Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3123-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3123-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, Canada, USA
now at: Department of Geography, University of British Columbia, Vancouver, BC, Canada
now at: Department of Geography and Geological Sciences, University of Idaho, Moscow, ID, USA
Saif Aati
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, Canada, USA
Ian Delaney
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
now at: Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Surendra Adhikari
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Jean-Philippe Avouac
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, Canada, USA
Related authors
No articles found.
Surendra Adhikari, Lambert Caron, Holly K. Han, Luc Houriez, Eric Larour, and Erik Ivins
EGUsphere, https://doi.org/10.5194/egusphere-2025-3561, https://doi.org/10.5194/egusphere-2025-3561, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an efficient way of coupling ice sheet and solid Earth models, targeting ice sheet modelers with little knowledge of and interest in glacial isostatic adjustment processes. We distill solid Earth response signals into "Green's functions," which can be convolved with the spatiotemporal pattern of modeled ice mass change using simple matrix multiplication. The manuscript is timely and encourages greater participation with coupled ice/Earth simulations in the ongoing ISMIP effort.
Ian Delaney, Andrew J. Tedstone, Mauro A. Werder, and Daniel Farinotti
The Cryosphere, 19, 2779–2795, https://doi.org/10.5194/tc-19-2779-2025, https://doi.org/10.5194/tc-19-2779-2025, 2025
Short summary
Short summary
Sediment transport capacity depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Yet, under glaciers, discharge variations alter velocity more than channel shape. Due to these differences, this study shows that sediment transport capacity under glaciers varies widely and peaks before water flow, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414, https://doi.org/10.5194/egusphere-2024-3414, 2025
Short summary
Short summary
Presented here is a new model of the solid-Earth response to tides and mass changes in ice sheets, oceans, and groundwater, in of terms of gravity change and bedrock motion. The model is capable simulating mantle deformation including elasticity, transient and steady-state viscous flow. We detail our approach to numerical optimization, and report the accuracy of results with respect to community benchmarks. The resulting coupled system features kilometer-scale resolution and fast computation.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136, https://doi.org/10.5194/egusphere-2024-4136, 2025
Short summary
Short summary
We studied how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our work highlights resolution requirements for similar ice—earth models, and the importance of bedrock mapping efforts in Antarctica.
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024, https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Short summary
Understanding how glaciers generate sediment and transport it to the ocean is important for understanding ocean ecosystems and developing knowledge of the past cryosphere from marine sediments. This paper presents a new way to simulate sediment transport in rivers below ice sheets and glaciers and quantify volumes and characteristics of sediment that can be used to reveal the hidden record of the subglacial environment for both past and present glacial conditions.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Cited articles
Aati, S. and Avouac, J.-P.: Optimization of optical image geometric modeling,
application to topography extraction and topographic change measurements
using PlanetScope and SkySat imagery, Remote Sensing, 12, 3418, https://doi.org/10.3390/rs12203418, 2020. a, b, c
