Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5483-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5483-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements
Florent Garnier
CORRESPONDING AUTHOR
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), CNRS/UMR5566, Université Paul Sabbatier, 31400 Toulouse, France
Sara Fleury
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), CNRS/UMR5566, Université Paul Sabbatier, 31400 Toulouse, France
Gilles Garric
Mercator Ocean, 31520 Ramonville Saint Agne, France
Jérôme Bouffard
Earth Observation Directorate, ESA (European Space Agency), Via Galileo Galilei, 2-00044 Frascati, Italy
Michel Tsamados
Centre for Polar Observation and Modelling, Department of Earth Sciences, University College London, London, WC1E 6BT, UK
Antoine Laforge
Serco c/o ESA, Earth Observation Directorate, Via Galileo Galilei, 2-00044 Frascati, Italy
Marion Bocquet
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), CNRS/UMR5566, Université Paul Sabbatier, 31400 Toulouse, France
Renée Mie Fredensborg Hansen
Earth Observation Directorate, ESA (European Space Agency), Via Galileo Galilei, 2-00044 Frascati, Italy
Frédérique Remy
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), CNRS/UMR5566, Université Paul Sabbatier, 31400 Toulouse, France
Related authors
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023, https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Yeray Santana-Falcón, Pierre Brasseur, Jean Michel Brankart, and Florent Garnier
Ocean Sci., 16, 1297–1315, https://doi.org/10.5194/os-16-1297-2020, https://doi.org/10.5194/os-16-1297-2020, 2020
Short summary
Short summary
Data assimilation is the most comprehensive strategy to estimate the biogeochemical state of the ocean. Here, surface Chl a data are daily assimilated into a 24-member NEMO–PISCES ensemble configuration to implement a complete 4D assimilation system. Results show the assimilation increases the skills of the ensemble, though a regional diagnosis suggests that the description of model and observation uncertainties needs to be refined according to the biogeochemical characteristics of each region.
Elie René-Bazin, Michel Tsamados, Sabrina Sofea Binti Aliff Raziuddin, Joel Perez Ferrer, Tudor Suciu, Carmen Nab, Chamkaur Ghag, Harry Heorton, Rosemary Willatt, Jack Landy, Matthew Fox, and Thomas Bodin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1163, https://doi.org/10.5194/egusphere-2025-1163, 2025
Short summary
Short summary
This paper introduces a new statistical approach to retrieve ice and snow depth over the Arctic Ocean, using satellite altimeters measurements. We demonstrate the ability of this method to compute efficiently the sea ice thickness and the snow depth over the Arctic, without major assumptions on the snow. In addition to the ice and snow depth, this approach is efficient to study the penetration of radar and laser pulses, paving the way for further research in satellite altimetry.
Aliette Chenal, Gilles Garric, Charles-Emmanuel Testut, Mathieu Hamon, Giovanni Ruggiero, Florent Garnier, and Pierre-Yves Le Traon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3633, https://doi.org/10.5194/egusphere-2024-3633, 2024
Short summary
Short summary
This study proposes to improve the representation of ice and snow volumes in the Arctic and Antarctic based on a novel multivariate assimilation method using freeboard radar and snow depth satellite data. The approach leads to an improved sea ice and snow volume representation, even during summer when satellite data is limited. The performance of the assimilated system is better in the Arctic than in Antarctica, where ocean/ice interactions play a key role.
Adam M. Cook, Youyu Lu, Xianmin Hu, David Brickman, David Hebert, Chantelle Layton, and Gilles Garric
State Planet Discuss., https://doi.org/10.5194/sp-2024-14, https://doi.org/10.5194/sp-2024-14, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Ocean bottom temperatures from a global ocean reanalysis product are found to be consistent with in situ observations on Scotian Shelf. Statistical analysis reveals positive relationship between changes in lobster catch rate and ocean bottom temperature off the southwest coast of Nova Scotia during 2008–2023. A standardized lobster catch rate index with influence of bottom temperature included is more consistent with available stock biomass compared to the index without such influence.
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
Li Zhai, Youyu Lu, Haiyan Wang, Gilles Garric, and Simon Van Gennip
State Planet Discuss., https://doi.org/10.5194/sp-2024-17, https://doi.org/10.5194/sp-2024-17, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Statistics of Marine Heatwaves and Cold Spells in the water column of Northwest Atlantic during 1993–2023 are derived for the first time using a global ocean reanalysis product. On Scotian Shelf temperature and parameters of extreme events present layered structures in the water column, long-term trends and sharp increases around 2012. Quantification of extreme warm (cold) conditions in 2012 (1998) supports previous studies on the impacts of these conditions on several marine life species.
