Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4527-2021
https://doi.org/10.5194/tc-15-4527-2021
Research article
 | 
28 Sep 2021
Research article |  | 28 Sep 2021

A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images

Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke

Related authors

Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Modeling atmosphere–land interactions at a rainforest site – a case study using Amazon Tall Tower Observatory (ATTO) measurements and reanalysis data
Amelie U. Schmitt, Felix Ament, Alessandro C. de Araújo, Marta Sá, and Paulo Teixeira
Atmos. Chem. Phys., 23, 9323–9346, https://doi.org/10.5194/acp-23-9323-2023,https://doi.org/10.5194/acp-23-9323-2023, 2023
Short summary
Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023,https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Polar firn properties in Greenland and Antarctica and related effects on microwave brightness temperatures
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth C. Jezek, Macro Brogioni, and Lars Kaleschke
The Cryosphere, 17, 2793–2809, https://doi.org/10.5194/tc-17-2793-2023,https://doi.org/10.5194/tc-17-2793-2023, 2023
Short summary
Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023,https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023,https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
MMSeaIce: Multi-task Mapping of Sea Ice Parameters from AI4Arctic Sea Ice Challenge Dataset
Xinwei Chen, Muhammed Patel, Fernando Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1297,https://doi.org/10.5194/egusphere-2023-1297, 2023
Short summary
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023,https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary

Cited articles

Alam, A. and Curry, J. A.: Determination of surface turbulent fluxes over leads in Arctic sea ice, J. Geophys. Res.-Oceans, 102, 3331–3343, https://doi.org/10.1029/96JC03606, 1997. a, b
Allison, I., Brandt, R. E., and Warren, S. G.: East Antarctic sea ice: Albedo, thickness distribution, and snow cover, J. Geophys. Res.-Oceans, 98, 12417–12429, https://doi.org/10.1029/93JC00648, 1993. a
Berk, R. A.: Regression analysis: A constructive critique, vol. 11, Sage, United States of America, https://doi.org/10.4135/9781483348834, 2004. a
Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface albedo of the Antarctic sea ice zone, J. Climate, 18, 3606–3622, https://doi.org/10.1175/JCLI3489.1, 2005. a, b, c
Chechin, D. G., Makhotina, I. A., Lüpkes, C., and Makshtas, A. P.: Effect of wind speed and leads on clear-sky cooling over Arctic sea ice during polar night, J. Atmos. Sci., 76, 2481–2503, https://doi.org/10.1175/JAS-D-18-0277.1, 2019. a
Download
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.