-condition case in the
Ross Sea, Southern Ocean, on 29 January 2014. See Fig. 5 for more
description of the maps shown.

AMSR2 stands out as the only product with a positive bias
of 5 % (see also Sect. 5.2). SICCI-25km and SICCI-50km
again provide the best linear agreement with Landsat SIC
(Table 13). Results for SICCI-2 products and OSI-450 im-
prove when using non-truncated SIC (see also Fig. S1). In
contrast to the Northern Hemisphere (see Table 12, Fig. S2),

also SICCI-50km reveals a reduction in the bias and increase
in the linear regression line slope. We attribute this to the
presence of advanced melt conditions and the different melt-
induced snow and ice properties in the Southern Hemisphere
comprising a larger fraction of coarse-grained snow due to
prolonged melt–freeze cycles and a generally drier snow sur-
face, at least for the high-concentration parts of the sea-ice
cover.

On the one hand, the negative biases (Fig. 9, Table 13)
agree well with results of earlier comparisons between
Southern Hemisphere summer PMW SIC estimates and ship-
based observations of the sea-ice cover (e.g., Worby and
Comiso, 2004; Ozsoy-Cicek et al., 2009). These studies hy-
pothesized that underestimation of the actual sea-ice concen-
tration in PMW SIC products is primarily caused by wet,
flooded sea ice exhibiting a similar surface emissivity as open
water and hence looking like open water in PMW imagery.
On the other hand, an unknown fraction of these negative
biases could be caused by our Landsat SIC estimates being
biased high because of the reasons laid out in Sect. 2.2.4 and
the respective Supplement section.

5 Discussion

5.1 A note on grid resolutions

SICCI-25km and SICCI-50km SIC have a grid resolution
close to the actual algorithm resolution largely determined
by the native resolution of the lowest-frequency channel used
(see field-of-view dimensions in Table 1). This is not the
case for, e.g., CBT-SSMI or OSI-450. Actually, we find a
relatively poor performance of OSI-450 in comparison to
SICCI-25km (see Tables 5–7) – albeit the retrieval algorithm
is exactly the same. We hypothesize that the coarser native
resolution of the satellite data used for OSI-450 provides
one of the main explanations for this observation. SICCI-
25km uses AMSR-E and AMSR2 brightness temperatures
observed at spatial resolutions (footprint sizes) between
14km× 8 km (AMSR2: 12km× 7 km) and 27km× 16 km
(AMSR2: 22km×14 km) (see Table 1). In contrast, OSI-450
uses SSM/I and SSMIS brightness temperatures observed at
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Table 13. Summary of statistical results obtained for 45 melt-condition cases in the Southern Hemisphere. See caption of Table 5 for an
explanation of the parameters given. Numbers added to the right of the “/” for SICCI-2 products and OSI-450 denote results obtained using
non-truncated SIC.

LS8 SICCI- SICCI- SICCI- OSI- CBT- NOAA- CBT- NT1- ASI- NT2-
SH 2013–2015 12 25 50 450 SSMI CDR AMSR2 SSMI SSMI AMSR2

Diff −5.0/− 4.3 −5.8/− 5.5 −8.1/− 7.8 −4.9/− 4.6 –0.4 –0.6 −2.8 −8.7 −7.8 5.1
DiffSDEV 13.7/14.1 13.9/14.1 17.1/17.2 14.8/14.9 15.6 15.6 15.4 16.4 18.6 15.9
Slope 0.888/0.903 0.951/0.958 0.983/0.991 0.750/0.754 0.772 0.794 0.895 0.791 0.859 0.824
Intercept 4.0/3.5 –1.8/–2.1 −6.7/− 7.1 14.1/15.4 18.0 16.0 5.8 8.2 3.6 19.4
R2 0.79/0.78 0.78/0.78 0.69/0.69 0.71/0.71 0.69 0.69 0.72 0.67 0.65 0.69
N 10 214 2915 916 2915 2899 2899 2955 2929 10 129 2955