Renée M. Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut V. Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian B. Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ G. D. Casal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2854, https://doi.org/10.5194/egusphere-2024-2854, 2024
Short summary
Short summary
In December 2022, an airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea useful for evaluating microwave penetration. We found limited snow penetration at Ka- and Ku-bands, with significant contributions from the air-snow interface, contradicting traditional assumptions. These findings challenge current methods for comparing air- and spaceborne altimeter estimates of sea ice.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023, https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary
Short summary
The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023, https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev
The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, https://doi.org/10.5194/tc-15-4501-2021, 2021
Short summary
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
William Gregory, Isobel R. Lawrence, and Michel Tsamados
The Cryosphere, 15, 2857–2871, https://doi.org/10.5194/tc-15-2857-2021, https://doi.org/10.5194/tc-15-2857-2021, 2021
Short summary
Short summary
Satellite measurements of radar freeboard allow us to compute the thickness of sea ice from space; however attaining measurements across the entire Arctic basin typically takes up to 30 d. Here we present a statistical method which allows us to combine observations from three separate satellites to generate daily estimates of radar freeboard across the Arctic Basin. This helps us understand how sea ice thickness is changing on shorter timescales and what may be causing these changes.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Yeray Santana-Falcón, Pierre Brasseur, Jean Michel Brankart, and Florent Garnier
Ocean Sci., 16, 1297–1315, https://doi.org/10.5194/os-16-1297-2020, https://doi.org/10.5194/os-16-1297-2020, 2020
Short summary
Short summary
Data assimilation is the most comprehensive strategy to estimate the biogeochemical state of the ocean. Here, surface Chl a data are daily assimilated into a 24-member NEMO–PISCES ensemble configuration to implement a complete 4D assimilation system. Results show the assimilation increases the skills of the ensemble, though a regional diagnosis suggests that the description of model and observation uncertainties needs to be refined according to the biogeochemical characteristics of each region.
Cited articles
Adodo, F. I., Remy, F., and Picard, G.: Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet, The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, 2018. a
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. a
Andersen, O. B. and Knudsen, P.: The DTU15 Mean Sea Surface and Mean Dynamic
Topography, in: Oral Presentation in the 2015 OSTST Meeeting, Reston,
USA, 2015. a
Andersen, O. B., Nilsen, K., Sørensen, L. S., Skourup, H., Andersen, N. H.,
Nagler, T., Wuite, J., Kouraev, A., Zakharova, E., and Fernandez, D.: Arctic
freshwater fluxes from earth observation data, in: Fiducial Reference
Measurements for Altimetry, 97–103, Springer, Cham, 2019. a
Andreas, E. L., Jordan, R. E., and Makshtas, A. P.: Parameterizing turbulent
exchange over sea ice: The Ice Station Weddell results,
Bound.-Lay. Meteorol., 114, 439–460, 2005. a
Armitage, T. W. K. and Ridout, A. L.: Arctic sea ice freeboard from AltiKa and
comparison with CryoSat2 and Operation IceBridge, Geophys. Res. Lett., 42, 6724–6731, https://doi.org/10.1002/2015GL064823, 2015. a, b
Arndt, S. and Nicolaus, M.: Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice, The Cryosphere, 8, 2219–2233, https://doi.org/10.5194/tc-8-2219-2014, 2014. a
Arndt, S., Meiners, K. M., Ricker, R., Krumpen, T., Katlein, C., and Nicolaus,
M.: Influence of snow depth and surface flooding on light transmission
through A ntarctic pack ice, J. Geophys. Res.-Oceans, 122,
2108–2119, 2017. a
Bin, C., Vihma, T., Zhanhai, Z., Zhijun, L., and Huiding, W.: Snow and sea ice
thermodynamics in the Arctic: Model validation and sensitivity study against
SHEBA data, Advances in Polar Science, 19, 108–122, 2008. a
Blanchard-Wrigglesworth, E., Farrell, S., Newman, T., and Bitz, C.: Snow cover
on Arctic sea ice in observations and an Earth System Model,
Geophys. Res. Lett., 42, 10–342, 2015. a
