Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-219-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-219-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbræ)
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
Douglas W. F. Mair
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
Jonathan E. Higham
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
Stephen Brough
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
James M. Lea
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
Isabel J. Nias
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
Related authors
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Penelope How, Dorthe Petersen, Kristian Kjellerup Kjeldsen, Katrine Raundrup, Nanna Bjørnholt Karlsson, Alexandra Messerli, Anja Rutishauser, Jonathan Lee Carrivick, James M. Lea, Robert Schjøtt Fausto, Andreas Peter Ahlstrøm, and Signe Bech Andersen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-18, https://doi.org/10.5194/essd-2025-18, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Ice-marginal lakes around Greenland temporarily store glacial meltwater, affecting sea level rise, glacier dynamics and ecosystems. Our study presents an eight-year inventory (2016–2023) of 2918 lakes, mapping their size, abundance, and surface water temperature. This openly available dataset supports future research on sea level projections, lake-driven glacier melting, and sustainable resource planning, including hydropower development under Greenland's climate commitments.
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, and Iestyn Barr
EGUsphere, https://doi.org/10.5194/egusphere-2023-2568, https://doi.org/10.5194/egusphere-2023-2568, 2024
Short summary
Short summary
On Earth, glacial cirques are a type of landform eroded by wet-based glaciers, which are glaciers with liquid water at the base of a glacier. While select alcoves have been interpreted as glacial cirques on Mars, we map and assess a large-scale population of ~2000 alcoves as potential cirques in the northern mid-latitudes of Mars. From physical measurements and characteristics, we find 386 cirque-like alcoves. This extends our knowledge of the extent and type of glaciation in the region.
Denis Felikson, Sophie Nowicki, Isabel Nias, Beata Csatho, Anton Schenk, Michael J. Croteau, and Bryant Loomis
The Cryosphere, 17, 4661–4673, https://doi.org/10.5194/tc-17-4661-2023, https://doi.org/10.5194/tc-17-4661-2023, 2023
Short summary
Short summary
We narrow the spread in model simulations of the Greenland Ice Sheet using velocity change, dynamic thickness change, and mass change observations. We find that the type of observation chosen can lead to significantly different calibrated probability distributions. Further work is required to understand how to best calibrate ensembles of ice sheet simulations because this will improve probability distributions of projected sea-level rise, which is crucial for coastal planning and adaptation.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020, https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Cited articles
Albidah, A. B., Brevis, W., Fedun, V., Ballai, I., Jess, D. B., Stangalini,
M., Higham, J., and Verth G.: Proper orthogonal and dynamic mode
decomposition of sunspot data, Philos. T. R. Soc. A., 379, 20200181,
https://doi.org/10.1098/rsta.2020.0181, 2020.
Andrews, L. C., Catania, G. A, Hoffman, M. J., Gulley, J. D., Lüthi, M.
P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of
evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514,
80–83, https://doi.org/10.1038/nature13796, 2014.
Ashmore, D. W.: Proper Othogonal Decomposition of SAR-derived ice velocity – Data and Code, Version 1.0.0, Zenodo [data set], https://doi.org/10.5281/zenodo.4699392, 2021.
Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J.: Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier, The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, 2019.
Bian, Y., Yue, J., Gao, W., Li, Z., Lu, D., Xiang, Y., and Chen, J.: Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in
Greenland, Remote Sens., 11, 862, https://doi.org/10.3390/rs11070862, 2019.
Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M.,
Mouginot, J., Moon, T., Larour, E. Y., and Humbert, A.: The mechanisms behind
Jakobshavn Isbræ's acceleration and mass loss: A 3-D thermomechanical
model study, Geophys. Res. Lett., 44, 6252–6260, https://doi.org/10.1002/2017GL073309, 2017.
Brough, S., Carr, J. R., Ross, N., and Lea, J. M.: Exceptional Retreat of
Kangerlussuaq Glacier, East Greenland, Between 2016 and 2018, Front. Earth
Sci., 7, 123, https://doi.org/10.3389/feart.2019.00123, 2019.
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., and Joughin, I.:
Seasonal and interannual variations in ice melange and its impact on
terminus stability, Jakobshavn Isbræ, Greenland, J. Glaciol., 61,
76–88, https://doi.org/10.3189/2015JoG13J235, 2015.
Catania, G. A., Stearns, L. A., Moon, T., Enderlin, E., and Jackson, R. H.:
Future evolution of Greenland's marine-terminating outlet glaciers, J.
Geophys. Res.-Earth, 125, e2018JF004873, https://doi.org/10.1029/2018JF004873, 2020.
Chandler, D., Wadham, J., Lis, G., Cowton T., Sole, A., Bartholomew, I.,
Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen, S., and Hubbard,
A.: Evolution of the subglacial drainage system beneath the Greenland Ice
Sheet revealed by tracers, Nat. Geosci., 6, 195–198, https://doi.org/10.1038/ngeo1737,
2013.
