Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4625-2021
https://doi.org/10.5194/tc-15-4625-2021
Research article
 | 
30 Sep 2021
Research article |  | 30 Sep 2021

Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements

Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty

Related authors

The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023,https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Sublimation measurements of tundra and taiga snowpack in Alaska
Kelsey A. Stockert, Eugénie S. Euskirchen, and Svetlana L. Stuefer
The Cryosphere, 19, 1739–1755, https://doi.org/10.5194/tc-19-1739-2025,https://doi.org/10.5194/tc-19-1739-2025, 2025
Short summary
Insights into microphysical and optical properties of typical mineral dust within industrial-polluted snowpack via wet/dry deposition in Changchun, Northeastern China
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-124,https://doi.org/10.5194/egusphere-2025-124, 2025
Short summary
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025,https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025,https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Influence of Snow Spatial Variability on Cosmic Ray Neutron SWE
Haejo Kim, Eric Sproles, and Samuel E. Tuttle
EGUsphere, https://doi.org/10.5194/egusphere-2025-31,https://doi.org/10.5194/egusphere-2025-31, 2025
Short summary

Cited articles

Bocchiola, D., Bianchi Janetti, E., Gorni, E., Marty, C., and Sovilla, B.: Regional evaluation of three day snow depth for avalanche hazard mapping in Switzerland, Nat. Hazards Earth Syst. Sci., 8, 685–705, https://doi.org/10.5194/nhess-8-685-2008, 2008. 
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011. 
Buchmann, M., Begert, M., Brönnimann, S., and Marty, C.: Evaluating the robustness of snow climate indicators using a unique set of parallel snow measurement series, Int. J. Climatol., 41 E2553–E2563, https://doi.org/10.1002/joc.6863, 2021a. 
Buchmann, M., Aschauer, J., Begert, M., and Marty, C.: Snow climate indicators derived from parallel manual snow measurements, EnviDat [data set], https://doi.org/10.16904/envidat.218, 2021b. 
Foster, J. L.: The Significance of the Date of Snow Disappearance on the Arctic Tundra as a Possible Indicator of Climate Change, Arct. Alp. Res., 21, 60–70, https://doi.org/10.2307/1551517, 1989. 
Download
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Share