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Abstract. Accurate estimates of regional ice thickness,
which are generally produced by ice-thickness inversion
models, are crucial for assessments of available freshwater
resources and sea level rise. A digital elevation model (DEM)
derived from surface topography of glaciers is a primary
data source for such models. However, the scarce in situ
measurements of glacier surface elevation limit the evalua-
tion of DEM uncertainty. Hence the influence of DEM un-
certainty on ice-thickness modeling remains unclear over
the glacierized area of the Tibetan Plateau (TP). Here, we
examine the performance of six widely used and mainly
global-scale DEMs: AW3D30 (ALOS – Advanced Land Ob-
serving Satellite – World 3D – 30 m; 30 m), SRTM-GL1
(Shuttle Radar Topography Mission Global 1 arc second;
30 m), NASADEM (NASA Digital Elevation Model; 30 m),
TanDEM-X (TerraSAR-X add-on for Digital Elevation Mea-
surement, synthetic-aperture radar; 90 m), SRTM v4.1 (Shut-
tle Radar Topography Mission; 90 m), and MERIT (Multi-
Error-Removed Improved-Terrain; 90 m) over the glacier-
ized TP by comparison with ICESat-2 (Ice, Cloud and
land Elevation Satellite) laser altimetry data while consid-
ering the effects of glacier dynamics, terrain factors, and
DEM misregistration. The results reveal NASADEM to
be the best performer in vertical accuracy, with a small
mean error (ME) of 0.9 m and a root mean squared er-
ror (RMSE) of 12.6 m, followed by AW3D30 (2.6 m ME and
11.3 m RMSE). TanDEM-X also performs well (0.1 m ME
and 15.1 m RMSE) but suffers from serious errors and
outliers on steep slopes. SRTM-based DEMs (SRTM-GL1,
SRTM v4.1, and MERIT) (13.5–17.0 m RMSE) had an in-

ferior performance to NASADEM. Errors in the six DEMs
increase from the south-facing to the north-facing aspect
and become larger with increasing slope. Misregistration of
the six DEMs relative to the ICESat-2 footprint in most
glacier areas is small (less than one grid spacing). In a next
step, the influence of six DEMs on four ice-thickness inver-
sion models – GlabTop2 (Glacier bed Topography), Open
Global Glacier Model (OGGM), Huss–Farinotti (HF), and
Ice Thickness Inversion Based on Velocity (ITIBOV) – is in-
tercompared. The results show that GlabTop2 is sensitive to
the accuracy of both elevation and slope, while OGGM and
HF are less sensitive to DEM quality and resolution, and ITI-
BOV is the most sensitive to slope accuracy. NASADEM is
the best choice for ice-thickness estimates over the whole TP.

1 Introduction

The Tibetan Plateau (TP), which includes the Pamir, Hindu
Kush, Karakoram, Himalaya, and Tibet regions, covers an
area of ∼ 3 000 000 km2 and has a mean elevation of more
than 4000 m a.s.l. (Fig. 1). It accounts for more than 82 % of
the earth’s land surface area above 4000 m a.s.l. (Fielding et
al., 1994) and is often referred to as the Third Pole of the
earth or the Asian Water Tower (Yao et al., 2012) due to its
high elevation and abundant water resources in the form of
glaciers, snow, permafrost, lakes, and rivers. The TP has a
glacierized area of∼ 8.3×104 km2 (RGI Consortium, 2017)
with an ice volume of∼ 6.2×103 km3 (Farinotti et al., 2019),
mainly distributed in the Karakoram and Himalaya regions.
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Figure 1. Location of the TP and its ICESat-2 (Ice, Cloud and land Elevation Satellite) reference ground tracks (RGTs). (a) ICESat-2 tracks
over the TP and glaciers. (b) Location of ground-penetrating radar (GPR) profiles (Pf1–Pf5) over the Chhota Shigri Glacier which is used as
an example (for location, see a). (c) Relative location of six beams when the Advanced Topographic Laser Altimeter System (ATLAS) has
a backward orientation. The distance between RGTs is 28.8 km. (d) Percentage of ICESat-2 data in different months from October 2018 to
November 2020. The boundary of the TP is derived from SRTM above 2500 m a.s.l. (Zhang et al., 2013).

Ice thickness is a crucial parameter for assessing the con-
tribution of glaciers to global sea level rise (Kraaijenbrink
et al., 2017), quantifying regional water availability (Huss
and Hock, 2018; Immerzeel et al., 2020), and evaluating
cryosphere-related hazards (Linsbauer et al., 2016; Zheng et
al., 2021). In the TP, owing to the lack of in situ ice-thickness
measurements (Welty et al., 2020), regional glacier thick-
ness is mainly estimated by ice-thickness inversion models
(ITIMs) using open-access digital elevation models (DEMs)
(Farinotti et al., 2009, 2019; Frey et al., 2014). The DEM
is a fundamental part of most regional ITIMs (Farinotti et
al., 2017) and is often used to determine center flow lines
(Maussion et al., 2019), shear stress (Frey et al., 2014; Wu
et al., 2020), and apparent mass balance (Farinotti et al.,
2009) and for ice-thickness interpolation (Huss and Farinotti,
2012). In addition to its use in ITIMs, the DEM has been
an essential input for a wide range of TP glaciology stud-
ies, such as glacier inventory (Bhambri et al., 2011; Frey et
al., 2012; Ke et al., 2016; Mölg et al., 2018), glacier mass
change (Brun et al., 2017; Shean et al., 2020; Zhou et al.,
2018), glacier-related disasters (Allen et al., 2019; Kääb et
al., 2018; Zhang et al., 2019), and projections of glacier or
glacial-lake evolution (Kaser et al., 2010; Kraaijenbrink et
al., 2017; Zheng et al., 2021). The uncertainty in the DEMs
can lead to different ITIM outcomes (Frey and Paul, 2012;
Fujita et al., 2017; Furian et al., 2021; Kääb, 2005), espe-
cially for those ITIMs in which the DEM is a crucial in-
put. For example, this includes the sensitivity of the Glacier
bed Topography (GlabTop) model to slope increases for shal-
lower slopes (Paul and Linsbauer, 2012), and an overestima-

tion of slope by ∼ 10 % would result in an underestimation
of ice thickness of ∼ 32 % (Linsbauer et al., 2012). Local-
ized elevation errors and data gaps could affect the estimated
ice thickness by 5 %–25 % using Huss–Farinotti model (Huss
and Farinotti, 2012). Therefore, it is imperative to choose a
suitable DEM source for regional glacier thickness model-
ing (Koldtoft et al., 2021). Farinotti et al. (2017, 2021) inter-
compare the performance of several ITIMs and suggest that
consideration of the uncertainty in the input data could im-
prove the model output. However, to our knowledge, the un-
certainty in different open-access DEMs and their influence
on various ITIM outputs over the TP have not been evaluated.