Abe, T. and Furuya, M.: Winter speed-up of quiescent surge-type glaciers in Yukon, Canada, The Cryosphere, 9, 1183–1190, https://doi.org/10.5194/tc-9-1183-2015, 2015. a, b
Adhikari, S., Ivins, E., and Larour, E.: Mass transport waves amplified by
intense Greenland melt and detected in solid Earth deformation,
Geophys. Res. Lett., 44, 4965–4975, 2017. a
Armstrong, W. H., Anderson, R. S., and Fahnestock, M. A.: Spatial patterns of
summer speedup on South central Alaska glaciers, Geophys. Res. Lett., 44, 9379–9388, 2017. a
Avouac, J.-P. and Leprince, S.: Geodetic imaging using optical systems, in:
Reference Module in Earth Systems and Environmental Sciences, 387–424,
Elsevier, https://doi.org/10.1016/B978-0-444-53802-4.00067-1, 2015. a
Beaud, F., Flowers, G. E., and Pimentel, S.: Seasonal-scale abrasion and
quarrying patterns from a two-dimensional ice-flow model coupled to
distributed and channelized subglacial drainage, Geomorphology, 219,
176–191, 2014. a
Beaud, F., Aati, S., Delaney, I., Adhikari, S., and Avouac, J.-P.: Dataset and code – Shisper glacier surge and sliding law (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.4624397, 2021. a
Beyer, S., Kleiner, T., Aizinger, V., Rückamp, M., and Humbert, A.: A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream, The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, 2018. a
Björnsson, H.: Hydrological characteristics of the drainage system
beneath a surging glacier, Nature, 395, 771–774, https://doi.org/10.1038/27384, 1998. a
Burgess, E. W., Forster, R. R., and Larsen, C. F.: Flow velocities of Alaskan
glaciers, Nat. Commun., 4, 1–8, 2013. a
Catania, G., Stearns, L., Moon, T., Enderlin, E., and Jackson, R.: Future
evolution of Greenland's marine-terminating outlet glaciers,
J. Geophys. Res.-Earth, 125, e2018JF004873, https://doi.org/10.1029/2018JF004873 2020. a
Chundley, T. and Willis, I.: Glacier surges in the north-west West Kunlun
Shan inferred from 1972 to 2017 Landsat imagery, J. Glaciol.,
65, 1–12, https://doi.org/10.1017/jog.2018.94, 2019. a
Clarke, G.: Subglacial Processes,
Annu. Rev. Earth Pl. Sc., 33, 247–276, https://doi.org/10.1146/annurev.earth.33.092203.122621, 2005. a
Clarke, G., Collins, S., and Thompson, D.: Flow, thermal structure, and
subglacial conditions of a surge-type glacier,
Can. J. Earth Sci., 21, 232–240, https://doi.org/10.1139/e84-024, 1984. a, b, c
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018b. a, b, c
Dehecq, A., Gourmelen, N., Gardner, A., Brun, F., Goldberg, D., Nienow, P.,
Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.: Twenty-first
century glacier slowdown driven by mass loss in High Mountain Asia,
Nat. Geosci., 12, 22, https://doi.org/10.1038/s41561-018-0271-9, 2019. a
Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services,
Remote Sens. Environ., 120, 25–36,
https://doi.org/10.1016/j.rse.2011.11.026, 2012. a
Dunse, T., Schellenberger, T., Hagen, J. O., Kääb, A., Schuler, T. V., and Reijmer, C. H.: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt, The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, 2015. a, b, c
ESA: European Space Agency, Copernicus Open Access Hub,
https://scihub.copernicus.eu/, last access: 15 August 2019. a
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017. a
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168, https://doi.org/10.1038/s41561-019-0300-3, 2019. a, b
Flowers, G. E.: Subglacial modulation of the hydrograph from glacierized
basins, Hydrol. Process., 22, 3903–3918, https://doi.org/10.1002/hyp.7095, 2008. a
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, P. Roy. Soc. A, 471, 1–41, https://doi.org/10.1098/rspa.2014.0907, 2015. a
Frappé, T.-P. and Clarke, G. K. C.: Slow surge of Trapridge Glacier,
Yukon Territory, Canada, J. Geophys. Res.-Earth, 112, F03S32, https://doi.org/10.1029/2006JF000607, 2007. a
Gardner, A., Fahnestock, M., and Scambos, T.: ITS_LIVE regional glacier and
