Articles | Volume 16, issue 1
Research article
25 Jan 2022
Research article |  | 25 Jan 2022

Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019

Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy

Related authors

Alpine hillslope failure in the western US: Insights from the Chaos Canyon landslide, Rocky Mountain National Park USA
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
EGUsphere,,, 2023
Short summary

Related subject area

Discipline: Other | Subject: Freshwater Ice
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975,,, 2023
Short summary
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648,,, 2022
Short summary
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898,,, 2022
Short summary
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sofia Hallerbäck, Laurie S. Huning, Charlotte Love, Magnus Persson, Katarina Stensen, David Gustafsson, and Amir AghaKouchak
The Cryosphere, 16, 2493–2503,,, 2022
Short summary
Sunlight penetration dominates the thermal regime and energetics of a shallow ice-covered lake in arid climate
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806,,, 2022
Short summary

Cited articles

Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: Response to steady debris deposition, The Cryosphere, 10, 1105–1124,, 2016. a
Anderson, S. P., Walder, J. S., Anderson, R. S., Kraal, E. R., Cunico, M., Fountain, A. G., and Trabant, D. C.: Integrated hydrologic and hydrochemical observations of Hidden Creek Lake jokulhlaup, Kennicott Glacier, Alaska, J. Geophys. Res., 108, 1–19,, 2003. a, b, c
Benn, D. I., Wiseman, S., and Hands, K. A.: Growth and drainage of supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal, J. Glaciol., 47, 626–638,, 2001. a
Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha, F., and Kraaijenbrink, P. D.: Heterogeneous Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia, J. Geophys. Res.-Earth, 124, 1331–1345,, 2019. a, b
Buckel, J., Otto, J. C., Prasicek, G., and Keuschnig, M.: Glacial lakes in Austria – Distribution and formation since the Little Ice Age, Global Planet. Change, 164, 39–51,, 2018. a
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.