Blazey, B. A., Holland, M. M., and Hunke, E. C.: Arctic Ocean sea ice snow depth evaluation and bias sensitivity in CCSM, The Cryosphere, 7, 1887–1900, https://doi.org/10.5194/tc-7-1887-2013, 2013. a
Boisvert, L. N., Webster, M. A., Petty, A. A., Markus, T., Bromwich, D. H., and
Cullather, R. I.: Intercomparison of Precipitation Estimates over the Arctic
Ocean and Its Peripheral Seas from Reanalyses, J. Climate, 31,
8441–8462, https://doi.org/10.1175/JCLI-D-18-0125.1, 2018. a
Bouffard, J., Naeije, M., Banks, C. J., Calafat, F. M., Cipollini, P., Snaith,
H. M., Webb, E., Hall, A., Mannan, R., Féménias, P., and Parrinello, T.:
CryoSat ocean product quality status and future evolution, Adv. Space Res., 62, 1549–1563, https://doi.org/10.1016/j.asr.2017.11.043, 2018a. a
Bouffard, J., Webb, E., Scagliola, M., Garcia-Mondéjar, A., Baker, S.,
Brockley, D., Gaudelli, J., Muir, A., Hall, A., Mannan, R., Roca, M.,
Fornari, M., Féménias, P., and Parrinello, T.: CryoSat instrument
performance and ice product quality status, Adv. Space Res., 62,
1526–1548, https://doi.org/10.1016/j.asr.2017.11.024,
2018b. a
Braakmann-Folgmann, A. and Donlon, C.: Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network, The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, 2019. a
Brucker, L. and Markus, T.: Arctic-scale assessment of satellite passive
microwave-derived snow depth on sea ice using Operation IceBridge airborne
data, J. Geophys. Res.-Oceans, 118, 2892–2905, 2013. a
Bunzel, F., Notz, D., Baehr, J., Müller, W. A., and Fröhlich, K.: Seasonal
climate forecasts significantly affected by observational uncertainty of
Arctic sea ice concentration, Geophys. Res. Lett., 43, 852–859,
https://doi.org/10.1002/2015GL066928, 2016. a
Chang, A., Foster, J., and Hall, D. K.: Nimbus-7 SMMR derived global snow cover
parameters, Ann. Glaciol., 9, 39–44, 1987. a
Chevallier, M., Smith, G. C., Dupont, F., Lemieux, J.-F., Forget, G., Fujii, Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y.-S., Ferry, N., Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina, S., Tang, Y., Tsujino H., and Wang, X.:
Intercomparison of the Arctic sea ice cover in global ocean–sea ice
reanalyses from the ORA-IP project, Clim. Dynam., 49, 1107–1136, 2017. a
Comiso, J. C., Cavalieri, D. J., and Markus, T.: Sea ice concentration, ice
temperature, and snow depth using AMSR-E data,
IEEE T. Geosci. Remote Sens., 41, 243–252, 2003. a
CTOH: ASD data, available at: http://ctoh.legos.obs-mip.fr/data/sea-ice-products, last access: November 2021. a
Déry, S. J. and Tremblay, L.: Modeling the effects of wind redistribution
on the snow mass budget of polar sea ice, J. Phys. Oceanogr.,
34, 258–271, 2004. a
Dong, C., Gao, X., Zhang, Y., Yang, J., Zhang, H., and Chao, Y.: Multiple-scale
variations of sea ice and ocean circulation in the Bering Sea using remote
sensing observations and numerical modeling, Remote Sens., 11, 1484, 2019. a
Eicken, H., Lange, M. A., and Wadhams, P.: Characteristics and distribution patterns of snow and meteoric ice in the Weddell Sea and their contribution to the mass balance of sea ice, Ann. Geophys., 12, 80–93, https://doi.org/10.1007/s00585-994-0080-x, 1994. a
Eicken, H., Fischer, H., and Lemke, P.: Effects of the snow cover on Antarctic
sea ice and potential modulation of its response to climate change, Ann. Glaciol., 21, 369–376, 1995. a
Farrell, S. L., Kurtz, N., Connor, L. N., Elder, B. C., Leuschen, C., Markus,
T., McAdoo, D. C., Panzer, B., Richter-Menge, J., and Sonntag, J. G.: A first
assessment of IceBridge snow and ice thickness data over Arctic sea ice, IEEE T. Geosci. Remote Sens., 50, 2098–2111, 2011. a
Fichefet, T. and Maqueda, M. M.: Sensitivity of a global sea ice model to the
treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646, 1997. a
Fiedler, E. K., Martin, M., Blockley, E., Mignac, D., Fournier, N., Ridout, A., Shepherd, A., and Tilling, R.: Assimilation of sea ice thickness derived from CryoSat-2 along-track freeboard measurements into the Met Office’s Forecast Ocean Assimilation Model (FOAM), The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-127, in review, 2021. a
Fons, S., Kurtz, N. T., Bagnardi, M., Petty, A. A., and Tilling, R.: Assessing
CryoSat-2 Antarctic snow freeboard retrievals using data from ICESat-2, Earth
and Space Science Open Archive, 23, https://doi.org/10.1002/essoar.10506473.1, 2021. a
Fons, S. W. and Kurtz, N. T.: Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns, The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019, 2019. a
Forsström, S., Gerland, S., and Pedersen, C. A.: Thickness and density of