Currently, open-access DEMs covering the whole TP are
mainly created by stereo mapping sensors such as ALOS
AW3D30 (ALOS – Advanced Land Observing Satellite –
World 3D – 30 m; Takaku et al., 2020), C- or X-band interfer-
ometry synthetic-aperture radar (InSAR) such as TanDEM-
X (TerraSAR-X add-on for Digital Elevation Measurement),
and SRTM-C-based (Shuttle Radar Topography Mission C-
band) products such as NASADEM (NASA Digital Eleva-
tion Model; Crippen et al., 2016). Shadows and the lay-
over effect of InSAR technology (González and Fernández,
2011), along with the deficient orientation of photogrammet-
rically stereo images (Mukherjee et al., 2013) or low stereo
correlation (Hugonnet et al., 2021) propagated during DEM
production, may introduce errors and voids. Filling these
voids with other data could result in increased uncertainty
(Liu et al., 2019). Additionally, the rugged terrain of glaciers
and the low contrast of snow cover can often lead to geomet-
ric distortion and missing data (Reuter et al., 2007; Takaku
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et al., 2020). Estimates of the accuracy of DEMs in differ-
ent terrains and landforms and for different vegetation cov-
erage and land use have been conducted outside the TP us-
ing global navigation satellite system (GNSS) measurements
or high-resolution DEMs (González-Moradas and Viveen,
2020; Grohmann, 2018; Hawker et al., 2019; Uuemaa et al.,
2020). The performance of specific DEMs varied in these
studies, indicating that the local terrain and land cover influ-
enced the DEM accuracy. In the TP, glaciers are distributed
across different climatic zones and have a wide range of ele-
vations with rugged terrain (Fielding et al., 1994; Thompson
et al., 2018). GNSS measurements are not accessible for most
glaciers, and publicly available high-resolution DEMs are of
lower quality due to their long temporal coverage (Shean,
2017). The assessment of DEM accuracy in specific regions
with limited GNSS measurements or high-resolution DEMs
is insufficient to determine the performance of global DEMs
across the whole glacierized TP.

Liu et al. (2019) evaluated the performance of seven open-
access DEMs over the TP with sparse Ice, Cloud and land El-
evation Satellite (ICESat) altimetry data and suggested that
AW3D30 has a high degree of accuracy. However, ICESat
data with a footprint of 70 m (larger than the resolution of the
estimated DEMs) could result in intra-pixel errors in steep
slopes (Uuemaa et al., 2020). Besides, glacial regions were
not considered in Liu et al. (2019), due to the variations of
glaciers over time. Misregistration among DEMs, which may
lead to evaluation bias (Han et al., 2021; Hugonnet et al.,
2021; Van Niel et al., 2008), was also neglected. Bearing
these issues in mind and considering the limitations of op-
tics sensors in rugged terrain and the glacier accumulation
area (Chen et al., 2021a), it is clear that a further assess-
ment of the performance of AW3D30 over glacier areas is re-
quired. Recently, TanDEM-X (released in 2017) and NASA-
DEM (released in 2020) have been reported to have large
improvements in accuracy relative to previous DEM prod-
ucts for various land-cover types (Wessel et al., 2018), flood-
plain sites (Hawker et al., 2019), slightly undulating terrain
(Altunel, 2019), and mountain environments (Gdulová et al.,
2020). Nonetheless, their performance over the rugged and
glacierized TP remains unclear.

The purpose of this study is to evaluate the optimal DEM
to use for regional ice-thickness estimation over the TP. We
first evaluated the performance of six widely used DEMs
– AW3D30, SRTM-GL1 (Shuttle Radar Topography Mis-
sion Global 1 arc second), NASADEM, TanDEM-X, SRTM
v4.1, and MERIT (Multi-Error-Removed Improved-Terrain),
which are derived from different sensors and have different
resolutions – against ICESat-2 data which have been proven
to have high vertical accuracy and resolution (Brunt et al.,
2019, 2021; Li et al., 2021) but with sparse tracks (Fig. 1).
The elevation differences between these DEMs and ICESat-
2 are systematically analyzed concerning aspect, slope, el-
evation, and glacier zones. The influence on the accuracy
assessment from the glacier elevation changes, terrain, and

misregistration among DEMs is then quantified. Finally, we
compare the performance of ice thickness modeled by using
the six DEMs against in situ measurements of ice thickness
by ground-penetrating radar (GPR).

2 Data and methods

2.1 ICESat-2 elevation data

ICESat-2, a follow-on mission to ICESat, was launched on
15 September 2018, with the goal of acquiring the earth’s
geolocated surface elevation referenced to the WGS84 el-
lipsoid at the photon level. ICESat-2’s ATLAS (Advanced
Topographic Laser Altimeter System) emits a pulse every
0.7 m along the track covering a horizontal circular area with
0.5 m in vertical extent and ∼ 17 m in diameter. This de-
sign diameter value varied due to the photo-counting lidar
technology and potentially the atmospheric conditions (Ma-
gruder et al., 2020). ICESat-2’s ATL03 and ATL06 products
can both be used as an elevation reference. The ATL03 prod-
uct has a spacing of ∼ 0.7 m and can provide more terrain
details than the ATL06 product. In this study, based on the
resolution of global DEM and computational cost, we select
the ICESat-2 Level-3A land-ice ATL06 product as an ele-
vation reference. ATL06 heights are median-based heights
derived from a linear-fit model over each segment corrected
for first-photon bias and transmit-pulse shape. The segment
has a length of 40 m centered on reference points at 20 m in-
tervals along the track. The ATL06 product has better than
5 cm height accuracy and better than 20 cm surface measure-
ment precision in the Antarctic (Brunt et al., 2019, 2021; Li
et al., 2021) and Qilian Shan (Zhang et al., 2020). The prod-
uct also contains land background points. The RGI 6.0 (Ran-
dolph Glacier Inventory) glacier inventory (RGI Consortium,
2017) was used to extract points falling on glaciers (Fig. 2).

ICESat-2 ATL06 data covering the TP from October 2018
to November 2020 were downloaded from https://earthdata.
nasa.gov/ (last access: 5 March 2021) (Fig. 1). There
are 2436 files containing about 100 GB of data in to-
tal. The fields location (latitude, longitude), surface ele-
vation (h_li), elevation uncertainty (h_li_sigma), and qual-
ity (atl06_quality_summary) were used. By combining the
quality field (atl06_quality_summary= 0) (Smith et al.,
2019) with the glacier inventory, a total of 3.5 million points
out of 0.16 billion records over the TP were selected (Fig. 1).
The slope, aspect, and elevation value of the cell center of the
DEMs were extracted for the ICESat-2 footprints.

2.2 Global DEMs

Six global-scale DEMs were selected for the evaluation of
ITIM sensitivity, based on popularity, data source, resolution,
and sensor type (Table 1).
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Figure 2. Flow chart showing the targets and methods used in this study including an accuracy evaluation of DEMs and their effects on
ice-thickness inversion models. The abbreviations wi1, wi2, wi3, and wi4 denote the weight of each modeled ice thickness; i from 1 to
6 denotes six different DEMs; and the number 1–4 denotes the four ice-thickness inversion models. 4STD: 4 standard deviations. IT: ice
thickness.

1. ALOS World 3D – 30 m (AW3D30) is acquired by
the optics stereo sensor loaded on the Advanced
Land Observing Satellite (ALOS) which operated
from 2006 to 2011 with a horizontal resolution of
30 m. Approximately 10 % of global land area, mainly
in tropical rainforest areas and the polar areas, has
voids mostly due to cloud or snow/ice cover con-
statation in source imageries. Data gaps are filled
with SRTM, ASTER GDEM v3 (Advanced Space-
borne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model), ArcticDEM v3, and
TanDEM-X 90 (Takaku et al., 2020). After filling gaps,
the accuracies in void-filled and void-free areas are
nearly consistent (Takaku et al., 2020). Data were
available at https://www.eorc.jaxa.jp/ALOS/en/dataset/
aw3d30/aw3d30_e.htm (last access: 20 January 2022)
after user registration.

2. TanDEM-X 90 m DEM (hereafter TanDEM-X) is a
product derived from the first bistatic X band SAR mis-
sion of the world which took place from 2014 to 2016
(Bachmann et al., 2021). It is a pixel-reduced product
of the global TanDEM-X DEM with a grid spacing of
0.4 arcsec (12 m). The official reported absolute vertical
and horizontal accuracy is better than 10 m at the 90 %
confidence level. It is noted that the current release is a
non-edited version: areas with outliers, noise, and voids
remain. The original data were collected during differ-
ent seasons and years, inducing errors due to (seasonal
and long-term) accumulation/ablation on glaciers. Data

were acquired from https://download.geoservice.dlr.de/
TDM90/ (last access: 19 October 2021).