footprint sizes between 37km× 28 km and 69km× 43 km.
In addition, the relevant channels are sampled spatially every
10 km for AMSR-E and AMSR2 and every 25 km for SSM/I
and SSMIS. Therefore, spatial brightness temperature varia-
tions caused, e.g., by variations in the open water fraction can
be identified at a finer spatial scale by AMSR-E and AMSR2
than by SSM/I and SSMIS at the same frequency. The grid
spacing at which OSI-450 and other SIC products relying on
SSM/I and SSMIS 19 and 37 GHz channels are provided is
not the actual resolution of the estimated SIC. Surface in-
formation is smeared in the SSM/I and SSMIS data much
more. A similar observation applies to CBT-SSMI and CBT-
AMSR. The latter provides SIC at a grid resolution closer
to the algorithm resolution than CBT-SSMI; consequently,
CBT-AMSR SIC agrees closer to Landsat SIC than CBT-
SSMI SIC (see Tables 5, 6, and 7 and compare panels e and g
in Figs. 2, 3, and 4). We are confident that, besides the differ-
ences between the algorithms themselves, a substantial frac-
tion of the observed difference in the agreement with Landsat
SIC is caused by the spatial representation of the true sea-ice
concentration, which differs due to the above-mentioned dif-
ferences in satellite data used as input.

Our results confirm the stated impact of the native spa-
tial resolution on potential biases between PMW SIC and
Landsat SIC very well. For instance, out of the 10 prod-
ucts, ASI-SSMI and SICCI-12km both incorporating high-
frequency, fine-spatial-resolution imagery channels provide
the third and fourth best linear fits in the Northern Hemi-
sphere (Tables 5 and 6) and the third and fifth best linear
fits in the Southern Hemisphere. SICCI-12km actually per-
forms best out of the four SICCI-2 and OSI-450 products
in the Southern Hemisphere (Table 7). Our Landsat data
set of the Southern Hemisphere contains more cases of ice
regimes (see Sect. 4) with variable open water fractions such
as “heterogeneous ice”, “leads/openings”, “freeze-up”, and
“ice edge” than the one of the Northern Hemisphere (see Ta-
ble S1). Because a SIC product at finer spatial resolution is
capable of depicting such variable open water fractions better
and of observing the full SIC range more adequately, it seems
reasonable to have a better linear agreement between Landsat
SIC and, e.g., SICCI-12km SIC in the Southern Hemisphere

than the Northern Hemisphere (compare Figs. 3 and 4 with
respect to low SIC).

However, ASI-SSMI does not show better results in the
Southern Hemisphere than the Northern Hemisphere when
compared to, e.g., NT1-SSMI or SICCI-2 products. ASI-
SSMI utilizes near-90 GHz brightness temperatures only,
while SICCI-12km combines near-90 GHz with 19 GHz
brightness temperatures. Atmospheric effects known to cause
biases in near-90 GHz PMW SIC products (Kern, 2004;
Ivanova et al., 2015) therefore have less impact on SICCI-
12km than ASI-SSMI SIC. In addition, all SICCI-2 prod-
ucts utilize atmospherically corrected brightness tempera-
tures, while ASI-SSMI utilizes uncorrected brightness tem-
peratures. The fact that most of our Landsat scenes in the
Southern Hemisphere represent atmospheric conditions dur-
ing summer melt and hence at a comparably higher water
vapor load than in the Northern Hemisphere fits into this pic-
ture. While atmospheric effects are efficiently mitigated for
SICCI-12km in both hemispheres, these are larger for ASI-
SSMI in the Southern Hemisphere than the Northern Hemi-
sphere.

