Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-297-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-297-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019
Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA
Daniel McGrath
Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA
William Armstrong
Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28607, USA
Scott W. McCoy
Department of Geological Sciences and Engineering, University of Nevada, Reno, NV 89557, USA
Related authors
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435, https://doi.org/10.5194/egusphere-2025-2435, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
As part of the NASA SnowEx23 campaign, we conducted detailed snowpack experiments in Alaska’s boreal forests and Arctic tundra. We collected ground-penetrating radar measurements of snow depth along 44 short transects. We then excavated the snowpack from below the transects and measured snow depth, noting any vegetation and void spaces. We used the detailed in situ measurements to evaluate uncertainties in ground-penetrating radar and airborne lidar methods for snow depth retrieval.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Alton C. Byers, Marcelo Somos-Valenzuela, Dan H. Shugar, Daniel McGrath, Mohan B. Chand, and Ram Avtar
The Cryosphere, 18, 711–717, https://doi.org/10.5194/tc-18-711-2024, https://doi.org/10.5194/tc-18-711-2024, 2024
Short summary
Short summary
In spite of enhanced technologies, many large cryospheric events remain unreported because of their remoteness, inaccessibility, or poor communications. In this Brief communication, we report on a large ice-debris avalanche that occurred sometime between 16 and 21 August 2022 in the Kanchenjunga Conservation Area (KCA), eastern Nepal.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Cited articles
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers:
Response to steady debris deposition, The Cryosphere, 10, 1105–1124,
https://doi.org/10.5194/tc-10-1105-2016, 2016. a
Anderson, S. P., Walder, J. S., Anderson, R. S., Kraal, E. R., Cunico, M.,
Fountain, A. G., and Trabant, D. C.: Integrated hydrologic and hydrochemical
observations of Hidden Creek Lake jokulhlaup, Kennicott Glacier, Alaska,
J. Geophys. Res., 108, 1–19, https://doi.org/10.1029/2002JF000004, 2003. a, b, c
Benn, D. I., Wiseman, S., and Hands, K. A.: Growth and drainage of
supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal, J. Glaciol., 47, 626–638, https://doi.org/10.3189/172756501781831729, 2001. a
Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha, F., and Kraaijenbrink, P. D.: Heterogeneous Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia, J. Geophys. Res.-Earth, 124, 1331–1345, https://doi.org/10.1029/2018JF004838, 2019. a, b
Buckel, J., Otto, J. C., Prasicek, G., and Keuschnig, M.: Glacial lakes in
Austria – Distribution and formation since the Little Ice Age, Global Planet. Change, 164, 39–51, https://doi.org/10.1016/j.gloplacha.2018.03.003, 2018. a
Capps, D. M., Wiles, G. C., Clague, J. J., and Luckman, B. H.: Tree-ring
dating of the nineteenth-century advance of Brady Glacier and the evolution
of two ice-marginal lakes, Alaska, Holocene, 21, 641–649,
https://doi.org/10.1177/0959683610391315, 2011. a
Carrivick, J. L. and Quincey, D. J.: Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet, Global Planet. Change, 116, 156–163, https://doi.org/10.1016/j.gloplacha.2014.02.009, 2014. a, b, c
Carrivick, J. L. and Tweed, F. S.: Proglacial lakes: character, behaviour and
geological importance, Quart. Sci. Rev., 78, 34–52,
https://doi.org/10.1016/j.quascirev.2013.07.028, 2013. a, b
Clague, J. J. and Evans, S. G.: A review of catastrophic drainage of
moraine-dammed lakes in British Columbia, Quaternary Sci. Rev., 19, 1763–1783, https://doi.org/10.1016/S0277-3791(00)00090-1, 2000. a
Colonia, D., Torres, J., Haeberli, W., Schauwecker, S., Braendle, E., Giraldez, C., and Cochachin, A.: Compiling an Inventory of Glacier-Bed Overdeepenings and Potential New Lakes in De-Glaciating Areas of the Peruvian Andes: Approach, First Results, and Perspectives for Adaptation to Climate
Change, Water, 9, 336, https://doi.org/10.3390/w9050336, 2017. a
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015. a, b
Cook, S. J., Kougkoulos, I., Edwards, L. A., Dortch, J., and Hoffmann, D.:
Glacier change and glacial lake outburst flood risk in the Bolivian Andes,
The Cryosphere, 10, 2399–2413, https://doi.org/10.5194/tc-10-2399-2016, 2016. a