3. NASADEM is a new product released in 2020, which is
derived by reprocessing the original SRTM signal data
using updated interferometric unwrapping algorithms
and auxiliary data, such as ICESat, to reduce voids and
improve vertical accuracy (Crippen et al., 2016). Rem-
nant voids are filled mainly by Global Digital Eleva-
tion Model (GDEM) v3 data. These data were down-
loaded from https://search.earthdata.nasa.gov/ (last ac-
cess: 19 October 2021).

4. SRTM-GL1 (30 m) is an extensively used DEM in
ITIMs. Voids were primarily filled by ASTER GDEM2.

5. SRTM v4.1, with a spatial resolution of 90 m, is pro-
duced by the method proposed by Reuter et al. (2007),
including merging tiles, filling small holes iteratively,
and interpolating across the holes using a range of meth-
ods, according to the size of the hole and the land
type surrounding it (https://cgiarcsi.community/data/
srtm-90m-digital-elevation-database-v4-1/, last access:
19 October 2021). SRTM v4.1 was also used to com-
pare against the performance of SRTM-GL1 to esti-
mate the influence of resolution. The first open-access
ice-thickness database of global glaciers also adopted
SRTM v4.1 as its DEM source (Farinotti et al., 2019).

6. MERIT is also widely used with a spatial resolution of
90 m. It was developed by removing absolute bias, stripe
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noise, speckle noise, and tree height bias from the exist-
ing spaceborne DEMs (SRTM3 v2.1 and AW3D30 v1)
using multiple satellite datasets and filtering techniques
(Yamazaki et al., 2017). Its accuracy was significantly
improved, especially in flat regions (Yamazaki et al.,
2017). The overall accuracy is similar to TanDEM-X in
floodplain sites (Hawker et al., 2019) but lower in short
vegetation. The dataset was downloaded from http:
//hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ (last
access: 19 October 2021). SRTM v4.1 and MERIT
were selected to compare with TanDEM-X and simul-
taneously estimate the influence of DEM resolution on
ITIMs.

Elevations of ICESat-2 data, NASADEM_SHHPv001, and
TanDEM-X are based on a WGS84 ellipsoid reference and
elevations of the other four DEMs are based on an EGM96
geoid (Table 1). The function of geoidheight provided by
MATLAB was used to calculate geoid height to unify their
references.

2.3 Ice-thickness inversion methods

Tiles of six DEMs (AW3D30, TanDEM-X, NASADEM,
SRTM-GL1, SRTM v4.1, and MERIT) were used to form
a mosaic of terrain data covering the whole TP. Four ice-
thickness inversion models (GlabTop2, Glacier bed Topog-
raphy; HF, Huss–Farinotti; OGGM, Open Global Glacier
Model; and ITIBOV, Ice Thickness Inversion Based on Ve-
locity) were used to estimate the glacier thickness. The
Chhota Shigri Glacier located in the western Himalaya with
available GPR data (Fig. 1) was selected as an example to
evaluate the influence of DEM uncertainty on the ITIMs. The
GPR data were measured based on a pulse radar system in
October 2009 (Azam et al., 2012) and is available at Farinotti
et al. (2021). Full details of the ITIMs are given below.

GlabTop (Glacier bed topography) is based on the theory
that glacier thickness is mainly determined by the slope of the
terrain (Linsbauer et al., 2012; Paul and Linsbauer, 2012). It
is assumed that the glacier is an ideal plastic fluid, with basal
slip being ignored. Based on the empirical relationship be-
tween mean shear stress along the center lines and the range
of glacier elevation (Haeberli and Hoelzle, 1995) (Eq. 1), the
actual basal shear stress τ can be determined.

τ = 0.005+ 1.5981H − 0.4351H 2

τ = 150kPa, if 1H > 1600, (1)

where1H is the elevation range of the glacier. The ice thick-
ness h can then be determined from Eq. (2)

h=
τ

fρg sinα
, (2)

where f is the shape factor, ρ is glacier density (850±
60 kg m−3) (Huss, 2013), g is the acceleration due to grav-
ity (9.8 m s−2), and α is the slope. GlabTop2 is an automated Ta
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method for calculating ice thickness similar to GlabTop but
avoids digitizing the branch lines. For details refer to Frey et
al. (2014).

The HF (Huss–Farinotti) model is based on the mass bal-
ance principle which relates the surface mass balance of the
glacier (b) to the ice flux and variation in the glacier thick-
ness. Given the ice flux, ice thickness can be calculated ac-
cording to Glen’s ice flow law (Farinotti et al., 2009; Huss
and Farinotti, 2012).

h= n+2

√
q(1− fsl)

2A
n+ 2

(fρg sinα)n
, (3)

where h is the mean elevation of band thickness, q is the ice
flux, fsl= 0.8 is the basal-slip correction factor, n= 3 is the
exponent of flow law, ρ is glacier density (850±60 kg m−3),
g is the acceleration due to gravity (9.8 m s−2), f = 0.8 is
the valley shape factor (Cuffey and Paterson, 2010), and A is
the Glen flow rate factor (3.24× 1024 Pa−3 s−1) (Cuffey and
Paterson, 2010; Gantayat et al., 2014).

This method defines a new variable, b̃ = ḃ− ρg ∂h
∂t

, where
b̃ is the apparent mass balance, ḃ is the glacier surface mass
balance, and ∂h

∂t
is the glacier surface elevation change. b̃ is

linearly related to the elevation. In the absence of mass bal-
ance data and thickness change data on the surface of a
glacier, the ice flux q can be obtained by estimating b̃, which
is determined from Huss and Farinotti (2012). Ice thickness
in each elevation band can then be determined by substitution
into Eq. (3). Finally, h is extrapolated, in combination with
the slope, to obtain the distributed ice thickness, according to
the parameters in Huss and Farinotti (2012).

The Open Global Glacier Model (OGGM) is based on the
same concept as HF but has two main differences (Maus-
sion et al., 2019). Firstly, the method described in Kienholz et
al. (2014) is used to automatically obtain the middle stream-
lines and watershed division. Secondly, the apparent mass
balance data are reconstructed from the local climatic dataset
from variables such as precipitation and temperature.

The Ice Thickness Inversion Based on Velocity (ITIBOV)
model is inverted from the shallow ice approximation; it ob-
tains the ice thickness by combining the surface velocity
field with the Glen ice flow law (Gantayat et al., 2014; Glen,
1955):

h=
n+ 1
2A

(1− k)us

(fρg sinα)n
, (4)

where h is ice thickness, us is glacier surface velocity, and
k is the contribution ratio of basal-slip velocity relative
to us. We used the mean velocity over 1985–2019 from the
ITS_LIVE dataset (Inter-mission Time Series of Land Ice
Velocity and Elevation; Gardner, 2019) as the us input. We
assumed that basal slip only occurred during the warm sea-
sons, and k was calculated by dividing the annual glacier ve-
locity by winter glacier velocity (Wu et al., 2020). Data from

the Global Land Ice Velocity Extraction from Landsat 8 (Go-
LIVE) dataset with a date separation length of fewer than
96 d are used to estimate the monthly velocity (Fahnestock
et al., 2016; Scambos, 2016), allowing the winter velocity
(December, January, and February) and annual mean veloc-
ity to be calculated. Basal factor k was calculated as 0.80
(Fig. S1 in the Supplement). The shared parameters, such as
creep factor, shape factor, and basal creep factor are same in
all four models.