5.2 Hemispheric differences versus Landsat SIC bias

At this point, we look at the difference between the PMW
SIC minus Landsat SIC values obtained in the Northern
Hemisphere and the Southern Hemisphere from a different
perspective. Ice conditions represented by our Landsat SIC
data set comprise more cases with melt conditions and at
the ice edge in the Southern Hemisphere (see Table S1).
These conditions are likely particularly subject to the pos-
itive bias in Landsat SIC due to mixed pixels described in
Sect. 2.2.4 and the respective Supplement section. Therefore,
we can expect that the positive SIC difference is, on average,
larger in the Southern Hemisphere than the Northern Hemi-
sphere. We compare the differences listed in Tables 5, 6, and
7 and find the following. OSI-450, SICCI-12km, and SICCI-
25km exhibit small changes in the SIC differences between
+0.8 % and −0.8 %. NT2-AMSR reveals a positive change
of+2.8 %. All other products show a negative change by be-
tween −2.2 % and −3.2 %. This change of ∼ 3 % in the SIC
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difference between the Northern Hemisphere and the South-
ern Hemisphere is of the correct sign and of an order of mag-
nitude that we deem to be a realistic estimate of the differ-
ence in the mentioned positive Landsat SIC bias between the
hemispheres. What does this mean? For example, for a PMW
grid cell covered by an actual SIC of 95 %, due to the positive
bias, Landsat SIC might be 97 % in the Northern Hemisphere
and 100 % in the Southern Hemisphere. A PMW SIC algo-
rithm tuned equally well for the ice conditions in the respec-
tive hemisphere would provide 95 % in both hemispheres.
Compared to Landsat SIC this results in a negative differ-
ence of−2 % in the Northern Hemisphere and of−5 % in the
Southern Hemisphere, i.e., the difference becomes more neg-
ative by ∼ 3 %. In contrast, the difference NT2-AMSR SIC
minus Landsat SIC becomes more positive, increasing from
+0.6 % in the Northern Hemisphere to +3.4 % in the South-
ern Hemisphere. When only considering the melt-condition
cases the overall difference increases from+1.7 % to+5.1 %
(Tables 12 and 13). Without further independent evaluation
data to better assess the accuracy of our Landsat SIC data,
we cannot draw a quantitative conclusion here. However, the
increase in the positive value of the difference PMW SIC mi-
nus Landsat SIC between the Northern Hemisphere and the
Southern Hemisphere observed for NT2-AMSR is opposite
to our well-motivated suggestion that Landsat SIC values are
biased higher in the Southern Hemisphere than the Northern
Hemisphere.

5.3 A note on the effect of filters

In this subsection, we comment on the observation that in
the scatterplots of the Northern Hemisphere (Figs. 2 and 3)
particularly the SICCI-2 products but also OSI-450, CBT-
AMSR, and NT2-AMSR exhibit a relatively large number of
cases with PMW SIC= 0% and Landsat SIC> 0%. In ad-
dition, we find an unexpectedly large number of comparably
low PMW SIC values (<∼ 50 %) at Landsat SIC>∼ 70 %,
especially for SICCI-50km (Figs. 2c and 3c). In the scatter-
plots of all products in the Southern Hemisphere (Fig. 4) we
observe a large number of cases with PMW SIC= 0% and
Landsat SIC> 0%.

We hypothesize this observation is linked to the various
filters applied. Examples of such filters are the weather or
open water filter (OWF) and the land spillover filter (LSO).
The OWF reduces the number of erroneous SIC values re-
sulting from unaccounted atmospheric influences, for exam-
ple high cloud liquid water contents. OWF is effective along
the ice edge and the adjacent open water. One common re-
alization of the OWF is to set PMW SIC= 0% once bright-
ness temperature gradient ratios sensitive to the atmospheric
influence exceed a certain threshold (e.g., Wensnahan et al.,
1993; Spreen et al., 2008; Lavergne et al., 2019). Such fil-
ters might cut off true SIC values (Andersen et al., 2006).
The SICCI-2 and OSI-450 algorithm employs a modified
version of such an OWF (Lavergne et al., 2019; Kern et al.,

2019). The LSO reduces the number of erroneous SIC values
along coastlines resulting from unaccounted spillover of the
(higher) land surface brightness temperature into the (lower)
open water brightness temperature. The LSO is particular ef-
fective during summer. It has also an influence during the
freezing season for situations where the coastline is only
fringed by a quite narrow sea-ice cover, for example, dur-
ing fall freeze-up in the Hudson Bay and along the Siberian
coast or during winter/spring along the coast of Greenland
facing the Irminger Sea. One realization of the LSO is a sta-
tistical approach, in which the SIC of grid cells adjacent to
the coast is corrected, i.e., set to 0 % or interpolated to a more
adequate value, based on SIC values within a certain neigh-
borhood (e.g., Cavalieri et al., 1999). The SICCI-2 and OSI-
450 algorithm employs a novel attempt. Here the method of
Maass and Kaleschke (2010) is used to correct for the land
spillover already at brightness temperature level; the “classi-
cal” LSO filtering of Cavalieri et al. (1999) is still included,
though (Lavergne et al., 2019). Note that the OWF sets PMW
SIC to zero; the LSO reduces the PMW SIC to lower values
but not necessarily to zero.

