Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-2025-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2025-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Department of Geosciences, UiT The Arctic
University of Norway, 9037 Tromsø, Norway
Alfred Hanssen
Department of Geosciences, UiT The Arctic
University of Norway, 9037 Tromsø, Norway
Andreas Köhler
Department of Geosciences, UiT The Arctic
University of Norway, 9037 Tromsø, Norway
NORSAR, Gunnar Randers vei 15, 2007 Kjeller, Norway
Related authors
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, and Tor Arne Johansen
The Cryosphere, 15, 2939–2955, https://doi.org/10.5194/tc-15-2939-2021, https://doi.org/10.5194/tc-15-2939-2021, 2021
Short summary
Short summary
Air-coupled flexural waves are produced by the interaction between pressure waves in air and bending waves in a floating ice sheet. The frequency of these waves is related to the physical properties of the ice sheet, specifically its thickness and rigidity. We demonstrate the usefulness of air-coupled flexural waves for estimating ice thickness and give a theoretical description of the governing physics that highlights their similarity to related phenomena in other fields.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
Knut Ola Dølven, Håvard Espenes, Alfred Hanssen, Muhammed Fatih Sert, Magnus Drivdal, Achim Randelhoff, and Bénédicte Ferré
EGUsphere, https://doi.org/10.5194/egusphere-2025-998, https://doi.org/10.5194/egusphere-2025-998, 2025
Short summary
Short summary
We have modelled how gas seeping from the seafloor spreads in the ocean and how much reaches the atmosphere. We estimate how much free gas dissolves in water, atmospheric release and 3-D concentration using data from a hydrodynamic model and gas loss modules. We applied the framework to a methane (CH4) seep site offshore Norway showing that atmospheric CH4 release is spread over a large area. However, with our assumptions, most of the CH4 (>90 %) is converted to CO2 by microbes.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, and Tor Arne Johansen
The Cryosphere, 15, 2939–2955, https://doi.org/10.5194/tc-15-2939-2021, https://doi.org/10.5194/tc-15-2939-2021, 2021
Short summary
Short summary
Air-coupled flexural waves are produced by the interaction between pressure waves in air and bending waves in a floating ice sheet. The frequency of these waves is related to the physical properties of the ice sheet, specifically its thickness and rigidity. We demonstrate the usefulness of air-coupled flexural waves for estimating ice thickness and give a theoretical description of the governing physics that highlights their similarity to related phenomena in other fields.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
Cited articles
Abolt, C. J., Young, M. H., Atchley, A. L., and Harp, D. R.: Microtopographic control on the ground thermal regime in ice wedge polygons, The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, 2018.
Albaric, J., Kühn, D., Ohrnberger, M., Langet, N., Harris, D., Polom,
U., Lecomte, I., and Hillers, G.: Seismic monitoring of permafrost in
Svalbard, Arctic Norway, Seismol. Soc. Am., 92, 2891–2904,
2021.
Allen, R.: Automatic phase pickers: Their present use and future prospects,
B. Seismol. Soc. Am., 72, S225–S242, 1982.
Badache, M., Eslami-Nejad, P., Ouzzane, M., Aidoun, Z., and Lamarche, L.: A
new modeling approach for improved ground temperature profile determination,
Renew. Energ., 85, 436–444, 2016.
Barosh, P. J.: Frostquakes in New England, Eng. Geol., 56, 389–394,
2000.
Battaglia, S. M., Changnon, D., Changnon, D., and Hall, D.: Frost quake
events and changing wintertime air mass frequencies in southeastern Canada,
Working Paper, Northern Illinois University, https://doi.org/10.13140/RG.2.2.22351.48803, 2016.
Bednorz, E.: Occurrence of winter air temperature extremes in Central
Spitsbergen, Theor. Appl. Climatol., 106, 547–556, 2011.
Behn, M. D., Goldsby, D. L., and Hirth, G.: The role of grain size evolution in the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law, The Cryosphere, 15, 4589–4605, https://doi.org/10.5194/tc-15-4589-2021, 2021.
Bingham, E. C.: Fluidity and plasticity, McGraw-Hill, Inc. New York, 440 pp., ISBN-10 1125462892, 1922.
Black, R. F.: Periglacial features indicative of permafrost: ice and soil
wedges, Quaternary Res., 6, 3–26, 1976.
Butkovich, T.: Thermal expansion of ice, J. Appl. Phys., 30,
350–353, 1959.