An ensemble of the output from different models can im-
prove the modeled thickness (Farinotti et al., 2017, 2021).
Therefore, after calculating the ice thickness from four mod-
els using different DEMs, we calculated an ensemble ice
thickness using the same DEM but with different models.
First, the ensemble ice thickness was the sum of the four
models with weights w1, w2, w3, and w4, respectively. The
sum of four weights equals 1: 70 % of the GPR data are
adopted as calibration data, and 30 % of the GPR results are
adopted as validation data. Then, the four weights are iter-
atively changed to achieve the minimal mean absolute error
between calibration data and the model result. Finally, the
mean absolute error (MAE) between ensemble ice thickness
and validation data are calculated.

2.4 Accuracy assessment method

The error in the DEMs is considered to be the difference
between the DEM elevation and the ICESat-2 measure-
ments. To remove the influence of outliers, elevation dif-
ferences greater than 4 standard deviations were removed.
Mean error (ME), MAE, median error, root mean square er-
ror (RMSE), standard deviation (SD), and normalized me-
dian absolute deviation (NMAD) were calculated for the er-
ror analysis. NMAD and ME were used to assess the distur-
bance from extreme errors (Höhle and Höhle, 2009; Gdulová
et al., 2020). When calculating the ME, the positive and nega-
tive biases cancel each other, making the error smaller; there-
fore, the SD together with ME could be a complementary
indicator for assessment.

ME=
1
n

n∑
1
(HDEM−HICESat-2) , (5)

MAE=
1
n

n∑
1

abs(HICESat-2−HDEM) , (6)

RMSE=

√√√√1
n

n∑
1
(HICESat-2−HDEM)

2, (7)

SD=

√√√√ 1
n− 1

n∑
1
(HICESat-2−HDEM−ME)2, (8)

NMAD= 1.4826 ·median(abs(HICESat-2−HDEM)) , (9)
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Glacier surface elevation change ranged between −21 and
17 m yr−1 over the TP during 2000–2018 (Shean et al.,
2020). Therefore, the disparity of acquisition date between
ICESat-2 and six DEMs (Table 1) could introduce large
errors due to the changing glacier geometry. This applies
in particular to TanDEM-X and AW3D30, which are col-
lected in different months and years (Table 1). However,
the other four DEMs are produced from NASA’s Shuttle
Radar Topography Mission during the 11 d mission in Febru-
ary 2000. We selected ICESat-2 data acquired in Febru-
ary 2019 and 2020. Then the glacier elevation dynamic mag-
nitude between February 2000 and February 2019 or Febru-
ary 2020 (Shean et al., 2020) is subtracted from the selected
ICESat-2 elevation. By comparing the elevation differences
from the adjusted ICESat-2 data and the four DEMs, we
could partly estimate the impacts of glacier dynamics on ac-
curacy assessment.

3 Results

3.1 Accuracy of DEMs

The level of 4 standard deviations (that is 4σ ) was chosen to
not only filter the differences between ICESat-2 and DEMs
to exclude extreme outliers but also keep most records in the
further accuracy analysis. The ratio of excluded outliers rela-
tive to the record of each DEM is less than 1 %. Overall, there
is no irregular deviation among these DEMs and ICESat-2 el-
evation after filtering (Fig. 3). The ICESat-2 vs. DEMs values
are distributed tightly around the fit line with a slope coeffi-
cient of 1, with no obvious differences among theR2. NASA-
DEM and TanDEM-X performed the best in terms of inter-
cept and fit RMSE, with very little difference to the ICESat-2
data.

Statistically, the median and ME did not differ much,
which indicated that extreme values did not influence the
ME much after the filter of 4 standard deviations was ap-
plied (Fig. 4). SD was slightly larger than NMAD, espe-
cially for TanDEM-X, indicating larger discrepancies due to
the DEM errors and noise (Höhle and Höhle, 2009). NASA-
DEM performed better than the other two 30 m resolution
DEMs in ME. AW3D30 behaved best in RMSE (11.3 m) and
MAE (8.2 m). SRTM-GL1 and NASADEM are both pro-
duced from the same original SAR data but differ in RMSE
(13.5 m vs. 12.6 m), MAE (10.0 m vs. 9.4 m), and ME (2.0 m
vs. 0.9 m). The new algorithm and auxiliary data applied in
NASADEM do indeed improve the absolute accuracy of the
product over glacierized terrain. The quality of TanDEM-
X was the best out of the 90 m resolution DEMs with the
smallest RMSE (15.1 m), MAE (8.9 m), ME (0.1 m), and
SD (15.1 m). SRTM v4.1 and MERIT are both error-reduced
products from SRTM3 v2 (Reuter et al., 2007; Yamazaki et
al., 2017), and they have similar ME (−1.5 m vs. 2.6 m) and
RMSE (17.0 m vs. 15.6 m).

Spatially, the ME in southeast Tibet is more positive than
that in the Himalaya, and it is slightly negative in the west-
ern Kunlun and Karakoram (Fig. 5a). It is worth noting that
in the Himalaya and southeast Tibet, the ME of the other
four DEMs is more positive than that of TanDEM-X and
AW3D30. ME of TanDEM-X are mainly at ±5 m but with
some large values in several regions. SRTM-GL1, NASA-
DEM, SRTM v4.1, and MERIT have nearly the same distri-
bution of ME and show negative ME values in the western
Kunlun and Karakoram. The ME of NASADEM is smaller
than that of SRTM-GL1 in most regions of the TP but is
bigger in the western Kunlun and Karakoram. Overall, the
SD of 30 m resolution DEMs is much better than that of
90 m resolution DEMs (Fig. 5b). The SD along the Hindu
Kush–Himalaya and southeast Tibet was larger than that in
other regions. The SD in southeast Tibet was relatively larger
(> 12 m). Specifically, the SDs of AW3D30 and NASADEM
were the smallest and shared similar spatial distribution fea-
tures. The SD of NASADEM was improved over most parts
of the TP, compared with that of SRTM-GL1 (Fig. 5b). This
indicates that some disturbances from noise and errors may
exist in SRTM-GL1, SRTM v4.1, and MERIT in the western
Kunlun and Karakoram. TanDEM-X performs well in overall
statistics (Fig. 4b) and ME (Fig. 5a) but did not show large
improvements in SD and was even worse in some areas. The
SD and ME of SRTM v4.1 and MERIT have the same spa-
tial distribution (Fig. 5b) and have similar overall SD (both
∼ 15 m) and ME (both ∼ 2 m) values (Fig. 4b).

3.2 Differences between DEMs and ICESat-2 in aspect,
slope, and elevation

The influence of aspect is most apparent for SRTM-GL1,
with a median value of about−5 m in the south aspect, which
increased in magnitude gradually towards to the north aspect
(∼ 5 m). A similar pattern but with a smaller amplitude is
found for NASADEM, TanDEM-X, MERIT (−1 to 1 m), and
AW3D30 (0 to 2 m) (Fig. 6a).

The median differences of the 30 m DEMs generally in-
creased along the slope. However, for the 90 m DEMs, the
difference increased with slope at first but then decreased
on steep slopes. NASADEM and TanDEM-X had minimum
mean median values of about 0.9 and 1.2 m, respectively
(Fig. 6b). For all DEMs, the spread of difference becomes
larger as the slope becomes steeper. This increase is most ob-
vious for TanDEM-X and SRTM v4.1, with rates of 1.29 m
per degree (r = 0.97, p < 0.01) and 1.11 m per degree (r =
0.89, p < 0.01). This indicated that errors of both DEMs
suffered from steep slope effects. AW3D30 and NASADEM
have a similar mean spread (19.2 m vs. 20.8 m). On slopes of
less than 20◦, TanDEM-X has the best quality with a mean
median value of −0.2 m and mean spread of 11.7 m, respec-
tively. MERIT shows a slight advantage over SRTM v4.1
with a reduced spread for steep slopes. Overall, relative to
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Figure 3. Differences between six DEMs and ICESat-2 elevation. (a) AW3D30, (b) SRTM-GL1, (c) NASADEM, (d) TanDEM-X,
(e) SRTM v4.1, and (f) MERIT. The gradually lighter red lines in (d) denote the range within 6, 4, and 2σ of the mean. The text at the
top left of each panel gives the fit results for data within 4σ of the mean. Outlier denotes the proportion of outliers relative to the total
records. R2, RMSE, and intercept are fit results when the slope coefficient is set to 1. The elevation range was cut to 3500–6500 m a.s.l., the
range in which most elevations values are located, to show clearly the effect of using different multiples of the SD from the mean.