The SICCI-2 and OSI-450 products offer the full SIC dis-
tribution around 0 % and around 100 % SIC and the opportu-
nity to reverse-engineer the effect of flags, i.e., switch the ef-
fect of certain flags on or off. Therefore, we are able to inves-
tigate the impact of the OWF and the LSO on our comparison
results, an investigation not possible for the six other prod-
ucts. We choose ice regime “leads/openings” in the South-
ern Hemisphere in the years 2013–2015 and look, as an ex-
ample for such an investigation, at the impact of the two
above-mentioned filters on SICCI-50km SIC (Fig. 10). We
switch off these flags together with the near-100 % SIC flag
to work with a more realistic SIC distribution at the high-
concentration end. We do not find even one PMW SIC= 0%
case in the fully non-truncated, i.e., no filters applied, SIC
scatterplot (Fig. 10b) – in contrast to the fully truncated SIC
(Fig. 10a). Accordingly, the overall SIC difference reduces in
magnitude from 7.5 % to 4.3 % when going from fully trun-
cated to fully non-truncated; the standard deviation of the dif-
ference reduces from 15.0 % to 11.1 %.

If we switch off the OWF, i.e., include the originally re-
trieved SIC values for those grid cells where the OWF is
applied, we get a number of SIC data pairs concentrated
between Landsat SIC (0 %–20 %) and SICCI-50km (0 %–
30 %) that can be clearly associated with the OWF (com-
pare Fig. 10c with panels a and d). The magnitude of the
difference decreases by only 0.5 %, while the standard devi-
ation stays the same. There is still a comparably large num-
ber of cases with SICCI-50km SIC= 0% or at least rela-
tively low (< 30 %), concomitant with Landsat SIC> 50%.
If we instead switch off the LSO, i.e., include the originally
retrieved SIC values for those grid cells where the LSO is
applied, we find that almost all of the above-mentioned cases
of low or equal to 0 % SICCI-50km SIC can be traced back
to substantially higher SIC values (Fig. 10d). The magni-
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Figure 10. Scatterplots of SICCI-50km SIC (y axis) versus Landsat SIC (x axis) for ice regime “leads/openings” in the Southern Hemisphere
in the years 2013–2015. Black dots are individual data pairs, the solid black line is the linear regression, and the dashed black line is the
identity line. Red triangles denote the mean PMW SIC computed for Landsat SIC ranges 0 %–5 %, 5 %–15 %, 15 %–25 %, . . ., 85 %–95 %,
95 %–100 %, the red bars denote 1 standard deviation of these mean values, and the red line is the respective linear regression line. The
overall difference PMW SIC minus Landsat SIC, its standard deviation, and the equation for the linear regression using the individual data
pairs are given at the top and the number N of data pairs and the squared linear correlation coefficient at the bottom of each panel. (a) Fully
truncated SIC, all filters applied; (b) fully non-truncated SIC, no filters applied; (c) truncated/non-truncated SIC, GT100 and OWF applied;
(d) truncated/non-truncated SIC, GT100 and LSO applied. Blue circles mark SICCI-50km SIC values set to 0 % by the OWF; orange circles
mark SICCI-50km SIC values changed by the LSO (solid circle: SIC set to 0 %; broken circle: SIC reduced).

tude of the difference changes considerably from 7.5 % (see
above) to 4.9 % if keeping only the LSO filtered grid cells;
the standard deviation of the difference reduces from 15.0 %
(see above) to 11.2 %. This reduction in the spread of val-
ues around the identity line is clearly also evident in the re-
spective scatterplots (Fig. 10): the standard deviation of the
Landsat SIC 10 % bin average SICCI-50km SIC (red vertical
bars) is much smaller in panel (d) than panel (a).

We observe a similar tendency for all other ice regimes
where the LSO is applied, e.g., “freeze-up” or “melt con-
ditions”, in the Southern Hemisphere and in the Northern
Hemisphere, and for SICCI-25km and SICCI-12km as well
(see Tables S4 and S5 in the Supplement). However, we find
far fewer SIC data pairs subject to LSO filtering for OSI-450;
hence the effect of switching on or off the LSO is compara-
bly small. We hypothesize that this could be explained by the
different native resolution of the satellite data used, the dif-

ferent sampling, and the different grid cell size and spacing
(see Sect. 5.1). However, testing this hypothesis is beyond
the scope of this paper. For the SICCI-2 SIC products, we
can confirm the hypothesis that the comparably large number
of PMW SIC= 0% or <∼ 30 % across basically the entire
SIC range (see Figs. 2, 3, and 4, panels a–c) can be explained
by the application of an LSO resulting in an elevated num-
ber of cases with PMW SIC < Landsat SIC. This provides
a viable explanation for unexpectedly large SIC differences
observed for SICCI-50km along coastlines, particularly of
Greenland or the eastern Antarctic, reported in Kern et al.
(2019, their Figs. 8c and 11c). Whether this is due to the
land spillover correction at the brightness temperature level
(Maass and Kaleschke, 2010) or the statistical filtering (Cav-
alieri et al., 1999) remains to be investigated. We clearly see
it as an advantage to be able to switch off filters and in a
reverse-engineering way investigate the impact of these fil-
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Figure 11.