Cable, S., Elberling, B., and Kroon, A.: Holocene permafrost history and
cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard,
Boreas, 47, 423–442, 2018.
Carreau, P. J.: Rheological equations from molecular network theories,
T. Soc. Rheol., 16, 99–127, 1972.
Chen, J., Wu, Y., O'Connor, M., Cardenas, M. B., Schaefer, K., Michaelides,
R., and Kling, G.: Active layer freeze-thaw and water storage dynamics in
permafrost environments inferred from InSAR, Remote Sens. Environ.,
248, 112007, https://doi.org/10.1016/j.rse.2020.112007, 2020.
Chmiel, M., Roux, P., and Bardainne, T.: Extraction of phase and group
velocities from ambient surface noise in a patch-array configuration,
Geophysics, 81, KS231–KS240, 2016.
Christiansen, H. H., Matsuoka, N., and Watanabe, T.: Progress in
understanding the dynamics, internal structure and palaeoenvironmental
potential of ice wedges and sand wedges,
Permafrost Periglac., 27, 365–376, 2016.
Christiansen, H. H., Gilbert, G., Demidov, N., Guglielmin, M., Isaksen, K.,
Osuch, M., and Boike, J.: Permafrost temperatures and active layer thickness
in Svalbard during 2017/2018 (PermaSval), SESS Report 2019, The State of
Environmental Science in Svalbard, https://epic.awi.de/id/eprint/50889/ (21 September 2021), 2020.
Cros, E., Roux, P., Vandemeulebrouck, J., and Kedar, S.: Locating
hydrothermal acoustic sources at Old Faithful Geyser using matched field
processing, Geophys. J. Int., 187, 385–393, 2011.
Currier, J. and Schulson, E.: The tensile strength of ice as a function of
grain size, Acta Metall. Mater., 30, 1511–1514, 1982.
Darrow, M. M., Gyswyt, N. L., Simpson, J. M., Daanen, R. P., and Hubbard, T. D.: Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska, The Cryosphere, 10, 977–993, https://doi.org/10.5194/tc-10-977-2016, 2016.
DiMillio, A. F.: A quarter century of geotechnical research, Turner-Fairbank
Highway Research Center, Report Number: FHWA-RD-98-139,
https://rosap.ntl.bts.gov/view/dot/38360 (24 September 2021), 1999.
Dobler, A., Førland, E., and Isaksen, K.: Present and future heavy
rainfall statistics for Svalbard–Background-report for Climate in Svalbard
2100, Norwegian Center for Climate Services (NCCS) report, ISSN 2387-3027, 2019.
Dormand, J. R. and Prince, P. J.: A family of embedded Runge-Kutta formulae,
J. Comput. Appl. Math., 6, 19–26, 1980.
Draebing, D. and Krautblatter, M.: P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model, The Cryosphere, 6, 1163–1174, https://doi.org/10.5194/tc-6-1163-2012, 2012.
Dypvik, H., Nagy, J., Eikeland, T., Backer-Owe, K., and Johansen, H.:
Depositional conditions of the Bathonian to Hauterivian Janusfjellet
subgroup, Spitsbergen, Sediment. Geol., 72, 55–78, 1991.
French, H. M.: The periglacial environment, John Wiley & Sons, ISBN 978-1-119-13278-3, 2017.
Gibbons, S. J. and Ringdal, F.: The detection of low magnitude seismic
events using array-based waveform correlation, Geophys. J. Int., 165, 149–166, 2006.
Gibbons, S. J., Schweitzer, J., Ringdal, F., Kværna, T., Mykkeltveit,
S., and Paulsen, B.: Improvements to seismic monitoring of the European
Arctic using three-component array processing at SPITS, B.
Seismol. Soc. Am., 101, 2737–2754, 2011.
Glen, J. W.: The creep of polycrystalline ice, P. Roy.
Soc. Lond. A Mat., 228,
519–538, 1955.
Hales, T. and Roering, J.: Climatic controls on frost cracking and
implications for the evolution of bedrock landscapes, J. Geophys.
Res.-Earth, 112, F02033, https://doi.org/10.1029/2006JF000616, 2007.
Hales, T. and Roering, J.: A frost “buzzsaw” mechanism for erosion of the
eastern Southern Alps, New Zealand, Geomorphology, 107, 241–253, 2009.