ice sheet surface velocities, National Snow and Ice Data
Center (NSIDC), https://doi.org/10.5067/6II6VW8LLWJ7, 2019. a, b, c
Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis,
J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille,
F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S.,
Pessiot, L., Trémas, T.and Cadau, E., De Bonis, R., Isola, C.,
Martimort, P., and Fernandez, V.: Copernicus Sentinel-2A Calibration and
Products Validation Status, Remote Sensing, 9, 584, https://doi.org/10.3390/rs9060584,
2017. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, 2017. a
Habermann, M., Truffer, M., and Maxwell, D.: Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland, The Cryosphere, 7, 1679–1692, https://doi.org/10.5194/tc-7-1679-2013, 2013. a, b
Heid, T. and Kääb, A.: Evaluation of existing image matching
methods for deriving glacier surface displacements globally from optical
satellite imagery, Remote Sens. Environ., 118, 339–355,
https://doi.org/10.1016/J.RSE.2011.11.024, 2012. a, b
Hewitt, K.: The Karakoram anomaly? Glacier expansion and the “Elevation
Effect”, Karakoram Himalaya, Mt. Res. Dev., 25,
332–341, 2005. a
Hewitt, K. and Liu, J.: Ice-dammed lakes and outburst floods, Karakoram
Himalaya: historical perspectives on emerging threats, Phys. Geogr.,
31, 528–551, https://doi.org/10.2747/0272-3646.31.6.528, 2010. a
Hoffman, M. and Price, S.: Feedbacks between coupled subglacial hydrology and
glacier dynamics, J. Geophys. Res., 119, 414–436,
https://doi.org/10.1002/2013JF002943, 2014. a, b
Iken, A. and Truffer, M.: The relationship between subglacial water pressure
and velocity of Findelengletscher, Switzerland, during its advance and
retreat, J. Glaciol., 43, 328–338,
https://doi.org/10.3189/S0022143000003282, 1997. a, b
Iverson, N. and Zoet, L.: Experiments on the dynamics and sedimentary products
of glacier slip, Geomorphology, 244, 121–134,
https://doi.org/10.1016/j.geomorph.2015.03.027, 2015. a
Jay-Allemand, M., Gillet-Chaulet, F., Gagliardini, O., and Nodet, M.: Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge, The Cryosphere, 5, 659–672, https://doi.org/10.5194/tc-5-659-2011, 2011. a
Jiskoot, H.: Glacier surging, Encyclopedia of Snow, Ice and Glaciers,
415–428, 2011. a
Joughin, I., Smith, B., and Schoof, C.: Regularized Coulomb Friction Laws
for Ice Sheet Sliding: Application to Pine Island Glacier,
Antarctica, Geophys. Res. Lett., 46, 4764–4771,
https://doi.org/10.1029/2019GL082526, 2019. a, b, c, d
Kääb, A., Treichler, D., Nuth, C., and Berthier, E.: Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya, The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, 2015. a, b, c
Kääb, A., Winsvold, S., Altena, B., N., C., Nagler, T., and Wuite,
J.: Glacier Remote Sensing Using Sentinel-2. Part I:
Radiometric and Geometric Performance, and Application to Ice
Velocity, Remote Sensing, 8, 598, https://doi.org/10.3390/rs8070598, 2016. a
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of the
basal water conduit system, J. Geophys. Res.-Sol. Ea., 92,
9083–9100, 1987. a
Karim, D., Karim, I., Anwar, W., Uddin, K., Ali, A., and Gurung, D.: Glacier
hazard associated with surging glaciers–story of the Shishper Glacier from
Hunza, Pakistan, in: Debris Flows: Disaster, Risk, Forecast, Protection,
Proceedings of the 6th conference, Dushanbe-Khorog, Tajikistan, 20–26 September 2020, edited by: Chernomorets, S. S. and Viskhadzhieva, K. S., 1, 234–245, Dushanbe: “Promotion” LLC, 2020. a
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018. a
Leprince, S., Barbot, S., Ayoub, F., and Avouac, J.-P.: Automatic and precise
orthorectification, coregistration, and subpixel correlation of satellite
images, application to ground deformation measurements, IEEE T. Geosci. Remote, 45, 1529–1558,
