Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5513-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5513-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerodynamic roughness length of crevassed tidewater glaciers from UAV mapping
Armin Dachauer
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology in Zurich (ETH), Zurich, Switzerland
Department of Arctic Geology, University Centre in Svalbard (UNIS), Longyearbyen, Norway
Department of Engineering Cybernetics, Norwegian University of Science & Technology (NTNU), Trondheim, Norway
Andrew J. Hodson
Department of Arctic Geology, University Centre in Svalbard (UNIS), Longyearbyen, Norway
Department of Environmental Science, Western Norway University of Applied Sciences, Sogndal (HVL), Norway
Related authors
No articles found.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Cited articles
Abbas, M. R., Bin Rasib, A. W., Abbas, T. R., Ahmad, B. B., and Dutsenwai, H. S.: Assessment of Aerodynamic Roughness Length Using Remotely Sensed Land Cover Features and MODIS, IOP C. Ser. Earth Env., 722, 012015, https://doi.org/10.1088/1755-1315/722/1/012015, 2021. a
Agisoft LLC: Agisoft Metashape, available at: https://www.agisoft.com/, last access: 27 July 2020. a
Bhardwaj, A., Sam, L., Akanksha, Martín-Torres, F. J., and Kumar, R.:
UAVs as remote sensing platform in glaciology: Present applications and future prospects,
Remote Sen. Environ.,
175, 196–204, https://doi.org/10.1016/j.rse.2015.12.029, 2016. a, b
Błaszczyk, M., Jania, J. A., and Hagen, J. O.:
Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes,
Pol. Polar Res.,
30, 85–142, 2009. a
Brock, B. W., Willis, I. C., Sharp, M. J., and Arnold, N. S.:
Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier d'Arolla, Switzerland,
Ann. Glaciol.,
31, 53–62, https://doi.org/10.3189/172756400781820183, 2000. a
Brock, B. W., Willis, I. C., and Sharp, M. J.:
Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland,
J. Glaciol.,
52, 281–297, https://doi.org/10.3189/172756506781828746, 2006. a, b, c
Casella, V. and Franzini, M.: Modelling steep surfaces by various configurations of nadir and oblique photogrammetry, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-1, Prague, Czech Republic, 175–182, https://doi.org/10.5194/isprsannals-iii-1-175-2016, 2016. a
Chappell, A. and Heritage, G. L.:
Using illumination and shadow to model aerodynamic resistance and flow separation: An isotropic study,
Atmos. Environ.,
41, 5817–5830, https://doi.org/10.1016/j.atmosenv.2007.03.037, 2007. a
Chudley, T. R., Christoffersen, P., Doyle, S. H., Abellan, A., and Snooke, N.: High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control, The Cryosphere, 13, 955–968, https://doi.org/10.5194/tc-13-955-2019, 2019. a, b
Dachauer, A.: ArminDach/z0_UAVs: (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.5752212, 2021. a
Dachauer, A., Hann, R., and Hodson, A.: z0 of crevassed tidewater glaciers, DataverseNO [data set], https://doi.org/10.18710/JMWF3E, 2021. a
DJI: Phantom 4 Pro/Pro+, User Manual v1.4, Tech. rep., DJI, Shenzhen, China, 2017. a
DJI: Mavic 2 Enterprise Series, User Manual v1.8, Tech. rep., DJI, Shenzhen, China, 2019. a
Ericson, Y., Falck, E., Chierici, M., Fransson, A., and Kristiansen, S.:
Marine CO2 system variability in a high arctic tidewater-glacier fjord system, Tempelfjorden, Svalbard,
Cont. Shelf Res.,
181, 1–13, https://doi.org/10.1016/j.csr.2019.04.013, 2019. a
Esau, I. and Repina, I.: Wind climate in kongsfjorden, svalbard, and attribution of leading wind driving mechanisms through turbulence-resolving simulations, Adv. Meteorol., 2012, 568454, https://doi.org/10.1155/2012/568454, 2012. a
Fausto, R. S., Van As, D., Box, J. E., Colgan, W., Langen, P. L., and Mottram, R. H.:
The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012,
Geophys. Res. Lett.,
43, 2649–2658, https://doi.org/10.1002/2016GL067720, 2016. a
Federman, A., Santana Quintero, M., Kretz, S., Gregg, J., Lengies, M., Ouimet, C., and Laliberte, J.: UAV photgrammetric workflows: A best practice guideline, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., Ottawa, Canada, XLII-2/W5, 237–244, https://doi.org/10.5194/isprs-archives-XLII-2-W5-237-2017, 2017. a
Grimmond, C. S. B. and Oke, T. R.:
Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form,
J. Appl. Meteorol.,
38, 1262–1292, https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2, 1999. a
Hagen, J. O., Liestøl, O., Roland, E., and Jørgensen, T.:
Glacier Atlas of Svalbard and Jan Mayen,
Norsk polarinstitutt, Oslo, 1993. a
Hann, R., Altstädter, B., Betlem, P., Deja, K., Dragańska-Deja, K., Ewertowski, M., Hartvich, F., Jonassen, M., Lampert, A., Laska, M., Sobota, I., Storvold, R., Tomczyk, A., Wojtysiak, K., and Zagórski, P.:
Scientific Applications of Unmanned Vehicles in Svalbard, SESS report 2020,
Svalbard Integrated Arctic Earth Observing System, Zenodo, https://doi.org/10.5281/ZENODO.4293283, 2021. a, b
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A. B., Sorteberg, A., Adakudlu, M., Andresen, J., Bakke, J., Beldring, S., Benestad, R., Bilt, W., Bogen, J., Borstad, C., Breili, K., Breivik, Ø., Børsheim, K. Y., Christiansen, H. H., Dobler, A., Engeset, R., Frauenfelder, R., Gerland, S., Gjelten, H. M., Gundersen, J., Isaksen, K., Jaedicke, C., Kierulf, H., Kohler, J., Li, H., Lutz, J., Melvold, K., Mezghani, A., Nilsen, F., Nilsen, I. B., Nilsen, J. E. Ø., Pavlova, O., Ravndal, O., Risebrobakken, B., Saloranta, T., Sandven, S., Schuler, T. V., Simpson, M. J. R., Skogen, M., Smedsrud, L. H., Sund, M., Vikhamar-Schuler, D., Westermann, S., and Wong, W. K.: Climate in Svalbard 2100, The Norwegian Centre for Climate Services (NCCS), Trondheim, p. 105, 2019. a, b
Hock, R.:
Glacier melt: A review of processes and their modelling,
Prog. Phys. Geog.,
29, 362–391, https://doi.org/10.1191/0309133305pp453ra, 2005. a
Irvine-Fynn, T. D., Sanz-Ablanedo, E., Rutter, N., Smith, M. W., and Chandler, J. H.:
Measuring glacier surface roughness using plot-scale, close-range digital photogrammetry,
J. Glaciol.,
60, 957–969, https://doi.org/10.3189/2014JoG14J032, 2014. a, b, c
James, M. R. and Robson, S.:
Mitigating systematic error in topographic models derived from UAV and ground-based image networks,
Earth Surf. Proc. Land.,
39, 1413–1420, https://doi.org/10.1002/esp.3609, 2014. a
James, M. R., Robson, S., and Smith, M. W.:
3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys,
Earth Surf. Proc. Land.,
42, 1769–1788, https://doi.org/10.1002/esp.4125, 2017. a
Karner, F., Obleitner, F., Krismer, T., Kohler, J., and Greuell, W.:
A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard,
J. Geophys. Res.-Atmos.,
118, 3986–4000, https://doi.org/10.1029/2012JD018342, 2013. a
Macdonald, R. W., Griffiths, R. F., and Hall, D. J.:
An improved method for the estimation of surface roughness of obstacle arrays,
Atmos. Environ.,
32, 1857–1864, https://doi.org/10.1016/S1352-2310(97)00403-2, 1998. a
Mansell, D., Luckman, A., and Murray, T.:
Dynamics of tidewater surge-type glaciers in northwest Svalbard,
J. Glaciol.,
58, 110–118, https://doi.org/10.3189/2012JoG11J058, 2012. a
Miles, E. S., Steiner, J. F., and Brun, F.:
Highly variable aerodynamic roughness length (z0) for a hummocky debris-covered glacier,
J. Geophys. Res.-Atmos.,
122, 8447–8466, https://doi.org/10.1002/2017JD026510, 2017. a, b
Murray, T., James, T., MacHeret, Y., Lavrentiev, I., Glazovsky, A., and Sykes, H.:
Geometric changes in a tidewater glacier in svalbard during its surge cycle,