Hallet, B., Walder, J., and Stubbs, C.: Weathering by segregation ice growth
in microcracks at sustained subzero temperatures: Verification from an
experimental study using acoustic emissions, Permafrost Periglac., 2, 283–300, 1991.
Hanssen, A.: Multidimensional multitaper spectral estimation, Signal Processing, 58, 327–332, https://doi.org/10.1016/S0165-1684(97)00076-5, 1997.
Hanssen, R. F.: Radar interferometry: data interpretation and error
analysis, Springer Science & Business Media, ISBN-13 978-0792369455, 2001.
Harley, J. B. and Moura, J. M.: Data-driven matched field processing for
Lamb wave structural health monitoring,
J. Acoust. Soc. Am., 135, 1231–1244, 2014.
Herschel, W.: Measurement of consistency of rubber-benzene solutions,
Kolloid Z., 39, 291–298, 1926.
Hu, X.-D., Wang, J.-T., and Yu, R.-Z.: Uniaxial compressive and splitting
tensile tests of artificially frozen soils in tunnel construction of Hong
Kong, Journal of Shanghai Jiaotong University (Science), 18, 688–692, 2013.
Isaksen, K., Mühll, D. V., Gubler, H., Kohl, T., and Sollid, J. L.:
Ground surface-temperature reconstruction based on data from a deep borehole
in permafrost at Janssonhaugen, Svalbard, Ann. Glaciol., 31, 287–294, 2000.
Isaksen, K., Holmlund, P., Sollid, J. L., and Harris, C.: Three deep
alpine-permafrost boreholes in Svalbard and Scandinavia, Permafrost Periglac., 12, 13–25, 2001.
Istomin, A. and Nazarov, T.: Numerical studies of reinforced concrete pile
foundations on permafrost soils at low climatic temperatures, Journal of Physics: Conference Series, 1425, Modelling and Methods of Structural Analysis, 13–15 November 2019, Moscow, Russian Federation, 012082, https://doi.org/10.1088/1742-6596/1425/1/012082, 2019.
Kell, G.: Precise representation of volume properties of water at one
atmosphere, J. Chem. Eng. data, 12, 66–69, 1967.
Köhler, A., Nuth, C., Schweitzer, J., Weidle, C., and Gibbons, S. J.:
Regional passive seismic monitoring reveals dynamic glacier activity on
Spitsbergen, Svalbard, Polar Res., 34, 26178, https://doi.org/10.3402/polar.v34.26178, 2015.
Lachenbruch, A. H.: Mechanics of thermal contraction cracks and ice-wedge
polygons in permafrost, Geological Society of America, The Waverly Press, Baltimore, Maryland, USA, ASIN B0010IEDFE1962, 1962.
Lacroix, A. V.: A short note on cryoseisms, Earthquake Notes, 51, 15–21,
1980.
Landau, L. and Lifshitz, E.: Theory of Elasticity, 2nd Edn., Pergamon
Press, Oxford, ISBN10 0080064655, 1970.
Leung, A. C., Gough, W. A., and Shi, Y.: Identifying frostquakes in Central
Canada and neighbouring regions in the United States with social media, in:
Citizen Empowered Mapping, Springer, https://doi.org/10.1007/978-3-319-51629-5_9, 2017.
Liu, L., Rouyet, L., Strozzi, T., Lauknes, T. R., and Christiansen, H. H.:
Seasonal Thaw Settlement and Frost Heave in Permafrost Regions in the
Arctic: A Synthesis of InSAR Observations Using Sentinel-1 SAR Images, GC31B-05, AGU Fall Meeting 2018, 10–14 December 2018, Washington DC, USA, Bibcode 2018AGUFMGC31B..05L, 2018.
Mackay, J. R.: The direction of ice-wedge cracking in permafrost: downward
or upward?, Can. J. Earth Sci., 21, 516–524, 1984.
Maloof, A. C., Kellogg, J. B., and Anders, A. M.: Neoproterozoic sand
wedges: crack formation in frozen soils under diurnal forcing during a
snowball Earth, Earth Planet. Sc. Lett., 204, 1–15, 2002.
Matsuoka, N.: Solifluction rates, processes and landforms: a global review,
Earth-Sci. Rev., 55, 107–134, 2001.
Matsuoka, N.: A multi-method monitoring of timing, magnitude and origin of
rockfall activity in the Japanese Alps, Geomorphology, 336, 65–76, 2019.
