Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1157-2022
https://doi.org/10.5194/tc-16-1157-2022
Research article
 | 
04 Apr 2022
Research article |  | 04 Apr 2022

Seismic physics-based characterization of permafrost sites using surface waves

Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024,https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary

Cited articles

Albaric, J., Kühn, D., Ohrnberger, M., Langet, N., Harris, D., Polom, U., Lecomte, I., and Hillers, G.: Seismic monitoring of permafrost in Svalbard, Arctic Norway, Seismol. Res. Lett., 92, 2891–2904, 2021. a
Bhuiyan, M. A. E., Witharana, C., and Liljedahl, A. K.: Use of very high spatial resolution commercial satellite imagery and deep learning to automatically map ice-wedge polygons across tundra vegetation types, J. Imaging., 6, 137, https://doi.org/10.3390/jimaging6120137, 2020. a
Brothers, L. L., Herman, B. M., Hart, P. E., and Ruppel, C. D.: Subsea ice-bearing permafrost on the US Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data, Geochem. Geophy. Geosy., 17, 4354–4365, 2016. a
Buteau, S., Fortier, R., and Allard, M.: Permafrost weakening as a potential impact of climatic warming, J. Cold. Reg. Eng., 24, 1–18, 2010. a
Carcione, J. M. and Seriani, G.: Wave simulation in frozen porous media, J. Comput. Phys., 170, 676–695, 2001. a, b, c, d
Download
Short summary
The knowledge of physical and mechanical properties of permafrost and its location is critical for the management of permafrost-related geohazards. Here, we developed a hybrid inverse and multiphase poromechanical approach to quantitatively estimate the physical and mechanical properties of a permafrost site. Our study demonstrates the potential of surface wave techniques coupled with our proposed data-processing algorithm to characterize a permafrost site more accurately.