snow-covered sea ice and hydrostatic equilibrium assumption from in situ
measurements in Fram Strait, the Barents Sea and the Svalbard coast, Ann. Glaciol., 52, 261–270, 2011. a
Giles, K., Laxon, S., Wingham, D., Wallis, D., Krabill, W., Leuschen, C.,
McAdoo, D., Manizade, S., and Raney, R.: Combined airborne laser and radar
altimeter measurements over the Fram Strait in May 2002, Remote Sens. Environ., 111, 182–194, 2007. a
Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J., and Bacon, S.:
Western Arctic Ocean freshwater storage increased by wind-driven spin-up of
the Beaufort Gyre, Nat. Geosci., 5, 194–197, 2012. a
Granskog, M. A., Assmy, P., Gerland, S., Spreen, G., Steen, H., and Smedsrud,
L. H.: Arctic research on thin ice: Consequences of Arctic sea ice loss, Eos
Trans. AGU, 97, 22–26, 2016. a
Grenfell, T. C. and Maykut, G. A.: The optical properties of ice and snow in
the Arctic Basin, J. Glaciol., 18, 445–463, 1977. a
Grody, N. C.: Classification of snow cover and precipitation using the Special
Sensor Microwave Imager, J. Geophys. Res.-Atmos., 96,
7423–7435, 1991. a
Grosfeld, K., Treffeisen, R., Asseng, J., Bartsch, A., Bräuer, B., Fritzsch, B., Gerdes, R., Hendricks, S., Hiller, W., Heygster, G., Krumpen, T., Lemke, P., Melsheimer, C., Nicolaus, M., Ricker, R., and Weigelt, M.:
Online sea-ice knowledge and data platform, available at: https://www.meereisportal.de/ (last access: March 2021),
Polarforschung, 85, 143–155, 2016. a
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, 2017. a, b, c
Haas, C., Haapala, J., Hanson, S., Rabenstein, L., Rinne, E., and Wilkinson,
J.: CryoVEx 2006: field report, ESA/ESTEC contract 18677/04/NL/GS, CCN 2, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 2006. a
Haas, C., Beckers, J., King, J., Silis, A., Stroeve, J., Wilkinson, J.,
Notenboom, B., Schweiger, A., and Hendricks, S.: Ice and snow thickness
variability and change in the high Arctic Ocean observed by in situ
measurements, Geophys. Res. Lett., 44, 10–462, 2017. a
Helm, V., Hendricks, S., Göbell, S., Rack, W., Haas, C., Nixdorf, U., and
Boebel, T.: CryoVex 2004 and 2005 (BoB) data acquisition and final report,
Alfred Wegener Institute, Bremerhaven, Germany, 2006. a
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014. a
Hendricks, S., Stenseng, L., Helm, V., and Haas, C.: Effects of surface
roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar
altimeter, in: 2010 IEEE International Geoscience and Remote Sensing
Symposium, 3126–3129, IEEE, Honolulu, 2010. a
Hendricks, S., Paul, S., and Rinne, E.: Southern hemisphere sea ice thickness
from the CryoSat-2 satellite on a monthly grid (L3C), v2.0e thickness and
volume, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/48fc3d1e8ada405c8486ada522dae9e8, 2018. a
Holland, D. M., Mysak, L. A., Manak, D. K., and Oberhuber, J. M.: Sensitivity
study of a dynamic thermodynamic sea ice model, J. Geophys. Res.-Oceans, 98, 2561–2586, 1993. a
Hvidegaard, S. M., Forsberg, R., and Skourup, H.: Sea ice thickness estimates
from airborne laser scanning, Sea Ice Thickness: Past, Present and Future,
193–206, 2006. a
Ingram, W., Wilson, C., and Mitchell, J.: Modeling climate change: An
assessment of sea ice and surface albedo feedbacks, J. Geophys. Res.-Atmos., 94, 8609–8622, 1989. a
Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance,
S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston,
P.: On the representation error in data assimilation, Q. J. Roy. Meteor. Soc., 144, 1257–1278,
https://doi.org/10.1002/qj.3130, 2018. a
Kacimi, S. and Kwok, R.: The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness, The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, 2020. a, b
Kaminski, T., Kauker, F., Toudal Pedersen, L., Voßbeck, M., Haak, H., Niederdrenk, L., Hendricks, S., Ricker, R., Karcher, M., Eicken, H., and Gråbak, O.: Arctic Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance, The Cryosphere, 12, 2569–2594, https://doi.org/10.5194/tc-12-2569-2018, 2018. a
Kelly, R.: The AMSR-E snow depth algorithm: Description and initial results,
Journal of the Remote Sensing Society of Japan, 29, 307–317, 2009. a
Kern, M., Cullen, R., Berruti, B., Bouffard, J., Casal, T., Drinkwater, M. R., Gabriele, A., Lecuyot, A., Ludwig, M., Midthassel, R., Navas Traver, I., Parrinello, T., Ressler, G., Andersson, E., Martin-Puig, C., Andersen, O., Bartsch, A., Farrell, S., Fleury, S., Gascoin, S., Guillot, A., Humbert, A., Rinne, E., Shepherd, A., van den Broeke, M. R., and Yackel, J.: The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission, The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, 2020. a