Matsuoka, N., Sawaguchi, S.-I., and Yoshikawa, K.: Present-day periglacial
environments in central Spitsbergen, Svalbard, Geographical Review of Japan,
77, 276–300, 2004.
Matsuoka, N., Christiansen, H. H., and Watanabe, T.: Ice-wedge polygon
dynamics in Svalbard: Lessons from a decade of automated multi-sensor
monitoring, Permafrost Periglac., 29, 210–227, 2018.
Mellon, M. T.: Small-scale polygonal features on Mars: Seasonal thermal
contraction cracks in permafrost, J. Geophys. Res.-Planets,
102, 25617–25628, 1997.
Michalopoulou, Z. H.: Robust multi-tonal matched-field inversion: A coherent
approach, J. Acoust. Soc. Am., 104, 163–170,
1998.
Murton, J. B., Peterson, R., and Ozouf, J.-C.: Bedrock fracture by ice
segregation in cold regions, Science, 314, 1127–1129, 2006.
Nikonov, A.: Frost quakes as a particular class of seismic events:
Observations within the East-European platform, Izvestiya,
Physics of the Solid Earth, 46, 257–273, 2010.
Norwegian Centre for Climate Services: Seklima: Observations and weather statistics, Norwegian Centre for Climate Services [data set], https://seklima.met.no/, last access: 14 January 2022.
Okkonen, J., Neupauer, R., Kozlovskaya, E., Afonin, N., Moisio, K., Taewook,
K., and Muurinen, E.: Frost Quakes: Crack Formation by Thermal Stress,
J. Geophys. Res.-Earth, 125, e2020JF005616, https://doi.org/10.1029/2020JF005616, 2020.
Peppin, S. S. and Style, R. W.: The physics of frost heave and ice-lens
growth, Vadose Zone J., 12, vzj2012.0049,
https://doi.org/10.2136/vzj2012.0049, 2013.
Petrovic, J. J.: Review Mechanical properties of ice and snow, J.
Mater. Sci., 38, 1–6, 2003.
Plug, L. J. and Werner, B. T.: Nonlinear dynamics of ice-wedge networks and
resulting sensitivity to severe cooling events, Nature, 417, 929–933, 2002.
Podolskiy, E. A., Fujita, K., Sunako, S., and Sato, Y.: Viscoelastic
Modeling of Nocturnal Thermal Fracturing in a Himalayan Debris-Covered
Glacier, J. Geophys. Res.-Earth, 124, 1485–1515,
2019.
Price, L. W.: The developmental cycle of solifluction lobes,
Ann. Assoc. Am. Geogr., 64, 430–438, 1974.
Przybylak, R., Araźny, A., Nordli, Ø., Finkelnburg, R., Kejna, M.,
Budzik, T., Migała, K., Sikora, S., Puczko, D., Rymer, K., and Rachlewicz,
G.: Spatial distribution of air temperature on Svalbard during 1 year with
campaign measurements, Int. J. Climatol., 34, 3702–3719,
2014.
Rabiner, L. R., Schafer, R. W., and Rader, C. M.: The chirp z-transform
algorithm and its application, Bell Syst. Tech. J., 48, 1249–1292,
1969.
Rankinen, K., Karvonen, T., and Butterfield, D.: A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing, Hydrol. Earth Syst. Sci., 8, 706–716, https://doi.org/10.5194/hess-8-706-2004, 2004.
Rempel, A. W.: Frost heave, J. Glaciol., 56, 1122–1128, 2010.
Romeyn, R., Hanssen, A., Ruud, B. O., Stemland, H. M., and Johansen, T. A.: Passive seismic recording of cryoseisms in Adventdalen, Svalbard, The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, 2021.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N.,
Rodriguez, E., and Goldstein, R. M.: Synthetic aperture radar
interferometry, P. IEEE, 88, 333–382, 2000.
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen,
Y.: Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard,
investigated by InSAR, Remote Sens. Environ., 231, 111236, https://doi.org/10.1016/j.rse.2019.111236, 2019.
Rouyet, L., Liu, L., Strand, S. M., Christiansen, H. H., Lauknes, T. R., and
Larsen, Y.: Seasonal InSAR Displacements Documenting the Active Layer Freeze
and Thaw Progression in Central-Western Spitsbergen, Svalbard, Remote
Sens., 13, 2977, https://doi.org/10.3390/rs13152977, 2021.