Arct. Antarct. Alp. Res.,
44, 359–367, https://doi.org/10.1657/1938-4246-44.3.359, 2012. a
Nield, J. M., Chiverrell, R. C., Darby, S. E., Leyland, J., Vircavs, L. H., and Jacobs, B.:
Complex spatial feedbacks of tephra redistribution, ice melt and surface roughness modulate ablation on tephra covered glaciers,
Earth Surf. Proc. Land.,
38, 95–102, https://doi.org/10.1002/esp.3352, 2013a. a, b
Nield, J. M., King, J., Wiggs, G. F. S., Leyland, J., Bryant, R. G., Chiverrell, R. C., Darby, S. E., Eckardt, F. D., Thomas, D. S. G., Vircavs, L. H., and Washington, R.:
Estimating aerodynamic roughness over complex surface terrain,
J. Geophys. Res.-Atmos.,
118, 12948–12961, https://doi.org/10.1002/2013JD020632, 2013b. a
Obleitner, F.:
The energy budget of snow and ice at Breidamerkurjokull, Vatnajokull, Iceland,
Bound.-Lay. Meteorol.,
97, 385–410, https://doi.org/10.1023/A:1002734303353, 2000. a
Rees, W. G. and Arnold, N. S.:
Scale-dependent roughness of a glacier surface: Implications for radar backscatter and aerodynamic roughness modelling,
J. Glaciol.,
52, 214–222, https://doi.org/10.3189/172756506781828665, 2006. a, b
Rounce, D. R., Quincey, D. J., and McKinney, D. C.: Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal, The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, 2015. a, b, c
Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., Holt, T. O., and Snooke, N.: UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet, The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, 2015. a
Shepard, M. K., Campbell, B. A., Bulmer, M. H., Farr, T. G., Gaddis, L. R., and Plaut, J. J.:
The roughness of natural terrain: A planetary and remote sensing perspective,
J. Geophys. Res.-Planet.,
106, 32777–32795, https://doi.org/10.1029/2000JE001429, 2001. a
Smeets, C. J., Duynkerke, P. G., and Vugts, H. F.:
Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness,
Bound.-Lay. Meteorol.,
92, 101–123, https://doi.org/10.1023/a:1001899015849, 1999. a, b, c
Smith, B. E., Raymond, C. F., and Scambos, T.:
Anisotropic texture of ice sheet surfaces,
J. Geophys. Res.-Earth,
111, 1–8, https://doi.org/10.1029/2005JF000393, 2006. a
Smith, M. W.:
Roughness in the Earth Sciences,
Earth-Sci. Rev.,
136, 202–225, https://doi.org/10.1016/j.earscirev.2014.05.016, 2014. a, b, c, d
Smith, M. W., Quincey, D. J., Dixon, T., Bingham, R. G., Carrivick, J. L., Irvine-Fynn, T. D. L., and Rippin, D. M.:
Aerodynamic roughness of glacial ice surfaces derived from high-resolution topographic data,
J. Geophys. Res.-Earth,
121, 748–766, https://doi.org/10.1002/2015JF003759, 2016. a, b, c, d, e, f, g, h, i, j, k
Smith, T., Smith, M. W., Chambers, J. R., Sailer, R., Nicholson, L., Mertes, J., Quincey, D. J., Carrivick, J. L., and Stiperski, I.:
A scale-dependent model to represent changing aerodynamic roughness of ablating glacier ice based on repeat topographic surveys,
J. Glaciol.,
pp. 1–15, https://doi.org/10.1017/jog.2020.56, 2020. a, b
Uysal, M., Toprak, A. S., and Polat, N.:
DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill,
Measurement,
73, 539–543, https://doi.org/10.1016/j.measurement.2015.06.010, 2015.
a, b
van Tiggelen, M., Smeets, P. C. J. P., Reijmer, C. H., Wouters, B., Steiner, J. F., Nieuwstraten, E. J., Immerzeel, W. W., and van den Broeke, M. R.: Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect, The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, 2021. a, b
Verhoeven, G.:
Taking computer vision aloft – archaeological three-dimensional reconstructions from aerial photographs with photoscan,
Archaeol. Prospect.,
18, 67–73, https://doi.org/10.1002/arp.399, 2011. a
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
This study investigated the aerodynamic roughness length (z0) – an important parameter to...