Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-219-2022
https://doi.org/10.5194/tc-16-219-2022
Research article
 | 
21 Jan 2022
Research article |  | 21 Jan 2022

Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbræ)

David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias

Data sets

Proper Othogonal Decomposition of SAR-derived ice velocity - Data and Code David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, Isabel J. Nias https://doi.org/10.5281/zenodo.4699392

Download
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.