Saramito, P.: A new constitutive equation for elastoviscoplastic fluid
flows, J. Non-Newton. Fluid, 145, 1–14, 2007.
Scherler, D.: Climatic limits to headwall retreat in the Khumbu Himalaya,
eastern Nepal, Geology, 42, 1019–1022, 2014.
Schulson, E. M. and Duval, P.: Creep and fracture of ice, Cambridge
university press, https://doi.org/10.1017/CBO9780511581397, 2009.
Schweitzer, J., Köhler, A., and Christensen, J. M.: Development of the
NORSAR Network over the Last 50 Yr, Seismol. Soc. Am., 92,
1501–1511, 2021.
Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., and Mordret, A.: On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring, The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, 2020.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and
implications for seasonal ice forecasting, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 373,
20140159, https://doi.org/10.1098/rsta.2014.0159 2015.
Sørbel, L. and Tolgensbakk, J.: Ice-wedge polygons and solifluction in
the Adventdalen area, Spitsbergen, Svalbard,
Norsk Geogr. Tidsskr., 56, 62–66, 2002.
Timoshenko, S. and Goodier, J.: Theory of Elasticity, McGraw-Hill book
Company, 2nd Edn., New York, ISBN10 0070647194, 1951.
Timur, A.: Velocity of compressional waves in porous media at permafrost
temperatures, Geophysics, 33, 584–595, 1968.
Tolgensbakk, J., Sørbel, L., and Høgvard, K.: Adventdalen,
Geomorphological and Quaternary Geological map, Svalbard 1:100,000,
Spitsbergen sheet C9Q, Norwegian Polar Institute, https://data.npolar.no/publication/e4188b9f-e773-4435-ab71-259ddaf594df (27 January 2022), 2000.
Trnkoczy, A.: Understanding and parameter setting of STA/LTA trigger
algorithm, in: New Manual of Seismological Observatory Practice (NMSOP),
Deutsches GeoForschungsZentrum GFZ, ISBN 3980878007, 2009.
University of Bergen: UIB-NORSAR EIDA node, NORSAR, European Integrated Data Archive (EIDA) [data set], https://eida.geo.uib.no/, last access:
7 September 2021.
Wahr, J., Liu, L., and Zhang, T.: InSAR measurements of ground surface
deformation due to thaw settlement and frost heave over permafrost on the
North Slope of Alaska, AGU Fall Meeting Abstracts, 15–19 December 2008, San Francisco, USA, Bibcode 2008AGUFM.C13B..02W, C13B-02, 2008.
Walder, J. and Hallet, B.: A theoretical model of the fracture of rock
during freezing, Geol. Soc. Am. Bull., 96, 336–346, 1985.
Walter, F., Roux, P., Roeoesli, C., Lecointre, A., Kilb, D., and Roux,
P.-F.: Using glacier seismicity for phase velocity measurements and Green's
function retrieval, Geophys. J. Int., 201, 1722–1737, 2015.
Weber, S., Beutel, J., Faillettaz, J., Hasler, A., Krautblatter, M., and Vieli, A.: Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH), The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, 2017.
Weeks, W. F. and Assur, A.: The Mechanical Properties of Sea Ice, Cold
Regions Research & Engineering Laboratory, Hanover, New Hampshire, https://hdl.handle.net/2027/uc1.31822020697546 (15 September 2021), 1967.
Weertman, J.: Creep deformation of ice,
Annu.
Rev. Earth Planet.
Sci., 11, 215–240, 1983.
Westermann, S., Lüers, J., Langer, M., Piel, K., and Boike, J.: The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway, The Cryosphere, 3, 245–263, https://doi.org/10.5194/tc-3-245-2009, 2009.
Wu, Y., Nakagawa, S., Kneafsey, T. J., Dafflon, B., and Hubbard, S.:
Electrical and seismic response of saline permafrost soil during freeze-thaw
transition, J. Appl. Geophys., 146, 16–26, 2017.
Zhankui, Y., Yuanling, Z., and Ping, H.: Experimental study of Poisson's
ratio for frozen soil, Experimental study of Poisson's ratio for frozen soil, in: Proceedings of the 7th International Conference on Permafrost, 23–27 June, Yellowknife, Canada, 1185–1186, 1998.
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
We have investigated a long-term record of ground vibrations, recorded by a seismic array...