Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-197-2022
https://doi.org/10.5194/tc-16-197-2022
Research article
 | 
21 Jan 2022
Research article |  | 21 Jan 2022

Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau

Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu

Related authors

Recent large inland lake outbursts on the Tibetan Plateau: Processes, causes and mechanisms
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-127,https://doi.org/10.5194/nhess-2024-127, 2024
Revised manuscript under review for NHESS
Short summary
100 years of lake evolution over the Qinghai–Tibet Plateau
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021,https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary

Related subject area

Discipline: Glaciers | Subject: Glaciers
Linking glacier retreat with climate change on the Tibetan Plateau through satellite remote sensing
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
The Cryosphere, 18, 5595–5612, https://doi.org/10.5194/tc-18-5595-2024,https://doi.org/10.5194/tc-18-5595-2024, 2024
Short summary
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024,https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Physics-aware Machine Learning for Glacier Ice Thickness Estimation: A Case Study for Svalbard
Viola Steidl, Jonathan L. Bamber, and Xiao Xiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1732,https://doi.org/10.5194/egusphere-2024-1732, 2024
Short summary
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
EGUsphere, https://doi.org/10.5194/egusphere-2024-297,https://doi.org/10.5194/egusphere-2024-297, 2024
Short summary
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023,https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary

Cited articles

Allen, S. K., Zhang, G., Wang, W., Yao, T., and Bolch, T.: Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach, Sci. Bull., 64, 435–445, https://doi.org/10.1016/j.scib.2019.03.011, 2019. 
Altunel, A. O.: Evaluation of TanDEM-X 90 m Digital Elevation Model, Int. J. Remote Sens., 40, 2841–2854, https://doi.org/10.1080/01431161.2019.1585593, 2019. 
Azam, M. F., Wagnon, P., Ramanathan, A., Vincent, C., Sharma, P., Arnaud, Y., Linda, A., Pottakkal, J. G., Chevallier, P., Singh, V. B., and Berthier, E: From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India, J. Glaciol., 58, 315–324, https://doi.org/10.3189/2012JoG11J123, 2012. 
Bachmann, M., Kraus, T., Bojarski, A., Schandri, M., Boer, J., Busche, T., Bueso Bello, J. L., Grigorov, C., Steinbrecher, U., Buckreuss, S., Krieger, G., and Zink, M.: The TanDEM-X Mission Phases – Ten Years of Bistatic Acquisition and Formation Planning, IEEE J.-Stars, 14, 3504–3518, https://doi.org/10.1109/JSTARS.2021.3065446, 2021. 
Bhambri, R., Bolch, T., and Chaujar, R. K.: Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data, Int. J. Remote Sens., 32, 8095–8119, https://doi.org/10.1080/01431161.2010.532821, 2011. 
Download
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.