Dorava, J. M. and Milner, A. M.: Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA, Hydrol. Process., 14, 3149–3159,
https://doi.org/10.1002/1099-1085(200011/12)14:16/17<3149::AID-HYP139>3.0.CO;2-Y, 2000. a
Emmer, A.: Glacier Retreat and Glacial Lake Outburst Floods (GLOFs), in:
Oxford Research Encyclopedia of Natural Hazard Science, 1–37,
https://doi.org/10.1093/acrefore/9780199389407.013.275, 2017. a, b
Emmer, A., Merkl, S., and Mergili, M.: Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria, Geomorphology,
246, 602–616, https://doi.org/10.1016/j.geomorph.2015.06.032, 2015. a
Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H., and Huggel, C.:
70 years of lake evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future, Geomorphology, 365, 107178, https://doi.org/10.1016/j.geomorph.2020.107178, 2020. a, b, c, d, e, f, g, h
Fujita, K., Sakai, A., Nuimura, T., Yamaguchi, S., and Sharma, R. R.: Recent
changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya
revealed by in situ surveys and multi-temporal ASTER imagery, Environ. Res. Lett., 4, 045205, https://doi.org/10.1088/1748-9326/4/4/045205, 2009. a
Furian, W., Loibl, D., and Schneider, C.: Future glacial lakes in High Mountain Asia: An inventory and assessment of hazard potential from surrounding slopes, J. Glaciol., 67, 653–670, https://doi.org/10.1017/jog.2021.18, 2021. a
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial
lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009,
Global Planet. Change, 75, 47–55, https://doi.org/10.1016/j.gloplacha.2010.10.003, 2011. a
Glasser, N. F., Holt, T. O., Evans, Z. D., Davies, B. J., Pelto, M., and
Harrison, S.: Recent spatial and temporal variations in debris cover on
Patagonian glaciers, Geomorphology, 273, 202–216,
https://doi.org/10.1016/j.geomorph.2016.07.036, 2016. a
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth's
glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0, 2020. a, b, c, d
How, P., Messerli, A., Mätzler, E., Santoro, M., Wiesmann, A., Caduff,
R., Langley, K., Bojesen, M. H., Paul, F., Kääb, A., and Carrivick, J. L.: Greenland-wide inventory of ice marginal lakes using a multi-method approach, Scient. Rep., 11, 1–13, https://doi.org/10.1038/s41598-021-83509-1, 2021. a
Huggel, C., Kääb, A., Haeberli, W., and Teysseire, P.: Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps, Can. Geotech. J., 39, 3160330, https://doi.org/10.1139/t01-099, 2002. a
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T.,
Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E.: Importance and vulnerability of the world’s water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020. a
Jacquet, J., McCoy, S., McGrath, D., Nimick, D. A., Fahey, M., O'Kuinghttons,
J., Friesen, B. A., and Leidich, J.: Hydrologic and geomorphic changes
resulting from episodic glacial lake outburst floods: Rio Colonia, Patagonia,
Chile, Geophys. Res. Lett., 44, 854–864, https://doi.org/10.1002/2016GL071374, 2017. a, b, c, d
Jakob, L., Gourmelen, N., Ewart, M., and Plummer, S.: Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019, The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021, 2021. a, b, c, d
Jones, K. W. and Wolken, G. J.: Valdez glacier ice-dammed lake: June 2018
glaical lake outburst flood, Report 2019-4, State of Alaska Department of Natural Resources Division of Geological & Geophysical Surveys, p. 6, https://doi.org/10.14509/30175, 2019. a
Kaufman, D. S. and Manley, W. F.: Pleistocene Maximum and Late Wisconsinan
glacier extents across Alaska, U.S.A., Dev. Quatern. Sci., 2, 9–27, https://doi.org/10.1016/S1571-0866(04)80182-9, 2004. a
Kienholz, C., Herreid, S., Rich, J. L., Arendt, A. A., Hock, R., and Burgess,
E. W.: Derivation and analysis of a complete modern-date glacier inventory
for Alaska and northwest Canada, J. Glaciol., 61, 403–420,
https://doi.org/10.3189/2015JoG14J230, 2015. a, b
Kienholz, C., Pierce, J., Hood, E., Amundson, J. M., Wolken, G. J., Jacobs, A., Hart, S., Wikstrom Jones, K., Abdel-Fattah, D., Johnson, C., and Conaway,
J. S.: Deglacierization of a Marginal Basin and Implications for Outburst
Floods, Mendenhall Glacier, Alaska, Front. Earth Sci., 8, 1–21,
https://doi.org/10.3389/feart.2020.00137, 2020. a, b, c, d, e
King, O., Bhattacharya, A., Bhambri, R., and Bolch, T.: Glacial lakes
exacerbate Himalayan glacier mass loss, Scient. Rep., 9, 1–9,
https://doi.org/10.1038/s41598-019-53733-x, 2019. a
Linsbauer, A., Frey, H., Haeberli, W., Machguth, H., Azam, M. F., and Allen,
S.: Modelling glacier-bed overdeepenings and possible future lakes for the