Choi, Y., Morlighem, M., Rignot, E., and Wood, M.: Ice dynamics will remain a
primary driver of Greenland ice sheet mass loss over the next century,
Commun. Earth. Environ., 2, 26, https://doi.org/10.1038/s43247-021-00092-z, 2021.
Colgan, W., Steffen, K., McLamb, W. S., Abdalati, W., Rajaram, H., Motyka,
R., Phillips, T., and Anderson, R.: An increase in crevasse extent, West
Greenland: Hydrologic implications, Geophys. Res. Lett., 38, L18502,
https://doi.org/10.1029/2011GL048491, 2011.
Cooley, S. W. and Christoffersen, P.: Observation bias correction reveals
more rapidly draining lakes on the Greenland Ice Sheet, J. Geophys.
Res.-Earth, 122, 1867–1881, https://doi.org/10.1002/2017JF004255, 2017.
Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S.,
Lenaerts, J. T. M., and Wever, N.: The effect of Foehn-induced surface melt
on firn evolution over the northeast Antarctic peninsula, Geophys. Res.
Lett., 46, 3822–3831, https://doi.org/10.1029/2018GL080845, 2019.
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., and Nienow,
P. W.: The influence of hydrology on the dynamics of the land-terminating
sectors of the Greenland Ice Sheet, Front. Earth Sci., 7, 10, https://doi.org/10.3389/feart.2019.00010, 2019.
Davison, B. J., Sole, A. J., Cowton, T. R., Lea, J. M., Slater, D. A.,
Fahrner, D., and Nienow, P. W.: Subglacial drainage evolution modulates
seasonal ice flow variability of three tidewater glaciers in southwest
Greenland, J. Geophys. Res.-Earth, 125, e2019JF005492,
https://doi.org/10.1029/2019JF005492, 2020.
D'Errico, J.: inpaint_nans, MATLAB Central File Exchange, available at:
https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans, last access: 15 September 2020.
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger,
M.: Rapid large-area mapping of ice flow using Landsat 8, Remote Sens.
Environ., 185, 84–94, https://doi.org/10.1016/j.rse.2015.11.023, 2016.
Fahrner, D., Lea, J. M., Brough, S., Mair, D. W. F., and Abermann, J.:
Linear response of the Greenland ice sheet's tidewater glacier terminus
positions to climate, J. Glaciol., 67, 193–203,
https://doi.org/10.1017/jog.2021.13, 2021.
Felikson, D., Bartholomaus, T., Catania, G. Korsgaard, N. J., Kjær, K.
H., Morlighem, M., Noël, B., van den Broeke, M., Stearns, L. A.,
Shroyer, E. L., Sutherland, D. A., and Nash, J. D.: Inland thinning on the
Greenland ice sheet controlled by outlet glacier geometry, Nat. Geosci.,
10, 366–369, https://doi.org/10.1038/ngeo2934, 2017.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Greene, C. A., Gardner, A. S., and Andrews, L. C.: Detecting seasonal ice dynamics in satellite images, The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, 2020.
Higham, J. E., Brevis, W., and Keylock, C. J.: A rapid non-iterative proper
orthogonal decomposition based outlier detection and correction for PIV
data, Meas. Sci. Technol, 27, 125303, https://doi.org/10.1088/0957-0233/27/12/125303,
2016.
Higham, J. E., Brevis, W., Keylock, C. J., and Safarzadeh, A.: Using modal
decompositions to explain the sudden expansion of the mixing layer in the
wake of a groyne in a shallow flow, Adv. Water Resour., 107, 451–459,
https://doi.org/10.1016/j.advwatres.2017.05.010, 2017.
Higham, J. E., Brevis, W., and Keylock, C. J.: Implications of the selection
of a particular modal decomposition technique for the analysis of shallow
flows, J. Hydraul. Res., 56, 796–805, https://doi.org/10.1080/00221686.2017.1419990,
2018.
Higham, J. E., Shahnam, M., and Vaidheeswaran, A.: Using a proper orthogonal
decomposition to elucidate features in granular flows, Granul. Matter,
22, 86, https://doi.org/10.1007/s10035-020-01037-7, 2020.
Hoffman, M., Andrews, L., Price, S., Catania, G. A., Neumann, T. A.,
Lüthi, M. P., Gulley, J., Ryser, C., Hawley, R. L., and Morris, B.:
Greenland subglacial drainage evolution regulated by weakly connected
regions of the bed, Nat. Commun., 7, 13903, https://doi.org/10.1038/ncomms13903, 2016.