Figure 4. Overall difference (m) statistics between six DEMs and ICESat-2 elevation: (a) 30 m resolution DEMs – AW3D30, SRTM-GL1,
and NASADEM – and (b) 90 m resolution DEMs – TanDEM-X, SRTM v4.1, and MERIT. The vertical dashed lines denote the mean elevation
difference of each DEM between ICESat-2. ME is mean error; MAE is mean absolute error; median is median error; RMSE is root mean
square error; SD is standard deviation; and NMAD is normalized median absolute deviation.
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Figure 5. Aggregated spatial mean error (ME) (a) and standard deviation (SD) (b) between six DEMs and ICESat-2 elevation for 1◦× 1◦

cells across the TP. The cross symbol denotes that NASADEM performs better than SRTM-GL1 in ME or SD.

the other DEMs, AW3D30 and NASADEM perform best for
steep slopes in terms of spread and median value.

The differences for all DEMs generally decreased with
elevation, with fluctuations around zero at very high el-
evations (Fig. 6c). AW3D30 has a smaller difference at
low elevation relative to NASADEM and SRTM-GL1. For
NASADEM and SRTM-GL1, the differences along the el-
evations show a similar distribution and varied from −10 to
10 m over the range 4500–6500 m a.s.l., where measurements
are concentrated (Fig. 6d). However, NASADEM behaves
best out of the six DEMs at high elevation. The differ-
ence of TanDEM-X varied from around −5 to 5 m between
4500 and 6500 m a.s.l. The SRTM v4.1 and MERIT differ-
ences changed almost similarly from −20 to 40 m but show
differences at the highest elevations.

3.3 Differences between DEMs and ICESat-2 in
different glacier zones

Elevation differences in different glacier zones were also es-
timated and are shown in Fig. 7a–d. We divided it into four
sub-zones using the maximum, median, and minimum eleva-
tion from the RGI glacier inventory (Fig. 7e). Here we con-
sider Zone 1 and Zone 4 to be the ablation area and accu-
mulation area, respectively. Zone 2 and Zone 3 are transition
areas. Crests of the probability distribution of differences lo-
cated in the positive axis range in Fig. 7a move to the left
in Fig. 7b–d. Correspondingly, ME, MAE, and RMSE all de-
crease from Zone 1 (ablation area) to Zone 2 (transition area)

(Fig. 7 and Table S1 in the Supplement). Spatially, areas in
the glacier terminus are subject to more melting (Brun et al.,
2017), leading to this decrease. The ME of the SRTM-based
products SRTM-GL1, SRTM v4.1, NASADEM, and MERIT
are all around 10 m in Zone 1 and decreased similarly by 8.1,
7.6, 7.5, and 7.2 m towards Zone 2, respectively (Table S1).
Temporally, the ME of the DEM acquired in earlier periods
is bigger. The ME is 8.1 m for AW3D30, which was acquired
in 2006–2011, bigger than that of TanDEM-X (3.9 m), which
was acquired in 2010–2015.

ME, MAE, and RMSE in Zone 3 and Zone 4, near or in
the accumulation area, are almost all smaller than the corre-
sponding values in Zone 1 (Fig. 7 and Table S1). The ME of
all DEMs decreased to negative values in Zone 3 and Zone 4.
Usually, in the accumulation area, glaciers have a positive or
less negative elevation change (Li and Lin, 2017; Maurer et
al., 2019; Rankl and Braun, 2016); therefore, accumulation
may be concerned with changes in Zone 3 and Zone 4. The
observed shift in the ME from Zone 1 to Zone 4 is a sign of
influence from thinning or accumulation between the time of
collection of the six DEMs and the ICESat-2 data.

In terms of SD, NASADEM performed best in Zone 3 and
Zone 4, with values ranging from 8.8 to 11.1 m (Table S1).
AW3D30 had the best performance of all DEMs in Zone 1
and Zone 2, with an SD varying from 10.0 to 12.3 m. The
SD of TanDEM-X was better than that of SRTM v4.1 and
MERIT in Zone 1 and Zone 2 but was worse in Zone 3 and
Zone 4.
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Figure 6. Differences between six DEMs and ICESat-2 with terrain factors: (a) 5◦ aspect bin; (b) 2◦ slope bin; (c) 200 m elevation bin; and
(d) percentage (%) of data in each aspect, slope, and elevation bin.

3.4 Sensitivity of modeled ice thickness to DEMs

The models are not adjusted independently according to the
difference between the output and GPR results. Therefore,
the results are not indicators of the performance of the mod-
els but rather references for examining the influence of differ-
ent DEMs on ice thickness estimated using different ITIMs.
The effects of the DEMs on the model outcomes are pre-
sented in Fig. 8 and are quite obvious. Mean ice thickness dif-
fers, according to the DEM used, by up to 134 %, 6 %, 47 %,
and 19 % for GlabTop2, HF, ITIBOV, and OGGM, respec-
tively. The deepest ice thickness differs by up to 53 %, 25 %,
13 %, and 13 % for GlabTop2, HF, ITIBOV, and OGGM, re-
spectively.

The mean ice thicknesses from GlabTop2 and ITIBOV us-
ing the 90 m DEMs (they are TanDEM-X, SRTM v4.1, and
MERIT) are ∼ 30 m less than those obtained when using

30 m DEMs (that is AW3D, SRTM-GL1, and NASADEM)
(Fig. 8). GlabTop2, HF, and OGGM using AW3D30 and ITI-
BOV using NASADEM output the largest mean thickness.
GlabTop2 and ITIBOV using TanDEM-X and OGGM and
HF using SRTM-GL1 output the smallest mean thickness.

The influence of different DEMs on ITIMs can also be
identified when making a comparison with the GPR results
(Fig. 9 and Table 2). If the median error is used as the cri-
terion, GlabTop2 and ITIBOV using NASADEM, HF using
AW3D30, and OGGM using SRTM v4.1 achieved the rela-
tively best simulation (Fig. 9). If RMSE was used, GlabTop2
using NASADEM, HF using SRTM-GL1, ITIBOV using
AW3D30, and OGGM using TanDEM-X performed best
(Table 2).

In different glacier zones, each DEM–model combination
has its merits and weaknesses (Table 2). NASADEM in-
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Figure 7. Probability distribution of the difference between six DEMs elevation and ICESat-2 elevation in different glacier zones (a–d) as
defined in panel (e). The acquisition date of each DEM is labeled.

dicates better performance (number of smaller RMSE val-
ues in five profiles) relative to other DEMs by using the
GlabTop2 and ITIBOV models. AW3D30 conducts better by
using the ITIBOV and OGGM models. TanDEM-X is better
by using the OGGM model. While five models are compos-
ited, NASADEM behaves better. Overall, NASADEM and
AW3D30 performs better in different glacier zones in all
models.