https://doi.org/10.1109/TGRS.2006.888937, 2007 (data available at: http://www.tectonics.caltech.edu/slip_history/spot_coseis/download_software.html, last access: 15 February 2020). a, b, c, d
MacAyeal, D. R.: Revisiting Weertman's tombstone bed, Ann. Glaciol., 60,
21–29, 2019. a
Mair, D., Nienow, P., Sharp, M., Wohlleben, T., and Willis, I.: Influence of
subglacial drainage system evolution on glacier surface motion: Haut
Glacier d'Arolla, Switzerland, J. Geophys. Res., 107,
10–1029, 2002. a
Mayer, C., Fowler, A., Lambrecht, A., and Scharrer, K.: A surge of North
Gasherbrum Glacier, Karakoram, China, J. Glaciol., 57,
904–916, https://doi.org/10.3189/002214311798043834, 2011. a
Moon, T., Joughin, I., Smith, B., Van Den Broeke, M. R., Van De Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 7209–7216, 2014. a
Müller, F. and Iken, A.: Velocity fluctuations and water regime of Arctic
valley glaciers, International Association of Scientific Hydrology
Publication, 95, 165–182, 1973. a
Murray, T., Stuart, G., Miller, P., Woodward, J., Smith, A., Porter, P., and
Jiskoot, H.: Glacier surge propagation by thermal evolution at the bed,
J. Geophys. Res.-Sol. Ea., 105, 13491–13507,
https://doi.org/10.1029/2000JB900066, 2000. a, b
Pamir Times: Flood from advancing Shisper glacier damages a portion of KKH in
Hasanabad, Hunza,
https://pamirtimes.net/2019/06/23/flood-from-advancing-shisper-glacier-damages-a-portion-of-kkh-in-hasanabad-hunza/ (last access: 15 February 2020),
2019. a, b, c
Pattyn, F. and Morlighem, M.: The uncertain future of the Antarctic Ice Sheet,
Science, 367, 1331–1335, 2020. a
Paul, F.: A 60-year chronology of glacier surges in the central Karakoram
from the analysis of satellite image time-series, Geomorphology, 352,
106993, https://doi.org/10.1016/j.geomorph.2019.106993, 2020. a
Pfeffer, W., Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., Hagen,
J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph
Glacier Inventory: a globally complete inventory of glaciers, J.
Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014. a
Pimentel, S. and Flowers, G. E.: A numerical study of hydrologically driven
glacier dynamics and subglacial flooding, P. Roy. Soc. A,
467, 537–558, https://doi.org/10.1098/rspa.2010.0211, 2010. a, b, c
Post, A.: Distribution of surging glaciers in western North America, J.
Glaciol., 8, 229–240, 1969. a
Quincey, D., Braun, M., Glasser, N., Bishop, M., Hewitt, K., and Luckman, A.:
Karakoram glacier surge dynamics, Geophys. Res. Lett., 38, L18504, https://doi.org/10.1029/2011GL049004, 2011. a
Quincey, D., Glasser, N., Cook, S., and Luckman, A.: Heterogeneity in
Karakoram glacier surges, J. Geophys. Res.-Earth,
120, 1288–1300, https://doi.org/10.1002/2015JF003515, 2015. a, b, c, d
Rada, C. and Schoof, C.: Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon, The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, 2018. a
Roe, G. H. and O'Neal, M. A.: The response of glaciers to intrinsic climate
variability: observations and models of late-Holocene variations in the
Pacific Northwest, J. Glaciol., 55, 839–854, 2009. a
Rosu, A.-M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., and Klinger, Y.:
Measurement of ground displacement from optical satellite image correlation
using the free open-source software MicMac,
ISPRS J. Photogramm., 100, 48–59, https://doi.org/10.1016/J.ISPRSJPRS.2014.03.002, 2015. a, b
Röthlisberger, H.: Water pressure in intra- and subglacial channels,
J. Glaciol., 11, 177–203, 1972. a
Round, V., Leinss, S., Huss, M., Haemmig, C., and Hajnsek, I.: Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram, The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, 2017. a, b, c, d
Roy, D., Wulder, M., Loveland, T., C.E., W., Allen, R., Anderson, M. C.,
Helder, D., Irons, J., Johnson, D., Kennedy, R., Scambos, T., Schaaf, C.,
Schott, J., Sheng, Y., Vermote, E., Belward, A., Bindschadler, R., Cohen, W.,
Gao, F., Hipple, J., Hostert, P., Huntington, J., Justice, C., Kilic, A.,
