Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4625-2021
https://doi.org/10.5194/tc-15-4625-2021
Research article
 | 
30 Sep 2021
Research article |  | 30 Sep 2021

Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements

Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty

Related authors

The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023,https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024,https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Characterization of non-Gaussianity in the snow distributions of various landscapes
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024,https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024,https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024,https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary

Cited articles

Bocchiola, D., Bianchi Janetti, E., Gorni, E., Marty, C., and Sovilla, B.: Regional evaluation of three day snow depth for avalanche hazard mapping in Switzerland, Nat. Hazards Earth Syst. Sci., 8, 685–705, https://doi.org/10.5194/nhess-8-685-2008, 2008. 
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011. 
Buchmann, M., Begert, M., Brönnimann, S., and Marty, C.: Evaluating the robustness of snow climate indicators using a unique set of parallel snow measurement series, Int. J. Climatol., 41 E2553–E2563, https://doi.org/10.1002/joc.6863, 2021a. 
Buchmann, M., Aschauer, J., Begert, M., and Marty, C.: Snow climate indicators derived from parallel manual snow measurements, EnviDat [data set], https://doi.org/10.16904/envidat.218, 2021b. 
Foster, J. L.: The Significance of the Date of Snow Disappearance on the Arctic Tundra as a Possible Indicator of Climate Change, Arct. Alp. Res., 21, 60–70, https://doi.org/10.2307/1551517, 1989. 
Download
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.