Similar to the procedure of Farinotti et al. (2017), results
from the four models are further composed to achieve the
minimum MAE between the modeled and GPR thicknesses
(Fig. 8e). The weights for each model in 10 experiments are
shown in Table S2. After composition, the mean thickness
using different DEMs ranged from 90 (acquired based on
TanDEM-X) to 98 m (acquired based on AW3D30). NASA-
DEM and AW3D30 achieved minimum MAE values, which
are 36.7 and 44.1 m, respectively. RMSEs of combined ice
thickness modeled from different DEMs are reduced by ∼
21 m (∼ 25 %) when compared to the RMSE for one ITIM.
The mean errors and median errors of all DEMs are at the
range of ±10 m, except for that of AW3D30 and TanDEM-

X, which is at a level of around 20 m. The spreads of error
of 30 m DEMs are 33 % smaller than those of 90 m DEMs.
The error spread from NASADEM was minimum (75.1 m),
followed by AW3D30 (77.3 m).

4 Discussion

4.1 Influence of glacier elevation change on the
assessment of DEMs

The identified extreme outliers (Fig. 3) are mostly located
near the glacier terminus, high-elevation and high-slope re-
gions (Fig. 10a and b). Extreme glacier melt, such as in
southeastern Tibet, and surges, as observed in the Karako-
ram, can also lead to dramatic elevation changes, resulting
in large differences (Fig. 10c). This glacier elevation change
effect is also reflected in the spatial distribution of difference
(Fig. 5), elevation bins (Fig. 6c), and glacier zones (Fig. 7).
The differences at lower elevations are positive and gener-
ally decrease with elevation, consistent with the fact that
glaciers melt at lower elevations and accumulate at higher el-
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Figure 8. Distribution of modeled ice thickness of Chhota Shigri Glacier (location shown in Fig. 1) using AW3D30, SRTM-GL1, TanDEM-
X, SRTM v4.1, NASADEM, and MERIT: (a) GlabTop2, (b) HF, (c) ITIBOV, (d) OGGM, and (e) composite result. Mean (ME) and maxi-
mum (MAX) modeled ice thickness are given in each panel.

evations (Cuffey and Paterson, 2010). The differences in all
DEMs with elevation and glacier zones comply with these
features (Figs. 6c and 7). NASADEM was acquired in 2000,
and TanDEM-X was acquired in 2010–2015, and the value
of NASADEM is more positive than TanDEM-X in the ab-
lation zone. The relatively more positive and larger values
of ME and SD along the Hindu Kush–Himalaya, southern
Tibet (Fig. 5), and negative ME values in the western Kunlun
and Karakoram (Fig. 5) are also related to glacier elevation
change (Hugonnet et al., 2021).

After removing the glacier elevation change using the
glacier elevation change dataset covering 2000–2018 (Shean
et al., 2020), the mean difference in Zone 1 and Zone 2
decreased sharply by ∼ 14 and ∼ 7 m for the SRTM-based
DEMs, respectively (Table 3). However, similar improve-
ments are not obvious in Zone 3 and Zone 4. This may be

related to the slight elevation change in the accumulation re-
gion (Brun et al., 2017; Shean et al., 2020) and high uncer-
tainty due to steeper slopes and higher elevations (Fig. 6b
and c). Apart from these factors, penetration depth of the C-
band should be related to the remaining errors in the accu-
mulation area. Mean errors in SRTM-based DEMs are 5.3–
10.1 m in Zone 4, which are at the same order with the C-
band penetration (Rignot et al., 2001). MAE, SD, and RMSE
all improved a lot in four regions after this adjustment.

ICESat-2 data covering the period from October 2018
to October 2020 repeat every 91 d. Therefore, variations of
ICESat-2 elevation data caused by glacier fluctuations have
influenced the error statistics (Fig. 11a). Precipitation on the
TP mainly occurs in June–August (Maussion et al., 2014).
Hence, after precipitation accumulation on glaciers in spring
and summer, the elevation increased, and the mean differ-
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Figure 9. Point-by-point deviation comparison between the modeled and measured ice thickness from GlabTop2, HF, ITIBOV, OGGM,
and the composite result. In each group, the boxes are plotted in the following order: AW3D30, SRTM-GL1, NASADEM, TanDEM-X,
SRTM v4.1, and MERIT. Different models using the same DEM are aggregated by weights (labeled at the bottom) to achieve minimum
mean absolute error.

Figure 10. Distribution of excluded extreme outliers. The proportion of outliers accounting for the total number in slope bins (a) and
each glacier zone (b). Examples of locations of excluded points overlaid with glacier surface elevation change in the Karakoram (c) and
southern TP (d). Locations of these two examples in (c) and (d) are labeled C and D in the central insert, respectively. Glacier elevation
change data covering 2000–2019 are from Shean et al. (2020).
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Table 2. Root mean squared error (RMSE, m) of modeled ice thickness compared with ground-penetrating radar (GPR) measurements on
each profile (Pf1 to Pf5). The locations of profiles are shown in Fig. 1. Bold numbers denote the best model performance on each profile
using different DEMs.

Model DEM No. of ground-penetrating radar profiles

Pf1 Pf2 Pf3 Pf4 Pf5 All

GlabTop2

AW3D30 56.6 84.5 45.4 102.4 103.3 79.7
SRTM-GL1 54.8 94.6 62.4 104.3 90.6 83.3
NASADEM 53.8 75.8 48.5 104.6 84.4 75.3
TanDEM-X 103.5 143.3 104.8 137.0 115.0 122.0
SRTM v4.1 101.9 133.6 93.2 132.3 135.1 118.7
MERIT 110.0 120.7 70.9 154.7 132.2 118.1

HF

AW3D30 27.2 29.8 83.7 30.7 92.5 61.6
SRTM-GL1 28.4 58.4 33.3 30.6 88.1 50.0
NASADEM 37.2 26.5 62.7 30.1 82.2 51.8
TanDEM-X 50.7 63.4 60.9 66.5 83.9 65.4
SRTM v4.1 49.3 36.4 74.9 44.8 86.4 61.3
MERIT 51.4 33.6 87.6 42.4 86.2 65.8

ITIBOV

AW3D30 69.3 61.9 45.6 66.4 70.8 61.4
SRTM-GL1 70.7 71.7 52.6 70.6 61.4 64.8
NASADEM 67.3 61.3 58.3 80.3 57.1 65.3
TanDEM-X 98.3 116.4 61.1 91.2 109.7 94.0
SRTM v4.1 102.9 114.5 51.8 73.4 111.3 88.3
MERIT 108.3 117.6 54.8 80.4 112.7 91.9

OGGM

AW3D30 32.0 47.2 80.5 62.5 34.6 58.9
SRTM-GL1 33.5 56.9 101.6 65.1 41.1 70.2
NASADEM 32.2 55.3 92.3 68.8 43.6 67.1
TanDEM-X 42.7 35.6 86.1 52.2 35.4 58.4
SRTM v4.1 37.4 46.1 81.4 68.7 39.9 61.6
MERIT 38.3 52.1 104.1 53.8 49.7 69.7

Composite

AW3D30 37.2 27.9 44.4 45.8 68.3 45.8
SRTM-GL1 39.1 29.8 64.3 63.3 47.5 52.7
NASADEM 34.9 22.1 65.4 41.1 70.6 51.3
TanDEM-X 50.9 46.3 60.5 57.9 69.0 57.5
SRTM v4.1 41.8 41.4 59.3 59.5 55.1 53.1
MERIT 42.0 49.1 85.3 53.8 55.3 62.5

ence decreased. With little accumulation, glaciers experience
more melt and sublimation in autumn and winter (Li et al.,
2018). As a result, the glacier surface elevation decreases,
and the mean difference increases. However, the magnitude
of these changes is much smaller, at a level of less than
3 m (Fig. 11a), compared with the large ME, MAE, and
RMSE magnitude of most of the DEMs (with the exceptions
of TanDEM-X and NASADEM) (Fig. 4). When taking all
points from different seasons into consideration, the ICESat-
2 dataset gives average elevation over the 2018–2020 period;
the seasonal effects could also partly cancel each other out. If
only the ICESat-2 data from February were used (Table 3),
NASADEM and TanDEM-X still perform better than oth-
ers. Therefore, we conclude that the seasonal fluctuations of
ICESat-2 data have little influence on the assessments of the
DEMs under the above conditions.