Kovalskyy, V., Lee, Z., Lymburner, L., Masek, J., McCorkel, J., Shuai, Y.,
Trezza, R., Vogelmann, J., Wynne, R., and Zhu, Z.: Landsat-8: Science and
product vision for terrestrial global change research, Remote Sens. Environ., 145, 154–172, https://doi.org/10.1016/j.rse.2014.02.001,
2014. a
Rupnik, E., Daakir, M., and Pierrot-Deseilligny, M.: MicMac – a free,
open-source solution for photogrammetry, Open Geospatial Data,
Software and Standards, 2, 14, https://doi.org/10.1186/s40965-017-0027-2, 2017. a
Sevestre, H. and Benn, D.: Climatic and geometric controls on the global
distribution of surge-type glaciers: implications for a unifying model of
surging, J. Glaciol., 61, 646–662, https://doi.org/10.3189/2015JoG14J136,
2015. a, b, c
Shah, A., Ali, K., Nizami, S., Jan, I., Hussain, I., and Begum, F.: Risk
assessment of Shishper Glacier, Hassanabad Hunza, North Pakistan,
Journal of Himalayan Earth Sciences Volume, 52, 1–11, 2019. a
Sharp, M., Richards, K., Willis, I., Arnold, N., Nienow, P., Lawson, W., and
Tison, J.-L.: Geometry, bed topography and drainage system structure of the
Haut Glacier d'Arolla, Switzerland, Earth Surf. Proc. Land.,
18, 557–571, 1993. a
Solgaard, A., Simonsen, S., Grinsted, A., Mottram, R., Karlsson, N., Hansen,
K., Kusk, A., and Sørensen, L.: Hagen Bræ: A surging glacier in North
Greenland–35 years of observations, Geophys. Res. Lett., 47,
2019GL085802, https://doi.org/10.1029/2019GL085802, 2020. a
Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., and Immerzeel, W. W.: Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017, The Cryosphere, 12, 95–101, https://doi.org/10.5194/tc-12-95-2018, 2018. a, b, c
NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER Global Digital Elevation Model V003. 2018, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/ASTER/ASTGTM.003, 2018. a
U.S. Geological Survey: Digital Elevation – Shuttle Radar Topography Mission
(SRTM) 1 Arc-Second Global, U. S. Geological Survey, Earth Resources
Observation and Science (EROS) Center, https://doi.org/10.5066/F7PR7TFT, 2014. a, b
U.S. Geological Survey: Landsat 8 images, United States Geological Survey,
https://earthexplorer.usgs.gov/, last access: 15 August 2019. a
Vallot, D., Pettersson, R., Luckman, A., Benn, D. I., Zwinger, T., Van Pelt,
W. J., Kohler, J., Schäfer, M., Claremar, B., and Hulton, N. R.: Basal
dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard:
non-local spatio-temporal response to water input, J. Glaciol., 63,
1012–1024, 2017. a, b, c, d, e
van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van Kampen, R., Doyle, S. H., Wilhelms, F., van den Broeke, M. R., Reijmer, C. H., Oerlemans, J., and Hubbard, A.: Self-regulation of ice flow varies across the ablation area in south-west Greenland, The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, 2015. a
Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38,
1957. a
Werder, M. A. and Funk, M.: Dye tracing a jökulhlaup: II. Testing a
jökulhlaup model against flow speeds inferred from measurements, J. Glaciol., 55, 899–908, 2009. a
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J.
Geophys. Res.-Earth, 118, 2140–2158, 2013. a
Zhan, Z.: Seismic Noise Interferometry Reveals Transverse Drainage
Configuration Beneath the Surging Bering Glacier, Geophys. Res. Lett., 46, 4747–4756, https://doi.org/10.1029/2019GL082411, 2019.
a
Short summary
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level rise and glacier-related hazards. Yet there is currently no universal law to describe this mechanism. We propose a universal glacier sliding law and a method to qualitatively constrain it. We use satellite remote sensing to create velocity maps over 6 years at Shisper Glacier, Pakistan, including its recent surge, and show that the observations corroborate the generalized theory.
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level...