Kern, S.:
ESA-CCI_Phase2_Standardized_Manual_Visual_Ship-Based_SeaIceObservations_v02,
https://doi.org/10.26050/WDCC/ESACCIPSMVSBSIOV2, WDC climate, DKRZ German
climate computing center [data set], 2020. a
Kern, S., Khvorostovsky, K., Skourup, H., Rinne, E., Parsakhoo, Z. S., Djepa, V., Wadhams, P., and Sandven, S.: The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise, The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, 2015. a
King, J., Howell, S., Derksen, C., Rutter, N., Toose, P., Beckers, J. F., Haas,
C., Kurtz, N., and Richter-Menge, J.: Evaluation of Operation IceBridge
quick-look snow depth estimates on sea ice, Geophys. Res. Lett., 42,
9302–9310, https://doi.org/10.1002/2015GL066389, 2015. a
Koenig, L., Martin, S., Studinger, M., and Sonntag, J.: Polar Airborne
Observations Fill Gap in Satellite Data, Eos, Transactions American
Geophysical Union, 91, 333–334, https://doi.org/10.1029/2010EO380002, 2010. a
Kurtz, N., Studinger, M., Harbeck, J., Onana, V., and Farrell, S.: IceBridge
sea ice freeboard, snow depth, and thickness, Digital media, NASA Distributed
Active Archive Center at the National Snow and Ice Data Center, Boulder,
Colorado, USA, available at: http://nsidc. org/data/idcsi2 (last access: March 2021), 2012. a
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013. a, b
Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic
sea ice from Operation IceBridge, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL049216, 2011. a, b
Kwok, R. and Cunningham, G.: Variability of Arctic sea ice thickness and volume
from CryoSat-2, Phil. Trans. R. Soc. A, 373, 20140157, https://doi.org/10.1098/rsta.2014.0157, 2015. a, b, c
Kwok, R., Panzer, B., Leuschen, C., Pang, S., Markus, T., Holt, B., and
Gogineni, S.: Airborne surveys of snow depth over Arctic sea ice, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2011JC007371, 2011. a
Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L., King, J., Howell, S., Webster, M. A., Paden, J., Leuschen, C., MacGregor, J. A., Richter-Menge, J., Harbeck, J., and Tschudi, M.: Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge, The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017, 2017. a, b
Kwok, R., Kacimi, S., Webster, M., Kurtz, N., and Petty, A.: Arctic Snow Depth
and Sea Ice Thickness From ICESat-2 and CryoSat-2 Freeboards: A First
Examination, J. Geophys. Res.-Oceans, 125, e2019JC016008,
2020. a
Landy, J. C., Ehn, J. K., Babb, D. G., Thériault, N., and Barber, D. G.:
Sea ice thickness in the Eastern Canadian Arctic: Hudson Bay Complex &
Baffin Bay, Remote Sens. Environ., 200, 281–294, 2017. a
Landy, J. C., Tsamados, M., and Scharien, R. K.: A facet-based numerical model
for simulating SAR altimeter echoes from heterogeneous sea ice surfaces, IEEE T. Geosci. Remote Sens., 57, 4164–4180, 2019. a
Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., and Ridout, A. L.: Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards, The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, 2018. a, b, c
Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
thickness in the Arctic region, Nature, 425, 947–950, 2003. a
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen,
R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates
of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40,
732–737, 2013. a, b, c
Lecomte, O., Fichefet, T., Vancoppenolle, M., and Nicolaus, M.: A new snow
thermodynamic scheme for large-scale sea-ice models, Ann. Glaciol.,
52, 337–346, 2011. a
Ledley, T. S.: Snow on sea ice: Competing effects in shaping climate, J. Geophys. Res.-Atmos., 96, 17195–17208, 1991. a
Lee, Y.-K., Kongoli, C., and Key, J.: An in-depth evaluation of heritage
algorithms for snow cover and snow depth using AMSR-E and AMSR2 measurements,
J. Atmos. Ocean. Technol., 32, 2319–2336, 2015. a
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018. a, b
Leonard, K. C. and Maksym, T.: The importance of wind-blown snow redistribution
to snow accumulation on Bellingshausen Sea ice, Ann. Glaciol., 52,
271–278, 2011. a
Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen,
S. H., Reinking, A. K., and Elder, K.: A Lagrangian Snow-Evolution System for
Sea-Ice Applications (SnowModel-LG): Part I – Model Description, J. Geophys. Res.-Oceans, 125, e2019JC015913,
https://doi.org/10.1029/2019JC015913, 2020. a
Lundberg, A., Richardson-Näslund, C., and Andersson, C.: Snow density
variations: consequences for ground-penetrating radar, Hydrol.