ters for SICCI-2 and OSI-450 products. Application of the
LSO can produce an artificially large number of SIC values
near or at 0 % that agree less well with the Landsat SIC than
the originally retrieved SIC values – as we demonstrate for
the SICCI-2 and OSI-450 products. As a consequence, re-
sults of an evaluation including a considerable number of
near-coastal grid cells need to be interpreted carefully. The
number of artificially low SIC values resulting from the LSO
for the other six PMW SIC products is unknown as is their
impact on the evaluation results shown in this paper.

6 Summary and conclusions

In this paper, we present results of an evaluation of 10 pas-
sive microwave (PMW) SIC products against SIC estimates

derived from more than 350 clear-sky Landsat visible im-
ages acquired in the Northern Hemisphere during mostly late
winter and spring (March through May) and in the Southern
Hemisphere during spring, summer, and early fall (October
through March). We estimate Landsat SIC at the grid resolu-
tion of the PMW SIC products using results of supervised
classification of Landsat broadband albedo maps into ice
and water at 30 m pixel resolution. The comparison between
PMW and Landsat SIC is carried out based on all valid collo-
cated SIC map pairs but also based on subsets of these pairs
defining certain ice regimes. These ice regimes are “high
concentration”, “freeze-up”, “ice edge”, “leads/openings”,
“heterogeneous ice”, and “melt conditions”. Our compari-
son uses statistical parameters such as the mean difference
between PMW and Landsat SIC and its standard deviation,
the median difference, and parameters describing the linear
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Figure 11. Summary of all linear regression lines obtained for the comparison between Landsat SIC and PMW SIC for all ice regimes –
except high-concentration ice. Columns denote, from left to right, Landsat-5 Arctic (i.e., first-year ice), Landsat-8 Arctic (i.e., mixed first-
year–multiyear ice and multiyear ice), and Landsat-8 Antarctic. Ice regimes are sorted per row from top to bottom. Different colors and
line styles denote different products as indicated. The solid black line denotes the identity line. Note “AMSRE” refers to both AMSRE
(Landsat-5) and AMSR2 (Landsat-8).

agreement: slope and intercept of a linear regression and the
linear regression coefficient. We summarize these parameters
in Figs. 11 and 12 and make the following conclusions:

– It is important to take an integrated view of the statistical
parameters because, for instance, a small overall bias is
not necessarily associated with a good linear agreement
across the entire SIC range, and a perfect linear agree-
ment with a slope close to unity and a high correlation
could be associated with a large overall bias.

– It is also important to take into account the expected
influences of, e.g., melt conditions (Sect. 4.3) and frac-

tion of new/thin ice (Sect. 4.1), as well as sub-pixel-size
ocean–ice mixture (Sect. 2.2.4), on both PMW SIC and
Landsat SIC.

– SICCI-25km and SICCI-50km SIC offer overall the best
linear agreement to Landsat SIC as demonstrated in
Fig. 11 and the right column of Fig. 12, right column.
This is illustrated as well by mean and median PMW
SIC values computed for Landsat SIC bins aligned very
well along the identity line (Figs. 2–4), with exceptions
being explainable by filters applied in the products (see
Sect. 5.3). The magnitude of the difference PMW SIC
minus Landsat SIC is, however, larger than for the two
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Figure 12. Illustration of the statistical parameters of the comparison between Landsat SIC and PMW SIC for all ice regimes. Rows denote,
from top to bottom, first-year ice Arctic (Landsat-5), mixed first-year–multiyear ice and multiyear ice Arctic (Landsat-8), and all ice Antarctic
(Landsat-8). Columns denote, from left to right, accuracy (difference PMW SIC minus Landsat SIC), precision (standard deviation of the
SIC difference), and squared linear correlation coefficient. The uni-colored rows denote cases left out either because these ice regimes are
not populated (topmost row of panels) or because the retrieval of parameters did not make sense (squared linear correlation for ice regime
“high concentration”). Note “AMSRE” refers to both AMSRE (Landsat-5) and AMSR2 (Landsat-8).

CBT products and NOAA-CDR, almost without excep-
tion (Fig. 12, left column).