4.2 Influence of terrain on the assessment of DEMs

The elevation differences depend strongly on terrain fac-
tors (Fig. 6a and b). The largest errors are concentrated
in the north aspect, as was also reported in previous stud-
ies (Gorokhovich and Voustianiouk, 2006; Shortridge and
Messina, 2011), in which they were attributed to the orien-
tation of the sensor (Gdulová et al., 2020; Shortridge and
Messina, 2011). However, here, the data from different sen-
sors all show this aspect dependence, and we infer that it may
be related to the predominance of slopes for certain aspects.
There are many more measurements with steeper slopes in
the north aspect and fewer measurements with flatter slopes
in the south aspect (Fig. 12). The error and spread become
larger with steeper slopes (Fig. 7b), as also reported by Liu et
al. (2019) and Uuemaa et al. (2020), which may be due to ge-
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Figure 11. Influence on elevation differences between ICESat-2 and six DEMs from glacier elevation change and terrain factors. (a) Mean
absolute difference between six DEMs and ICESat-2 in different seasons during 2018–2020. The spring, summer, autumn, and winter are
defined as March–May, June–August, September–November, and December–February, respectively. The histogram at the bottom shows the
percentage of the total number of points in each season. (b) Examples of elevation and shaded relief of six DEMs in the Shisha Pangma
region. The rectangle denotes the area of interest.

ometric deformation or shadow (Liu et al., 2019). Therefore,
the error variation with aspect tends to be related to steeper
slopes (Gdulová et al., 2020; Gorokhovich and Voustianiouk,
2006).

Though points in the 55–90◦ slope region account for a
small fraction (Fig. 6d), almost half the points in the 55–
90◦ slope region are identified as extreme outliers (Fig. 10a).
Differences also show large discrepancies for all DEMs in
the steeply sloping regions where voids and large errors are
frequent (Falorni, 2005). Steep slopes combined with low
resolution led to variations in the spread of differences in
Fig. 6b. Spreads of differences were larger on steep slopes
for the 90 m DEMs than those of the 30 m DEMs. Intra-
pixel variation aggravates this effect in steeply sloping re-
gions (Uuemaa et al., 2020); lower-resolution or reduced-
pixel DEMs smooth the terrain details and lead to inaccu-
rate elevation compared with the 20 m footprint of ICESat-2
points. The spread and the number of outliers gradually in-

Figure 12. Distribution of measurements in different aspects against
the slope.
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Table 3. Comparisons of differences between four SRTM-based DEMs and ICESat-2 elevation over glacier zones before and after adjustment.
ICESat-2 data acquired in February are used to calculate the differences. Glacier zones are defined according to Fig. 7e.

Item Zone Before (m) After (m)

SRTM-GL1 NASADEM SRTM v4.1 MERIT SRTM-GL1 NASADEM SRTM v4.1 MERIT

Mean 1 27.8 26.6 23.9 27.4 13.4 12.1 9.7 12.8
error 2 10.0 9.1 8.3 10.5 2.9 2.0 1.7 3.6

3 −0.2 −0.8 0.7 1.7 −3.5 −3.9 −2.2 −1.4
4 −12.4 −12.0 −8.5 −6.0 −9.3 −10.1 −7.5 −5.3

Absolute 1 33.8 33.0 36.3 34.3 17.8 16.8 20.5 18.5
mean 2 16.4 16.1 19.0 18.0 9.0 8.6 11.9 10.9
error 3 11.2 10.8 14.4 13.8 8.3 7.7 11.6 10.7

4 18.0 16.0 23.4 20.6 13.0 12.1 19.6 16.9

Standard 1 37.7 37.9 53.5 39.4 20.3 20.3 40.1 22.8
deviation 2 20.6 20.8 36.1 26.8 12.0 11.6 29.2 21.8

3 14.6 14.5 23.7 22.7 10.7 9.8 20.7 19.3
4 29.6 27.4 39.5 29.4 20.9 20.8 36.9 26.0

RMSE 1 46.9 46.3 58.6 48.0 24.3 23.7 41.2 26.2
2 22.9 22.7 37.0 28.8 12.4 11.8 29.2 22.1
3 14.6 14.5 23.7 22.7 11.3 10.6 20.8 19.4
4 32.1 29.9 40.4 30.0 22.9 23.2 37.6 26.6

creased with the slope, especially for the TanDEM-X case
(Fig. 7b). Using the terrain in the rugged Shisha Pangma re-
gion (Fig. 12b) as an example, we can see that the eleva-
tion from TanDEM-X suffers from substantial errors along
the ridge at high elevations, and the output appears almost
blurred. Even so, TanDEM-X still has overall accuracy ad-
vantages over SRTM v4.1 and MERIT, indicating the high
quality of TanDEM-X in low-relief regions (Fig. 7b).

4.3 Influence of misregistration on the assessment of
DEMs

Six DEMs are produced from different sensors or by different
methods. Pixels in DEMs do not represent exactly the same
location. This misregistration among DEMs, which has been
ignored in previous research (González-Moradas and Viveen,
2020; Liu et al., 2019), is an important error source when
looking at DEM differences (Hugonnet et al., 2021; Van Niel
et al., 2008). This study intends to give direct insights into
the quality of uncorrected DEM products, so the misregis-
tration problem was not tackled before the evaluations were
carried out. However, the influence of misregistration was
evaluated. According to the sinusoidal relationship between
aspect and error differences between two DEMs (Van Niel
et al., 2008), using the co-registration method in Nuth and
Kääb (2011) and ICESat-2 points outside the glaciers, off-
set pixels relative to ICESat-2 in the x and y direction at the
1◦×1◦ grid scale were estimated by a nonlinear least-squares
fitting method across the TP. Misregistration was found to be
less than one grid spacing (Fig. 13). The misregistration of
SRTM-GL1 relative to ICESat-2 is the largest; the misregis-

Figure 13. Distribution of offset grid spacings of DEMs relative to
ICESat-2 on a 1◦× 1◦ grid. Only the grid squares with R2 greater
than 0.5 and the number of records greater than 1000 are considered.

tration of other DEMs is always less than 0.2 grid spacings.
Considering that only the cell center value was used, the sub-
grid spacing shift may have little influence (Van Niel et al.,
2008).

4.4 Influence of DEMs on ice thickness estimated by
ITIMs

Even with the same parameters, the same ITIM using dif-
ferent DEMs will yield different thickness patterns (Figs. 8
and 9). The quality of a DEM indeed influences the perfor-
mance of the ITIMs. However, the different models have var-
ious levels of robustness to the quality of the input DEMs.
Different DEMs resulted in differences in the largest and

The Cryosphere, 16, 197–218, 2022 https://doi.org/10.5194/tc-16-197-2022



W. Chen et al.: Towards ice-thickness inversion: an evaluation of global DEMs in the glacierized Tibetan Plateau 213

smallest mean ITIM ice thickness at a range of 3.6–32 m
(Fig. 8).