Process., 20, 1483–1495, https://doi.org/10.1002/hyp.5944, 2006. a
Maaß, N., Kaleschke, L., Tian-Kunze, X., and Drusch, M.: Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data, The Cryosphere, 7, 1971–1989, https://doi.org/10.5194/tc-7-1971-2013, 2013. a
Madec, G., Gurvan, M., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Océan, M., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL): 27, ISSN 1288-1619, https://doi.org/10.5281/zenodo.3248739, 2015. a
Maksym, T. and Markus, T.: Antarctic sea ice thickness and snow-to-ice
conversion from atmospheric reanalysis and passive microwave snow depth,
J. Geophys. Res.-Oceans, 113,
https://doi.org/10.1029/2006JC004085, 2008. a
Mäkynen, M., Haapala, J., Aulicino, G., Balan-Sarojini, B., Balmaseda, M.,
Gegiuc, A., Girard-Ardhuin, F., Hendricks, S., Heygster, G., Istomina, L., Kaleschke, L., Karvonen, J., Krumpen, T.,
Lensu, M., Mayer, M., Parmiggiani, F., Ricker, R., Rinne, E., Schmitt,
A., Similä, M., Tietsche, S., Tonboe, R., Wadhams, P., Winstrup,
M., and Zuo, H.: Satellite Observations for Detecting and Forecasting Sea-Ice
Conditions: A Summary of Advances Made in the SPICES Project by the EU’s
Horizon 2020 Programme, Remote Sens., 12, 1214, https://doi.org/10.3390/rs12071214, 2020. a
Mallett, R. D. C., Lawrence, I. R., Stroeve, J. C., Landy, J. C., and Tsamados, M.: Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates, The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, 2020. a, b
Markus, T. and Cavalieri, D. J.: Snow depth distribution over sea ice in the
Southern Ocean from satellite passive microwave data, Antarctic sea ice:
physical processes, interactions and variability, 19–39, https://doi.org/10.1029/AR074p0019, 1998. a
Massom, R. A., Drinkwater, M. R., and Haas, C.: Winter snow cover on sea ice in
the Weddell Sea, J. Geophys. Res.-Oceans, 102, 1101–1117,
https://doi.org/10.1029/96JC02992, 1997. a, b
Massom, R. A., Worby, A., Lytle, V., Markus, T., Allison, I., Scambos, T.,
Enomoto, H., Tamura, T., Tateyama, K., Haran, T., Comiso, J. C., Pfaffling, A., Muto, A., Kanagaratnam, P., Giles, B., Young, N., Hyland, G., and Key, E.: ARISE (Antarctic
Remote Ice Sensing Experiment) in the East 2003: Validation of
satellite-derived sea-ice data products, Ann. Glaciol., 44, 288–296,
2006. a
Massonnet, F., Fichefet, T., and Goosse, H.: Prospects for improved seasonal
Arctic sea ice predictions from multivariate data assimilation, Ocean
Modell., 88, 16–25, 2015. a
Meier, W., Markus, T., and Comiso, J.: AMSR-E/AMSR2 unified L3 Daily 12.5 km
Brightness Temperatures, Sea Ice Concentration, Motion and Snow Depth Polar
Grids, Version 1., NASA National Snow and Ice Data Center Distributed archive
Center [data set], https://doi.org/10.5067/RA1MIJOYPK3P, 2018. a, b
Merkouriadi, I., Cheng, B., Graham, R. M., Rösel, A., and Granskog, M. A.:
Critical Role of Snow on Sea Ice Growth in the Atlantic Sector of the Arctic
Ocean, Geophys. Res. Lett., 44, 10,479–10,485,
https://doi.org/10.1002/2017GL075494, 2017. a
Munoz-Martin, J. F., Perez, A., Camps, A., Ribó, S., Cardellach, E.,
Stroeve, J., Nandan, V., Itkin, P., Tonboe, R., Hendricks, S., Huntemann, M., Spreen, G., and Pastena, M.: Snow
and Ice Thickness Retrievals Using GNSS-R: Preliminary Results of the MOSAiC
Experiment, Remote Sens., 12, 4038, 2020. a
Nandan, V., Scharien, R. K., Geldsetzer, T., Kwok, R., Yackel, J. J.,
Mahmud, M. S., Rösel, A., Tonboe, R., Granskog, M., Willatt, R.,
Stroeve, J., Nomura, D., and Frey, M.: Snow Property Controls on
Modeled Ku-Band Altimeter Estimates of First-Year Sea Ice Thickness: Case
Studies From the Canadian and Norwegian Arctic, IEEE J. Sel. Top. Appl., 13, 1082–1096,
https://doi.org/10.1109/JSTARS.2020.2966432, 2020. a
Newman, T., Farrell, S. L., Richter-Menge, J., Connor, L. N., Kurtz, N. T.,
Elder, B. C., and McAdoo, D.: Assessment of radar-derived snow depth over A
rctic sea ice, J. Geophys. Res.-Oceans, 119, 8578–8602,
2014. a
Nghiem, S. V., Clemente-Colón, P., Douglas, T., Moore, C., Obrist, D.,
Perovich, D. K., Pratt, K. A., Rigor, I. G., Simpson, W., Shepson, P. B., Steffen, A., and Woods, J.: Studying bromine, ozone, and mercury chemistry in the Arctic, Eos,
Transactions American Geophysical Union, 94, 289–291, 2013. a
Notz, D.: Challenges in simulating sea ice in Earth System Models, WIRES Clim. Change, 3, 509–526, 2012. a
Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V.,
Olsen, M. S., Pawlak, J., Reiersen, L.-O., and Wang, M.: The urgency of
Arctic change, Polar Sci., 21, 6–13, 2019. a
Parrinello, T., Shepherd, A., Bouffard, J., Badessi, S., Casal, T., Davidson,
M., Fornari, M., Maestroni, E., and Scagliola, M.: CryoSat: ESA’s ice
mission – Eight years in space, Adv. Space Res., 62, 1178–1190,
https://doi.org/10.1016/j.asr.2018.04.014, 2018. a
Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, 2018. a
Perovich, D., Richter-Menge, J., and Polashenski, C.: Observing and
understanding climate change: Monitoring the mass balance, motion, and
thickness of Arctic sea ice, available at: http://imb-crrel-dartmouth.org (last access: March 2021),
2021. a
Perovich, D. K.: Light reflection and transmission by a temperate snow cover,
J. Glaciol., 53, 201–210, 2007. a
Perovich, D.-K. and Richter-Menge: Regional variability in sea ice melt in a
changing Arctic, Mathematical, physical and engineering sciences, 373, 20140165, https://doi.org/10.1098/rsta.2014.0165, 2015. a
Perovich, D. K. and Richter-Menge, J. A.: Surface characteristics of lead ice,
J. Geophys. Res.-Oceans, 99, 16341–16350, 1994. a
Perovich, D. K., Andreas, E. L., Curry, J. A., Eiken, H., Fairall, C. W.,
Grenfell, T. C., Guest, P., Intrieri, J., Kadko, D., Lindsay, R. W., McPhee,
M. G., Morison, J., Moritz, R. E., Paulson, C. A., Pegau, W. S., Persson, P.,
Pinkel, R., Richter-Menge, J. A., Stanton, T., Stern, H., Sturm, M.,
Tucker III, W., and Uttal, T.: Year on ice gives climate insights, Eos,
Transactions American Geophysical Union, 80, 481–486,
https://doi.org/10.1029/EO080i041p00481-01, 1999. a
Perovich, D. K., Grenfell, T. C., Richter-Menge, J. A., Light, B., Tucker III,
W. B., and Eicken, H.: Thin and thinner: Sea ice mass balance measurements
during SHEBA, J. Geophys. Res.-Oceans, 108,
https://doi.org/10.1029/2001JC001079, 2003. a
Petty, A. A., Webster, M., Boisvert, L., and Markus, T.: The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis, Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, 2018. a, b, c
Powell, D. C., Markus, T., and Stössel, A.: Effects of snow depth forcing
on Southern Ocean sea ice simulations, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2003JC002212, 2005. a
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2011JC007084, 2011. a, b
Semenov, A., Zhang, X., Rinke, A., Dorn, W., and Dethloff, K.: Arctic intense
summer storms and their impacts on sea ice – A regional climate modeling
study, Atmosphere, 10, 218, https://doi.org/10.3390/atmos10040218, 2019. a
Serreze, M., Walsh, J., Chapin, F. S., Osterkamp, T., Dyurgerov, M.,
Romanovsky, V., Oechel, W., Morison, J., Zhang, T., and Barry, R.:
Observational evidence of recent change in the northern high-latitude
environment, Climatic Change, 46, 159–207, 2000. a
Shalina, E. V. and Sandven, S.: Snow depth on Arctic sea ice from historical in situ data, The Cryosphere, 12, 1867–1886, https://doi.org/10.5194/tc-12-1867-2018, 2018. a
Shupe, M., Rex, M., Dethloff, K., Damm, E., Fong, A., Gradinger, R., Heuze, C.,
Loose, B., Makarov, A., Maslowski, W., Nicolaus, M., Perovich, D., Rabe, B., Rinke, A., Sokolov, V., and Sommerfeld, A: The MOSAiC Expedition: A Year
Drifting with the Arctic Sea Ice, Arctic report card, NFS Public access repository, https://doi.org/10.25923/9g3v-xh92, 2020. a
Singarayer, J. S., Bamber, J. L., and Valdes, P. J.: Twenty-first-century
climate impacts from a declining Arctic sea ice cover, J. Climate,
19, 1109–1125, 2006. a
Skourup, H., Hvidegaard, S. M., Forsberg, R., Einarsson, I., Olesen, A. V.,
Sornsen, L. S., Stenseng, L., Hendricks, S., Helm, V., and Davidson, M.:
CryoVEx 2011-12 Airborne Campaigns for CryoSat Validation, 20 Years of
Progress in Radar Altimatry, edited by: Ouwehand, L., 710, 98, 24–29 September 2012, Venice, Italy, ISBN 978-92-9221-274-2, 2013. a
Stewart, L. M., Dance, S. L., and Nichols, N. K.: Correlated observation errors
in data assimilation, Int. J. Numer. Meth. Fl.,
56, 1521–1527, https://doi.org/10.1002/fld.1636, 2008. a
Stroeve, J., Liston, G. E., Buzzard, S., Zhou, L., Mallett, R., Barrett, A.,
Tschudi, M., Tsamados, M., Itkin, P., and Stewart, J. S.: A Lagrangian Snow
Evolution System for Sea Ice Applications (SnowModel-LG): Part II – Analyses,
J. Geophys. Res.-Oceans, 125, e2019JC015900,