glaciers in the Himalaya–Karakoram region, Ann. Glaciol., 57, 119–130, https://doi.org/10.3189/2016AoG71A627, 2016. a
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv., 5, eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019. a
McGrath, D., Sass, L., Neel, S. O., Arendt, A., and Kienholz, C.: Hypsometric control on glacier mass balance sensitivity in Alaska and northwest Canada, Earth's Future, 5, 324–336, https://doi.org/10.1002/eft2.193, 2017. a
Meerhoff, E., Castro, L. R., Tapia, F. J., and Pérez-Santos, I.:
Hydrographic and Biological Impacts of a Glacial Lake Outburst Flood (GLOF)
in a Patagonian Fjord, Estuar. Coast., 42, 132–143,
https://doi.org/10.1007/s12237-018-0449-9, 2018. a
Melkonian, A. K., Willis, M. J., and Pritchard, M. E.: Satellite-derived
volume loss rates and glacier speeds for the Juneau Icefield, Alaska, J. Glaciol., 60, 743–760, https://doi.org/10.3189/2014JoG13J181, 2014. a
Melkonian, A. K., Willis, M. J., and Pritchard, M. E.: Stikine icefield mass
loss between 2000 and 2013/2014, Front. Earth Sci., 4, 1–12,
https://doi.org/10.3389/feart.2016.00089, 2016. a
Miller, J. A., Whitehead, R. L., Gingerich, S. B., Oki, D. S., and Olcott, P. G.: Ground Water Atlas of the United States – Segment 13 – Alaska, Hawaii, Puerto Rico and the U.S. Virgin Islands, USGS Hydrologic Atlas 730-N, USGS,
https://doi.org/10.3133/ha730N, 1999. a
Milner, A. M., Robertson, A. L., Monaghan, K. A., Veal, A. J., and Flory, E. A.: Colonization and development of an Alaskan stream community over 28 years, Front. Ecol. Environ., 6, 413–419, https://doi.org/10.1890/060149, 2008. a
Neal, E. G.: Hydrology and glacier-lake outburst floods (1987–2004) and water quality (1998–2003) of the Taku River near Juneau, Alaska, US Geological Scientific Investigations Report, 1–38, available at: https://pubs.usgs.gov/sir/2007/5027/pdf/sir20075027.pdf (last access: 18 October 2021), 2007. a, b
Östrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence
of Ice Cores in Moraine Ridges, Geograf. Ann., 41, 228–230,
https://doi.org/10.1080/20014422.1959.11907953, 1959. a
Otto, J.-C.: Proglacial Lakes in High Mountain Environments: Landform and
Sediment Dynamics in Recently Deglaciated Alpine Landscapes, in: Geography
of the Physical Environment, edited by: Heckmann, T. and Morche, D.,
Springer Nature, Switzerland, https://doi.org/10.1007/978-3-319-94184-4, 2019. a, b
Pelto, M., Capps, D., Clague, J. J., and Pelto, B.: Rising ELA and expanding
proglacial lakes indicate impending rapid retreat of Brady Glacier, Alaska,
Hydrol. Process., 27, 3075–3082, https://doi.org/10.1002/hyp.9913, 2013. a, b
Pronk, J. B., Bolch, T., King, O., Wouters, B., and Benn, D. I.: Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region, The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, 2021. a
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Digital Media, Colorado, USA, https://doi.org/10.7265/N5-RGI-60, 2017. a, b
Rick, B. and McGrath, D.: Multi-decadal Glacial Lake Inventory in the Alaska Region between 1984 and 2019, Arctic Data Center [data set], https://doi.org/10.18739/A2MK6591G, 2021. a
Salerno, F., Thakuri, S., D'Agata, C., Smiraglia, C., Manfredi, E. C., Viviano, G., and Tartari, G.: Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation, Global Planet. Change, 92-93, 30–39, https://doi.org/10.1016/j.gloplacha.2012.04.001, 2012. a
Santos, J. and Córdova, C.: Little Ice Age glacial geomorphology and
sedimentology of Portage Glacier, South-Central Alaska, Finisterra, 44,
95–108, https://doi.org/10.18055/finis1380, 2009. a
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change, 10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020. a, b, c, d, e, f, g
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015. a
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier
fluctuations during the past 2000 years, Quaternary Sci. Rev., 149,
61–90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016. a
Song, C., Sheng, Y., Wang, J., Ke, L., Madson, A., and Nie, Y.: Heterogeneous
glacial lake changes and links of lake expansions to the rapid thinning of
adjacent glacier termini in the Himalayas, Geomorphology, 280, 30–38,
https://doi.org/10.1016/j.geomorph.2016.12.002, 2017. a, b
Sturm, M., and Benson, C.: A History of Jökulhlaups from Strandline Lake, Alaska, U.S.A., J. Glaciol., 31, 272–280, https://doi.org/10.3189/S0022143000006602, 1985. a
Tweed, F. S. and Carrivick, J. L.: Deglaciation and proglacial lakes, Geol.