– CBT-SSMI, CBT-AMSR, NOAA-CDR, and NT2-
AMSR offer the smallest overall magnitude of the dif-
ference PMW SIC minus Landsat SIC (Fig. 12, left col-
umn). Except for CBT-AMSR2 in the Southern Hemi-
sphere, mean and median PMW SIC values align less
well along the identity line than for SICCI-25km and
SICCI-50km in Figs. 2–4. The linear agreement is con-
siderably worse than for SICCI-25km and SICCI-50km
(Fig. 11 and right column of Fig. 12).

– NT2-AMSR is the only product overestimating Landsat
SIC in the Southern Hemisphere – overall but also for
almost all ice regimes. This is problematic in view of the
potential positive bias of Landsat SIC for ice conditions
with an elevated number of mixed ocean–ice Landsat
pixels (see Sect. 2.2.4), e.g., ice regimes “melt condi-
tions”, “ice edge”, and “freeze-up”.

All products provide SIC data truncated to the range 0 % to
100 %, albeit all algorithms, except NT2-AMSR, use a SIC

retrieval procedure which in principle provides a full SIC dis-
tribution around the end-members 0 % and 100 %. Only the
SICCI-2 products and OSI-450 allow consideration of the
full SIC distribution. While our main results are derived with
the truncated SIC distribution, we demonstrate that, without
exception, using the full SIC distribution reduces the mean
difference and enhances the quality of the linear agreement
between PMW SIC and Landsat SIC which is already su-
perior for SICCI-25km and SICCI-50km. It is important to
consider this observation when comparing the results ob-
tained with the 10 products against each other in order to
avoid misinterpretation. While we obtain the smallest SIC
differences for CBT-SSMI, CBT-AMSR, NOAA-CDR, and
NT2-AMSR, these are likely to change using the full SIC
distribution. This applies in particular to ice regimes “high-
concentration” (Sect. 4.2) and “melt conditions” but also to
the full set of SIC data pairs (denoted “all” in Fig. 12). The
impact this difference in the comprehensiveness of the SIC
products has on our evaluation results prevents us from mak-
ing a ranking between the SIC products.
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This paper is limited to clear-sky visible imagery. It is
hence impossible to evaluate the performance of the SIC
products under the full set of possible weather conditions in-
fluencing SIC retrieval, i.e., surface wind speed and atmo-
spheric water vapor and cloud liquid water content. Our re-
sults likely cover a certain range of surface wind speeds and
atmospheric water vapor contents which we, however, did
not quantify, e.g., by means of atmospheric reanalysis data,
to stay focused. Obviously, this would be an issue worth pur-
suing in a forthcoming study for which SIC estimates based
on SAR data have to be used. These might allow us to assess
PMW SIC quality also under higher loads of atmospheric
water vapor content and, more importantly, clouds. Such a
study could then focus in particular on an improved accu-
racy assessment of the PMW SIC in the marginal ice zone
and along the ice edge. In such regions, our approach to de-
rive Landsat SIC likely results in the highest positive biases
– between a few percent to, in the worst case, 20 % for sin-
gle PMW grid cells – due to mixed ocean–ice Landsat pixels
classified as ice. Such a study would also be an excellent op-
portunity to evaluate the weather filters currently employed
in the SIC products. In order to have a meaningful sample,
such a study would require an equally extensive data set of
SAR images interpreted into well-evaluated SIC estimates.
This calls for continued development of reliable and con-
sistent SIC estimates from SAR and thorough evaluation of
SAR SIC products in both hemispheres.

Data availability. Except SICCI-12km all sea-
ice concentration products are publicly avail-
able under the following references: SICCI-25km
(https://doi.org/10.5285/f17f146a31b14dfd960cde0874236ee5;
Pedersen et al., 2017a), SICCI-50km
(https://doi.org/10.5285/5f75fcb0c58740d99b07953797bc041e;
Pedersen et al., 2017b), OSI-450
(https://doi.org/10.15770/EUM_SAF_OSI_0008 and https:
//osi-saf.eumetsat.int/products/osi-430-b-complementing-osi-450;
OSI SAF, 2017a, b), ASI-SSMI (Kern et al., 2020a), NOAA-CDR,
NT1-SSMI, and CBT-SSMI (https://doi.org/10.7265/N59P2ZTG;
Meier et al., 2017), and CBT-AMSR and NT2-AMSR
(https://doi.org/10.5067/TRUIAL3WPAUP; Meier et al., 2018).
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