https://doi.org/10.1029/2019JC015900, 2020. a
Sturm, M. and Massom, R.: Snow in the sea ice system: Friend or foe?, 65–109, Wiley publisher, in: Sea ice, https://doi.org/10.1002/9781118778371.ch3, 2016. a
Sturm, M. and Massom, R. A.: Snow and sea ice, Sea ice, 2, 153–204, 2009. a
Sturm, M., Holmgren, J., König, M., and Morris, K.: The thermal
conductivity of seasonal snow, J. Glaciol., 43, 26–41, 1997. a
Sturm, M., Holmgren, J., and Perovich, D. K.: Winter snow cover on the sea ice
of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA):
Temporal evolution and spatial variability, J. Geophys. Res.-Oceans, 107, SHE 23–1–SHE 23–17, https://doi.org/10.1029/2000JC000400, 2002. a
Sturm, M., Maslanik, J. A., Perovich, D., Stroeve, J. C., Richter-Menge, J.,
Markus, T., Holmgren, J., Heinrichs, J. F., and Tape, K.: Snow depth and ice
thickness measurements from the Beaufort and Chukchi Seas collected during
the AMSR-Ice03 campaign, IEEE T. Geosci. Remote,
44, 3009–3020, 2006. a
Ulaby, F., Moore, R. K., and Fung, A. K.: Microwave remote sensing: Active and
passive. Volume 3 – From theory to applications, Addison-Wesley, Theory to Applications, 997 pp., 1986. a
Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A.,
Bricaud, C., Carton, J., Fučkar, N., Garric, G., Iovino, D., Kauker, F., Korhonen, M., Lien, V. S., Marnela, M., Massonnet, F., Mignac, D., Peterson, K. A., Sadikni, R., Shi, L., Tietsche, S., Toyoda,
T., Xie, J., and Zhang, Z.: An
assessment of ten ocean reanalyses in the polar regions, Clim. Dynam.,
52, 1613–1650, 2019. a
Van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K.,
Meiners, K. M., Rintala, J.-M., Selz, V., Thomas, D. N., and Stefels, J.:
Microalgal community structure and primary production in Arctic and Antarctic
sea ice: A synthesis, Elementa: Science of the Anthropocene, 6, https://doi.org/10.1525/elementa.267, 2018. a
Vancoppenolle, M., Bouillon, S., Fichefet, T., Goosse, H., Lecomte, O.,
Morales Maqueda, M., and Madec, G.: The Louvain-la-Neuve sea ice model, Notes
du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Paris,
France, 2012. a
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin,
N. N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea Ice,
J. Climate, 12, 1814–1829,
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999. a
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L.,
Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth on Arctic
sea ice, J. Geophys. Res.-Oceans, 119, 5395–5406,
https://doi.org/10.1002/2014JC009985, 2014. a
Wingham, D., Francis, C., Baker, S., Bouzinac, C., Brockley, D., Cullen, R.,
de Chateau-Thierry, P., Laxon, S., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostand, F., Viau, P., and Wallis, D. W.:
CryoSat: A mission to determine the fluctuations in Earth’s land and marine
ice fields, Adv. Space Res., 37, 841–871, 2006. a
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., and
DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res.-Oceans, 113, 2008a. a
Worby, A. P., Markus, T., Steer, A. D., Lytle, V. I., and Massom, R. A.:
Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in
situ measurements and aerial photography, J. Geophys. Res.-Oceans, 113, https://doi.org/10.1029/2007JC004181, 2008b. a, b
Worby, A. P., Steer, A., Lieser, J. L., Heil, P., Yi, D., Markus, T., Allison,
I., Massom, R. A., Galin, N., and Zwally, J.: Regional-scale sea-ice and snow
thickness distributions from in situ and satellite measurements over East
Antarctica during SIPEX 2007, Deep-Sea. Res. Pt. II, 58, 1125–1136, 2011. a
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and
Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon.
Weather Rev., 131, 845–861,
https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003. a
Zhou, L., Xu, S., Liu, J., and Wang, B.: On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data, The Cryosphere, 12, 993–1012, https://doi.org/10.5194/tc-12-993-2018, 2018. a
Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M., Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsamados, M., and Nandan, V.: Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, 2021. a, b
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, 2014. a
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Snow depth data are essential to monitor the impacts of climate change on sea ice volume...