Today, 31, 96–102, 2015. a
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake outburst
floods, P. Natl. Acad. Sci. USA, 117, 907–912, https://doi.org/10.1073/pnas.1914898117, 2020. a, b
Walder, J. S. and Costa, J. E.: Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude, Earth Surf. Proc.
Land., 21, 701–723,
https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<701::AID-ESP615>3.0.CO;2-2, 1996. a
Wang, S. J. and Zhou, L. Y.: Integrated impacts of climate change on glacier
tourism, Adv. Clim. Change Res., 10, 71–79, https://doi.org/10.1016/j.accre.2019.06.006, 2019. a
Wang, X., Liu, S., Ding, Y., Guo, W., Jiang, Z., Lin, J., and Han, Y.: An
approach for estimating the breach probabilities of moraine-dammed lakes in
the Chinese Himalayas using remote-sensing data, Nat. Hazards Earth Syst. Sci., 12, 3109–3122, https://doi.org/10.5194/nhess-12-3109-2012, 2012. a
Wang, X., Ding, Y., Liu, S., and Jiang, L.: Changes of glacial lakes and
implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010, Environ. Res. Lett., 8, 044052, https://doi.org/10.1088/1748-9326/8/4/044052, 2013. a, b
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, 2020.
a, b
Welling, J., Árnason, T., and Ólafsdóttir, R.: Implications of climate change on nature-based tourism demand: A segmentation analysis of
glacier site visitors in southeast Iceland, Sustainability, 12, 5338, https://doi.org/10.3390/su12135338, 2020. a
Wilcox, A. C., Wade, A. A., and Evans, E. G.: Drainage events from a glacier-dammed lake, Bear Glacier, Alaska: Remote sensing and field
observations, Geomorphology, 220, 41–49, https://doi.org/10.1016/j.geomorph.2014.05.025, 2014. a
Wiles, G. C., Barclay, D. J., and Calkin, P. E.: Tree-ring-dated `Little Ice
Age' histories of maritime glaciers from western Prince William Sound, Alaska, Holocene, 9, 163–173, https://doi.org/10.1191/095968399671927145, 1999. a
Wilson, F., Hults, C., Mull, C., and Karl, S.: Geologic map of Alaska, Tech.
rep., Reston, VA, https://doi.org/10.3133/sim3340, 2015. a
Wolfe, D. F. G., Kargel, J. S., and Leonard, G. J.: Glacier-dammed ice-marginal lakes of Alaska, https://doi.org/10.1007/978-3-540-79818-7, 2014. a, b, c
Worni, R., Huggel, C., and Stoffel, M.: Glacial lakes in the Indian Himalayas – From an area-wide glacial lake inventory to on-site and modeling based
risk assessment of critical glacial lakes, Sci. Total Environ., 468–469, S71–S84, https://doi.org/10.1016/j.scitotenv.2012.11.043, 2013. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., Mcnabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S. U., Thomson, L., Paul, F., Maussion, F.,
Kutuzov, S., Cogley, J. G., Asia, C., Zealand, N., Canada, W., and Zealand,
N.: Global glacier mass changes and their contributions to sea-level rise
from 1961 to 2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a, b, c
Zhang, G., Yao, T., Xie, H., Wang, W., and Yang, W.: An inventory of glacial
lakes in the Third Pole region and their changes in response to global warming, Global Planet. Change, 131, 148–157, https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015. a
Zhang, M.-M., Chen, F., and Tian, B.-S.: An automated method for glacial lake
mapping in High Mountain Asia using Landsat 8 imagery, J. Mount. Sci., 15, 13–24, https://doi.org/10.1007/s11629-017-4518-5, 2018. a, b, c
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as...