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Howat, I. M., Box, J. E., Ahn, Y., Herrington, A., and McFadden, E. M.:
Seasonal variability in the dynamics of marine-terminating outlet glaciers
in Greenland, J. Glaciol., 56, 601–613, https://doi.org/10.3189/002214310793146232,
2010.
Iken, A., Röthlisberger, H., Flotron, A., and Haeberli, W.: The uplift of
Unteraargletscher at the beginning of the melt season – a consequence of
water storage at the bed?, J. Glaciol., 29, 28–47,
https://doi.org/10.3189/S0022143000005128, 1983.
Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review and
recent developments, Philos. T. R. Soc. A., 374, 20150202,
https://doi.org/10.1098/rsta.2015.0202, 2016.
Joughin, I., Smith, B. E., Howat, I. M., Scambos, T., and Moon, T.:
Greenland flow variability from ice-sheet-wide velocity mapping, J.
Glaciol., 56, 415–430, 2010.
Joughin, I., Shean, D. E., Smith, B. E., and Floricioiu, D.: A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity, The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, 2020a.
Joughin, I., Howat, I., Smith, B., and Scambos, T.: MEaSUREs Greenland
Ice Velocity: Selected Glacier Site Velocity Maps from InSAR, Version 3,
Subregion W69.10N, Boulder, Colorado, USA, NASA National Snow and Ice Data
Center Distributed Active Archive Center [data set], https://doi.org/10.5067/YXMJRME5OUNC, 2020b.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van
den Broeke, M. R., Steven Dinardo, S., and Willis, J.: Interruption of two
decades of Jakobshavn Isbrae acceleration and thinning as regional ocean
cools, Nat. Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3, 2019.
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Commun. Earth. Environ., 1, 1, https://doi.org/10.1038/s43247-020-0001-2, 2020.
Lampkin, D. J., Amador, N., Parizek, B. R., Farness, K., and Jezek, K.:
Drainage from water-filled crevasses along the margins of Jakobshavn
Isbræ: A potential catalyst for catchment expansion, J. Geophys.
Res.-Earth, 118, 795–813, https://doi.org/10.1002/jgrf.20039, 2013.
Lemos, A., Shepherd, A., McMillan, M., Hogg, A. E., Hatton, E., and Joughin, I.: Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery, The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, 2018.
Liang, Y.-L., Colgan, W., Lv, Q., Steffen, K., Abdalati, W., Stroeve, J.,
Gallaher, D., and Bayou, N.: A decadal investigation of supraglacial lakes in
West Greenland using a fully automatic detection and tracking algorithm,
Remote Sens. Environ., 123, 127–138, https://doi.org/10.1016/j.rse.2012.03.020, 2012.
Lumley, J. L.: The Structure of Inhomogeneous Turbulent Flows, in: Atmospheric Turbulence and Radio Wave Propagation, edited by: Yaglom, A. M. and Tartarsky, V. I., Nauka, Moscow, 166–177, 1967.
MacKie, E., Schroeder, D., Zuo, C., Yin, Z., and Caers, J.: Stochastic
modeling of subglacial topography exposes uncertainty in water routing at
Jakobshavn Glacier, J. Glaciol., 67, 75–83, https://doi.org/10.1017/jog.2020.84,
2021.
Mair, D., Nienow, P., Sharp, M., Wohlleben, T., and Willis, I.: Influence of
subglacial drainage system evolution on glacier surface motion: Haut Glacier
d'Arolla, Switzerland, J. Geophys. Res., 107, EPM 8-1–EPM 8-13, https://doi.org/10.1029/2001JB000514, 2002.
Mair, D., Willis, I., Fischer, U. H., Hubbard, B., Nienow, P., and Hubbard,
A.: Hydrological controls on patterns of surface, internal and basal motion
during three “spring events”: Haut Glacier d'Arolla, Switzerland, J.
Glaciol., 49, 555–567, https://doi.org/10.3189/172756503781830467, 2003.
Mernild, S. H., Beckerman, A. P., Knudsen, N. T., Hasholt, B., and Yde, J.
C.: Statistical EOF analysis of spatiotemporal glacier mass-balance
variability: a case study of Mittivakkat Gletscher, SE Greenland, Geogr. Tidsskr., 118, 1–16, https://doi.org/10.1080/00167223.2017.1386581, 2017.
Moon, T., Joughin, I., Smith, B., van den Broeke, M. R., van de Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 7209–7216, https://doi.org/10.1002/2014GL061836,
2014.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete bed topography and ocean
bathymetry mapping of Greenland from multibeam echo sounding combined with
mass conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Mouginot, J. and Rignot, E.: Glacier catchments/basins for the Greenland Ice
Sheet, Dryad [data set], https://doi.org/10.7280/D1WT11, 2019.