Generally, the outcome with GlabTop2 and ITIBOV us-
ing 30 m DEMs is 51 % and 43 % better than with the 90 m
DEMs in mean error, respectively. With GlabTop2, elevation
data were used to determine not only the slope but also the
shear stress (Frey et al., 2014). A sensitivity test based on
Eqs. (1)–(4) was executed, and the modeled ice-thickness
differences before and after adding perturbations to the in-
put parameters such as slope and elevation were compared.
An error of +5◦ in slope caused more than a −34.1 % differ-
ence in the output for slopes of less than 20◦. Additionally,
relative elevation errors had an enormous impact (Fig. 14b).
For glaciers with an elevation range of less than 400 m, which
accounted for 41 % of the total number and 5 % of the total
area over the TP, +10, +30, and +50 m errors in elevation
range caused more than+2 %,+6 %, and+10 % differences
in output. Such errors in elevation range had greater influence
(Fig. 14b), especially for small glaciers, which have smaller
elevation ranges. These two errors propagate and lead to a
much larger overall error (Table 3). Thus, GlabTop2 using
NASADEM and AW3D30 with the best quantity as input
achieved the best RMSE in comparison with GPR measure-
ments. In contrast to the other ITIMs, the ITIBOV model di-
rectly estimated the ice thickness at each grid cell accord-
ing to cell velocity information without interpolation. The
slope sensitivity of ITIBOV is higher than that of GlabTop2,
with an error of +5◦ in slope causing more than a −71.4 %
difference in the ice thickness for slopes of less than 20◦

(Fig. 14a). The flatter the slope is, the more sensitive ITIBOV
is to the slope error (Fig. 14a). Although along- and across-
track slope data are provided in the ICESat-2 ATL06 product,
they are incompatible with the slope estimated from DEMs
due to their different data formats and algorithms used (Bur-
rough and McDonell, 1998; Smith et al., 2019). Moreover,
the surface terrain of glaciers changes with time due to ac-
cumulation, melting, and transient dynamics (Dehecq et al.,
2019; Shean et al., 2020). Nevertheless, the accuracy of the
DEMs estimated here could also provide some information
about slope accuracy. With the higher-accuracy NASADEM
and AW3D30 as input of ITIBOV, most accurate ice thick-
nesses were obtained (Table 2).

For HF and OGGM, the modeled ice thicknesses did not
show large differences when using 30 or 90 m DEMs as input
(Fig. 9), thereby suggesting a minor impact of DEM resolu-
tion on ice-thickness reconstruction (Pelto et al., 2020). In
the HF model, elevation data were used for convergence cal-
culation of apparent mass balance and mean slope in eleva-
tion bins (Farinotti et al., 2009, 2019), whereas, in OGGM,
it is used to extract flowlines, shear stress at flowlines, and
mass balance at an elevation (Maussion et al., 2019). These
two models show roughness to the input DEM (Fig. 14a).
Although NASADEM and TanDEM-X were more accurate,
the output of HF and OGGM using these two DEMs did not
yield better results compared to when using the other DEMs

Figure 14. Sensitivity test of slope and elevation on ice-thickness
inversion models. (a) Percentage difference of modeled ice thick-
ness from GlabTop2, HF, ITIBOV, and OGGM when there is +5◦

slope error. (b) Percentage difference of modeled ice thickness from
GlabTop2 when the elevation range error is +10, +30, and +50 m
for different elevation ranges.

(Fig. 9). The SD of RMSE values for HF and OGGM us-
ing six DEMs are 6.2 and 4.9 m, respectively (Table 2). The
SD of mean ice thickness by HF and OGGM using six DEMs
are 1.1 and 6.0 m (Fig. 8).

When the results from different ITIMs are ensembled, the
influences of uncertainty and resolution in the input DEMs
on the modeled ice thickness still exist (Fig. 9 and Table 2).
The RMSE of ITIMs from 30 m DEMs was 16.8 % less
than that from 90 m DEMs. Models using AW3D30 and
NASADEM, which have higher resolution and better accu-
racy, yielded the most accurate thickness estimates. However,
glacier surface elevation changes with climate; AW3D30 ac-
quired in different years and seasons represents glacier ter-
rain in different periods. This could result in the spatial
inconsistencies of the output of ITIMs in large-scale ice-
thickness inversion. Above, we suggest NASADEM as the
best input of ITIMs for ice-thickness estimates over the TP.
This conclusion is of significance for ice-thickness inver-
sion models using DEMs in the TP. However, it should be
noted that the result may be not suitable for studies in other
glacierized mountainous regions. Because various errors ex-
ist in DEMs, such as speckle noise, stripe noise, and absolute
bias, they behave differently across the earth (Yamazaki et
al., 2017; Takaku et al., 2020). Our method to assess the ac-
curacy of DEMs is repeatable in different regions, combined
with the recently released glacier elevation change data on
earth (Hugonnet et al., 2021). Furthermore, benefiting from
the high accuracy and dense coverage of ICESat-2 data, the
quality of DEMs can also be improved, similar to what has
been done in the production of MERIT (Yamazaki et al.,
2017). For example, the misregistration in DEMs could be
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corrected, and terrain-related errors could be reduced by uni-
tizing the relation of difference against slope, aspect, and el-
evation in Fig. 6.

5 Conclusions

In the present study, six DEMs (i.e., AW3D30, SRTM-GL1,
NASADEM, TanDEM-X, SRTM-GL1, and MERIT) from
different sensors with different spatial resolutions were eval-
uated using ICESat-2 data. The influence of glacier dynam-
ics, terrain, and misregistration on the DEM accuracy was
analyzed. Out of the three 30 m DEMs, NASADEM was the
best performer in vertical accuracy with an ME of 0.9 m
and an RMSE of 12.6 m. Out of the three 90 m DEMs,
TanDEM-X performed best with an ME of 0.1 and an RMSE
of 15.1 m. The quality of TanDEM-X was stable and un-
precedented on shallow slopes but suffered from serious
problems on steep slopes, especially along the steep ridges.
AW3D30 has similar accuracy to NASADEM and is even
better in SD, MAE, and RMSE when not considering the ef-
fect of glacier dynamics. SRTM-based DEMs (i.e., SRTM-
GL1, SRTM v4.1, and MERIT) (∼ 15 m RMSE) were infe-
rior to NASADEM. MERIT shows little improvement over
SRTM v4.1 in glacierized terrain. The influence of glacier
elevation change on the elevation difference is larger for
DEMs acquired in an earlier period, at low elevations, and
in the ablation region. However, this does not influence the
conclusion that NASADEM performed the best, followed by
TanDEM-X but with serious outliers in the high-elevation re-
gion. For all the DEMs, the errors increased from the south-
aspect slope to the north-aspect slope, controlled by the in-
creasing error with slope. Misregistration errors in the glacier
region are within one grid spacing and have little influence on
the evaluation benefiting from the 20 m footprint of ICESat-2
relative to the 30 or 90 m resolution DEMs.

The influence of DEM accuracy on ice-thickness inversion
models depends on the model properties. Generally, a higher-
resolution DEM was helpful for better model outcomes. The
widely used GlabTop2 model is very sensitive to the accuracy
of both elevation and slope; using NASADEM as input, this
model facilitated the best outcome. Although the OGGM and
HF models are less sensitive to the quality of DEM, the use
of NASADEM or AW3D30 was still beneficial. Among the
four ice-thickness inversion models, ITIBOV was the most
sensitive to slope accuracy. Ice-thickness inversion models
using AW3D30 or NASADEM as input gave the most accu-
rate thickness estimates. These two DEMs also perform the
best when four ice-thickness inversion results were aggre-
gated by the minimum MAE optimization method.

Considering the influence of inconsistency in data acqui-
sition time on generating glacier terrain, we suggest that
NASADEM is the best choice for ice-thickness inversion
models over the whole TP. AW3D30 could be a good sub-
stitute but with limitations from its mixed acquiring dates.

TanDEM-X is an appropriate alternative for glaciological re-
search focusing on the flat glacier terminus, but it requires
further improvement for use in steep terrain or ice-thickness
inversion.
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