Mouginot, J., Rignot, R., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA,
116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Navarra, A. and Simoncini, V.: A Guide to Empirical Orthogonal Functions for
Climate Data Analysis, Springer Netherlands, https://doi.org/10.1007/978-90-481-3702-2,
2010.
Nield, G. A., Whitehouse, P. L., King, M. A., Clarke, P. J., and Bentley, M.
J.: Increased ice loading in the Antarctic Peninsula since the 1850s and its
effect on glacial isostatic adjustment, Geophys. Res. Lett., 39, L17504,
https://doi.org/10.1029/2012GL052559, 2012.
Nienow, P., Sharp, M., and Willis, I.: Seasonal changes in the morphology of
the subglacial drainage system, Haut Glacier d'Arolla, Switzerland, Earth
Surf. Process. Landforms, 23: 825-843, 1998.
Pitcher, H. L., Smith, L. C., Gleason, C. J., Miège, C., Ryan, J. C.,
Hagedorn, B., Van As, D., Chu, W., and Forster, R.: Direct Observation of
Winter Meltwater Drainage from the Greenland Ice Sheet, Geophys. Res. Lett.,
47, e2019GL086521, https://doi.org/10.1029/2019GL086521, 2020.
Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland, The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, 2021.
Röthlisberger, H.: Water Pressure in Intra- and Subglacial Channels, J. Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188, 1972.
Schmid, P. J.: Dynamic mode decomposition of numerical and experimental
data, J. Fluid. Mech., 656, 5–28, https://doi.org/10.1017/S0022112010001217, 2010.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Selmes, N., Murray, T., and James, T. D.: Fast draining lakes on the
Greenland Ice Sheet, Geophys. Res. Lett., 38, L15501,
https://doi.org/10.1029/2011GL047872, 2011.
Shreve, R.: Movement of Water in Glaciers, J. Glaciol., 11, 205–214,
https://doi.org/10.3189/S002214300002219X, 1972.
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., and Holte, J.: Estimating Greenland tidewater glacier retreat driven by submarine melting, The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, 2019.
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., King, M. A.,
Burke, M. J., and Joughin, I.: Seasonal speedup of a Greenland
marine-terminating outlet glacier forced by surface melt–induced changes in
subglacial hydrology, J. Geophys. Res., 116, F03014,
https://doi.org/10.1029/2010JF001948, 2011.
Stevens, L. A., Hewitt, I. J., Das, S. B., and Behn, M. D.: Relationship
between Greenland Ice Sheet surface speed and modeled effective pressure, J.
Geophys. Res.-Earth, 123, 2258–2278, https://doi.org/10.1029/2017JF004581, 2018.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson,
F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland, Nat.
Geosci., 3, 182–186, https://doi.org/10.1038/ngeo764, 2010.
Sundal, A. V., Shepherd, A., van den Broeke, M., Van Angelen, J., Gourmelen,
N., and Park, J.: Controls on short-term variations in Greenland glacier dynamics, J. Glaciol., 59, 883–892, https://doi.org/10.3189/2013JoG13J019, 2013.
Tropea, C., Yarin, A. L., and Foss, J. F. (Eds.): Springer Handbook of
Experimental Fluid Mechanics, Springer, Berlin, Heidlberg, https://doi.org/10.1007/978-3-540-30299-5, 2007.
Vijay, S., Khan, S. A., Kusk, A., Solgaard, A. M., Moon, T., and Bjørk,
A. A.: Resolving seasonal ice velocity of 45 Greenlandic glaciers with very
high temporal details, Geophys. Res. Lett., 46, 1485–1495,
https://doi.org/10.1029/2018GL081503, 2019.
Wang, H., Gao, Q., Feng, L., Wei, R., and Wang, J.: Proper orthogonal decomposition based outlier correction for PIV data, Exp. Fluids, 56, 43, https://doi.org/10.1007/s00348-015-1894-x, 2015.
Weiss, J.: A Tutorial on the Proper Orthogonal Decomposition, in: AIAA
2019-3333, AIAA Aviation 2019 Forum, Dallas, Texas, 17–21 June 2019, 21 pp., https://doi.org/10.2514/6.2019-3333, 2019.
Williamson, A. G., Arnold, N. S., Banwell, A. F., and Willis, I. C.: A fully
automated supraglacial lake area and volume tracking (“FAST”): development
and application using MODIS imagery of West Greenland, Remote Sens. Environ.,
196, 113–133, https://doi.org/10.1016/j.rse.2017.04.032, 2017.
Wright, P. J., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W.:
Measured basal water pressure variability of the western Greenland Ice
Sheet: Implications for hydraulic potential, J. Geophys. Res.-Earth, 121,
1134–1147, https://doi.org/10.1002/2016JF003819, 2016.
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
In this paper we explore the use of a transferrable and flexible statistical technique to try...